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Although bacterial population behavior has been investigated in a variety of

foods in the past 40 years, it is difficult to obtain desired information from the

mere juxtaposition of experimental data. We predicted the changes in the

number of bacteria and visualize the effects of pH, aw, and temperature using a

data mining approach. Population growth and inactivation data on eight

pathogenic and food spoilage bacteria under 5,025 environmental

conditions were obtained from the ComBase database (www.combase.cc),

including 15 food categories, and temperatures ranging from 0°C to 25°C. The

eXtreme gradient boosting tree was used to predict population behavior. The

root mean square error of the observed and predicted values was 1.23 log CFU/

g. The data mining model extracted the growth inhibition for the investigated

bacteria against aw, temperature, and pH using the SHapley Additive

eXplanations value. A data mining approach provides information concerning

bacterial population behavior and how food ecosystems affect bacterial growth

and inactivation.
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1 Introduction

Different types of microorganisms are present in food. Some of these cause foodborne

illness and food spoilage. To control food pathogens and spoilage bacteria, various

preservation techniques have been developed to prevent harmful bacteria from growing

during processing, distribution, and storage. Many factors influence the microbial

response in food ecosystems. For instance, temperature, pH, water activity (aw),

antimicrobial additives, and gas components can affect bacterial population behavior

(Leistner, 2000; Doyle et al., 2019), even though the effects on bacterial growth and

inactivation vary by bacterial species or genus. Adjusting the various environmental

conditions in food enables the suppression of bacterial growth and food spoilage (Gould,

1996; Leistner, 2000). Thus, appropriate microbiological control can help prevent food

loss and improve food safety.
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To quantify and evaluate bacterial growth for control, many

studies on microbiological response in food have been conducted

since Roberts & Jarvis (1983) introduced predictive

microbiology, which originated from the research by Bigelow

(1921), Bigelow & Esty (1920), and Esty & Meyer (1922). Each

experimental data on bacterial growth and inactivation was

obtained by counting the number of colonies on the culture

plate as viable cell counts or by measuring optical density for the

cell density over time under controlled conditions, such as

temperature, pH, and aw. Microbial responses in food have

been explained by mathematical models, the main exploratory

variables of which are temperature, pH, and aw (Ross and

McMeekin, 1994; Jagannath and Tsuchido, 2003). Over the

last 40 years, experimental data on microbial responses to the

food environment have been collected by research institutions,

universities, and companies according to their objectives. The

accumulated data are stored in databases such as the ComBase

database (www.combase.cc), which was developed to provide

easy access to microbiological data in research establishments

and publications produced by different laboratories (Baranyi

et al., 2004). Currently, every effort is vital for collecting data

with similar species or conditions through literature or database

to assess product safety. A comprehensive statistical analysis is

needed for understanding bacterial population behavior

regardless of food and bacteria.

Studies have been conducted to understand the global trends

of microbial responses from the accumulated data. In predictive

microbiology, studies have usedmeta-analysis, which is a method

to amalgamate, summarize, or review previous quantitative

research for identifying trends with a statistical model of

specific foods and bacteria [e.g., evaluating inactivation of

Escherichia coli in fermented meat (McQuestin et al., 2009),

meta-analysis for quantitative microbiological risk assessments

and benchmarking data (den Besten and Zwietering, 2012),

growth and inactivation of Listeria monocytogenes in milk or

non-thermal inactivation of Listeria monocytogenes in fermented

sausages (Mataragas et al., 2015)]. Statistical models generally

require analysts to specify the functional form between

explanatory variables and response variables (Hochachka

et al., 2007). Studies using meta-analysis have provided results

that suit some objectives, such as trends in maximum growth rate

or bacterial growth/inactivation by foods. However, a meta-

analysis with statistical models alone is not necessarily

systematic and tends to be fragmentary in terms of cross-

food/bacteria analysis. Bacterial growth is affected by not only

factors such as temperature, pH, and aw, but also cell density

(Koutsoumanis and Sofos, 2005; Skandamis et al., 2007; Bidlas

et al., 2008), characteristics of each food, and gaseous atmosphere

(Doyle et al., 2019). Identifying complex relationships between

food and bacteria requires the development of complex

mathematical formulas with high-dimensional variables. To

predict the bacterial population change and to explore the

influence of each factor on microbial response using big data,

a non-parametric approach, which needs to develop no

hypothesis based on domain knowledge, is considered useful

(Deringer et al., 2021).

Data mining is an effective method for analyzing large

amounts of accumulated data. Data mining is the secondary

analysis of a large database to identify and interpret hidden

patterns (Hand, 1998). The recent accumulation of big data has

promoted the development of databases in various fields.

Consequently, data mining has been employed in many fields

such as agriculture (Cortez et al., 2009; Gulyaeva et al., 2020),

ecology (Hochachka et al., 2007; Ross et al., 2018), healthcare and

medicine (Cios andWilliamMoore, 2002; Delen et al., 2005; Koh

and Tan, 2005; Mohanty et al., 2022), and food quality (Cortez

et al., 2009; Jiménez-Carvelo et al., 2019; Nychas et al., 2021).

Using machine learning, the relationship between the response

and function can be determined empirically from the data. This

approach can discover new knowledge of these patterns. To the

best of our knowledge, only one data mining study has been

conducted in the field of predicting bacterial population

behavior. Hiura et al. (2021) predicted the bacterial behavior

of Listeria monocytogenes using the ComBase database of

microbial responses to food environments. The ComBase

database contains information about bacteria and foods, such

as the name of the bacterial genus or species and the category or

name of the medium or food. Such information enables us to

extract the comprehensive characteristics of bacterial responses,

such as the association between food ecosystems and bacterial

population changes, by analyzing the data reported in previous

studies. In this manner, exploring the whole trend of interactions

between microbial growth and inactivation and conditions from

accumulated data would have an advantage in the comparison

and evaluation of bacterial population changes in various

bacteria and different foods.

In the present study, the objective was to not only develop a

single machine learning model for predicting population

behavior of food-related bacteria in various kinds of food, but

to also visualize the effect of pH, aw, and temperature using a data

mining approach. Data regarding the change in viable cell

number over time were used for eight foodborne and food

spoilage bacteria: “Aeromonas hydrophila,” “Bacillus cereus,”

“Escherichia coli,” “Listeria monocytogenes,” “Pseudomonas

spp.,” “Staphylococcus aureus,” “Salmonella spp.,” and

“Yersinia enterocolitica.” The microbial responses to the food

environment were collected from the ComBase database. The

collected data included population behavior based on 15 food

categories —“beef,” “culture medium,” “pork,” “poultry,”

“seafood/fish,” “vegetable or fruit and their products,” “water,”

“dessert food,” “milk,” “sausage,” “cheese,” “eggs and egg

product,” “juice and beverage,” “sauce/dressing,” and

“bread”— with temperature ranging 0°C–25°C. Data mining

and machine learning approaches provide information

concerning population behavior and its effects on food

ecosystems.
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2 Materials and methods

2.1 Data selection from ComBase
database

The ComBase database contains quantified microbial

responses to food with approximately 60,000 records collected

from various research establishments and publications. Changes

in the bacterial density over time were recorded for each

experimental condition. The dataset of a change in bacterial

density over time in ComBase contains “Record ID,”

“Organism,” “Food category,” “Food name,” “Temperature,”

“pH,” “aw,” “Conditions,” “Time,” and “Viable cell counts”.

Each dataset of changes in a bacterial population is assigned a

“Record ID,” which allows us to recognize one series of

experiments on population behavior.

In this study, we investigated changes in the populations of

eight pathogenic and food spoilage bacteria: A. hydrophila, B.

cereus, E. coli, L. monocytogenes, Pseudomonas

spp. (Pseudomonads), S. aureus, Salmonella spp. (Salmonella),

and Y. enterocolitica. These bacteria are known to cause food

spoilage and foodborne illnesses. Fifteen kinds of food categories

were included “beef,” “culture medium,” “pork,” “poultry,”

“seafood/fish,” “vegetable or fruit and their products,” “water,”

“dessert food,” “milk,” “sausage,” “cheese,” “eggs and egg

product,” “juice and beverage,” “sauce/dressing,” and “bread.”

The data used for model development and evaluation were those

with temperatures ranging from 0°C to 25°C and containing

greater than or equal to four observed values in each series of

experiments on bacterial population behavior. In addition,

records for which viable counts at 0 h were unavailable were

excluded, because the objective values, log Nt/N0 can not be

calculated. Records containing preservatives such as acetic acid,

lactic acid, nitrite, and sorbic acid were also excluded. In total,

9,091 records of bacterial population behavior were extracted

from ComBase and 101,861 viable count data were used. Table 1

summarizes the data selected for this study. The entire “Record

ID” list extracted from ComBase is available online in

Supplementary Data S1.

2.2 Data preprocessing

In the present study, we set the change ratio of viable counts

as the objective variable to predict bacterial behavior to evaluate

both the increase and decrease in the bacterial population. For

each Record ID, the cell concentration was transformed to a

common logarithm of the change ratio of viable counts to the

initial cell number log Nt/N0 defined in Eq. 1:

logNt − logN0 � log
Nt

N0
(1)

where logNt and logN0 are viable cell concentrations (log

colony forming unit (CFU)/g) when the storage time is t (h) and the

logarithm of the initial cell concentration (log CFU/g), respectively.

We used log Nt/N0 as the objective variable. Eight types of

explanatory variables were included: “Time (h),” “Temperature

(°C),” “pH,” “aw,” “Initial cell number (log CFU/g),” “Food

category,” “Food name,” and “Organism.” The data included

both numerical and categorical data. “Time,” “Temperature,”

“pH,” ‘aw,” and “Initial cell number” were numerical data, which

were used without modification for model development. The viable

cell concentration at 0 h was used as the initial cell number for each

record ID. Furthermore, because food category, food name, and

organism are categorical variables, they were replaced with dummy

variables, which is a common technique inmodels based on decision

trees (Hiura et al., 2021). The 15 food categories were converted as

1–15. The types of food names were converted to 1–261. The eight

organisms were converted to 1–8. The data acquired from ComBase

included “Record ID” and could be employed for each series of

experimental results of pathogen survival registered based on the

record ID. In the original dataset, there are some data that Record

IDs are different but the experimental conditions (“Temperature,”

“pH,” “aw,” “Food category,” “Food name,” and “Organism”) are the

TABLE 1 Summary of the extracted data from ComBase.

Microorganisms Temperature (°C) pH Water activity (aw) Number of food categories Number of
environmental IDs

Aeromonas hydrophila 0–25 4.0–8.0 0.957–0.997 7 618

Bacillus cereus 1–25 4.5–8.2 0.911–0.997 8 620

Escherichia coli 0–25 3.2–8.5 0.190–0.999 11 532

Listeria monocytogenes 0–25 3.5–8.0 0.750–0.999 13 1,192

Pseudomonads 0–25 4.0–7.4 0.954–0.997 7 406

Staphylococcus aureus 0–25 3.9–8.0 0.880–0.997 9 228

Salmonella 0–25 3.2–8.9 0.300–0.998 14 588

Yersinia enterocolitica 0–25 3.4–10 0.846–0.999 6 841
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same. To unify the experimental condition, we renamed “Record

ID” to “Environmental ID, which avoids overlapping with the

experimental conditions in the training and test datasets. The

record IDs for which temperature, pH, aw, food category, food

name, and organism were the same were regarded as the results of

experiments conducted through different repetitions under the same

conditions, and the same “Environmental ID” was reassigned as the

result of a single experimental condition. Thus, 9,091 record IDs

were assigned to 5,025 environmental IDs. In total, 101,861 observed

plots were investigated. In the test dataset, the number of

environmental conditions used was 542 and the number of

observed plots used was 11,106.

2.3 Model development

2.3.1 eXtreme gradient-boosting tree (XGBoost)
model

The XGBoost was first proposed by Chen and Guestrin in

2016. XGboost extends the concept of the Gradient Boosting

Decision Tree (GBDT). The GBDT is an iterative decision tree

that includes multiple decision trees (Friedman, 2001). The

GBDT is a tree-based ensemble technique that uses a decision

tree as the base model, and gradient boosting trains it

sequentially by adding each base model and fixing the errors

generated by the previous tree model. The GBDT method has

been widely employed in machine learning and data mining

studies (Chang et al., 2018; Nguyen et al., 2019; Rodrigo et al.,

2021; Shehadeh et al., 2021). XGBoost was used in the present

study because it has several advantages in terms of fewer

requirements for feature engineering, allowing steps such as

handling missing values without specific processing, and

variables without normalization and scaling (Wang et al.,

2020; Mohanty et al., 2022). The XGBoost models were built

using the XGBoost (Version 1.5.0) Python Package (https://

xgboost.readthedocs.io/en/latest/python/index.html).

2.3.2 Modeling procedure
We aimed to develop a machine learning model for

predicting bacterial responses to various food environments,

characterized by controlling factors such as temperature, pH,

and aw. Eight input variables that included five numerical data

types—temperature (°C), pH, aw, time (h), and initial cell number

(log CFU/g)—and three categorical data types—food category,

food name, and organism—were used to develop a model to

predict change ratio of a bacterial population.

There were several steps to divide the imbalanced whole

dataset into training and test dataset. First, the whole dataset was

separated by “Microorganisms.” Second, the dataset separated by

“Microorganisms” was separated by “Food category.” Third, the

dataset separated by “Microorganisms” and “Food category” was

randomly divided into 9:1 without overlapping with the

experimental conditions in the training and test datasets.

Thus, the imbalanced dataset was separated into the training

and test dataset. The training dataset was used to build a model

for predicting bacterial responses to various food environments,

while its hyperparameters were optimized. The test dataset was

used to evaluate the performance of the tuned model.

Prior to training the predicting model, the hyperparameters of

the XGBoost model used in this study were determined by a 5-fold

cross-validation and grid search. Cross-validation validates the

model performance using only the training dataset under an

arbitrary hyperparameter set. It attempts to avoid overfitting

which deteriorates the performance on unknown data (i.e., test

dataset). In this method, the training dataset was divided into 5-fold

(4-fold of training data and 1-fold of validation data) and then the

training data was used to train amodel, and validation data was used

to verify the performance. Repeating this validation cycle by

swapping the validation data with the training data, the

performance of the model was validated. A grid search was

conducted by selecting each hyperparameter value from a pre-

defined range, and thus the highest performing (i.e., optimal)

hyperparameters are determined. The XGBoost model

hyperparameters were set in some ranges (Supplementary Table

S1) and optimized as follows: a maximum tree depth of 9, min_

child_weight of 1, gamma of 0.3, subsample of 0.6, colsample_bytree

of 0.6, and reg_alpha of 100.

2.4 Evaluation of model accuracy

The prediction accuracy of the developed model was

evaluated using 542 test datasets of environmental ID that

were not used in model development. The coefficient of

determination (R2) and root mean square error (RMSE)

were calculated for all test data, each organism, and each

food category, as an index to evaluate the accuracy of the

model. The R2 and RMSE values are given by Eqs 2, 3,

respectively:

R2 � 1 − ∑n
i�1 yi − ŷi( )2∑n
i�1 yi − μy( )2 (2)

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(3)

where yi, ŷi, and μy are the i th observed log Nt/N0, the i th
predicted log Nt/N0, and the average observed log Nt/N0,
respectively. Each evaluation metric was calculated using the
Scikit-learn (version 1.0.1) Python package.

2.5 Two-dimensional (2D) plot
visualization of bacterial behaviors

Using the developed model, the log Nt/N0 was predicted at

various pH, aw, and temperatures when the initial cell count was
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4 log CFU/g at 10 days in broth. To visualize microbial response

to various environments, the log Nt/N0 at 10 days was divided

into four levels, “strongly increased” (change > 3-log cycle),

“increased” (change of 2 ± 1 log cycle), “survival” (change of

0 ± 1 log cycle), and “decreased” (change of −2 ± 1 log cycle). We

then plotted the responses as 2D color maps, to obtain three types

of maps, pH–aw, pH–temperature, and temperature–aw. To

confirm the validity of this 2D plot, we predicted the

log Nt/N0 and visualized it under some experimental

conditions reported in previous studies.

We then compared our 2D color map with the data in the

literature on growth/no-growth experiments, which was not

recorded in ComBase. The data used for external validation

were selected, considering that the experimental conditions

are simple enough to describe bacterial behavior by eight

explanatory variables. As a representative inactivation

process, we cite a study of growth/no growth experiments

of L. monocytogenes in broth (Koutsoumanis et al., 2004).

The growth/no-growth L. monocytogenes were

experimentally observed in a culture medium after

30 days at 25 °C (a), with pH 5.47–5.58 (b) and aw of

0.965–0.967 (c) after 30 days.

2.6 Interpretation of machine learning
model

2.6.1 Feature importance
The feature importance was calculated to interpret the

developed model from the process of model development.

This allowed us to understand how each explanatory variable

contributed to the predicted performance during the training

of the XGBoost algorithm. The importance of the features was

evaluated using gain, which is an index that shows the

usefulness of a feature in constructing a tree-based model.

A higher value indicates that the feature significantly affects

the predicted log Nt/N0. Feature importance was calculated

using the XGBoost Python package (https://xgboost.

readthedocs.io/en/latest/python/python_api.html).

2.6.2 SHapley Additive eXplanations (SHAP)
value

As another approach for model interpretation, we used

the SHAP framework proposed by Lundberg and Lee

(2017). SHAP is a new and flexible method that

addresses the machine learning system as a so-called

“black-box model” by providing an interpretation of how

strongly the features affect the predicted outcome.

Although the feature importance employed by XGBoost

is positioned as the global explanation of the model, SHAP

can directly measure a local feature explanation for a single

sample, which could otherwise go unnoticed (Moncada-

Torres et al., 2021). Because SHAP approaches are model-

agnostic, they are used with various model types and in

many fields of study (Lundberg and Lee, 2017; Agius et al.,

2020; Mangalathu et al., 2020; Ndraha et al., 2021; Rodrigo

et al., 2021; Yang and Liu, 2021; Zoabi et al., 2021).

The SHAP value for a single feature within a single sample

describes the extent to which that feature contributes to the

predicted output. A higher SHAP value indicates that a feature

has a larger impact on the predicted log Nt/N0, whereas a

lower SHAP value indicates a smaller impact. A positive SHAP

value indicates that a feature makes a positive contribution to

the predicted log Nt/N0, whereas a negative value indicates a

negative contribution. By computing a SHAP value for each

data point, a more detailed explanation of the global feature

importance, such as the relationship between the feature and

its corresponding effect on the output [e.g., SHAP dependence

plot (Lundberg et al., 2018)], can be obtained.

SHAP values were calculated using TreeSHAP (Lundberg

et al., 2018), and a variant of SHAP, which was developed for

tree-based machine learning models, such as XGBoost, as

incorporated in the SHAP (Version 0.40.0) Python Package

(https://shap.readthedocs.io/en/latest/index.html). All pre-

processing steps, model development, and statistical

analyses were performed using Python (version 3. 8. 12).

FIGURE 1
Comparison of the predicted and observed log change ratio
for all the test data. The solid line represents residuals = 0.
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3 Results

3.1 Evaluation of model accuracy

By developing a single machine learning model, our data-

mining approach meets in rough agreement with respect to

prediction accuracy under various types of microorganisms

and food categories. Figure 1 represents overall predicted

results including all types of microorganisms and food

categories, in which the R2 and RMSE values obtained were

0.76 and 1.23, respectively. The accuracy evaluated is

consistently convincing compared with that of Hiura et al.

(2021) (0.75 for R2 and 1.02 for RMSE, respectively). Followed

by this, results divided by each microorganism, and by each

food category are shown in Figures 2, 3, respectively. For each

organism in Figure 2, the RMSE values were 1.35, 1.41, 1.42,

1.20, 1.42, 1.03, 1.07, and 1.08, for A. hydrophila, B. cereus,

E. coli, L. monocytogenes, Pseudomonads, S. aureus,

Salmonella, and Y. enterocolitica, respectively. In Figure 3,

the RMSE values for the culture medium, beef, pork, poultry,

sausage, eggs, seafood, milk, cheese, vegetables or fruits, bread,

dessert food, beverage, water, and sauce/dressing were 1.21,

1.24, 1.29, 1.52, 1.43, 1.11, 1.06, 1.17, 1.51, 1.31, 0.60, 0.98,

1.29, 1.33, and 1.89, respectively. These results show that the

developed model responds flexibly to various environmental

conditions in different amounts of data. Note that the R2 and

RMSE in sauce/dressing [Figure 3 (o)] are comparably worse

than other organisms and food categories.

3.2 2D color plot visualization of bacterial
behaviors

We introduced new 2D visualizations to illustrate the

bacterial growth/survival ratio using combinations of

temperature, pH, and aw. Figure 4 shows a color map of

eight bacterial behaviors in the broth after 10 days when

the initial number was 4 log CFU/g. The limiting aw value

of growth for S. aureus was 0.90, whereas that for most

microorganisms was an aw value of 0.91 or above. The

minimum pH value of B. cereus for growth was estimated

to be 5.0, whereas that of many other organisms was 4.0–4.5.

All eight bacteria grew when the pH was greater than 5.5.

Some examples of 2D color maps, such as temperature–aw and

pH–temperature, can be found in the Supplementary

Information. We compared the observed growth/no-growth

experiment of L. monocytogenes in a culture medium at 25°C

(Koutsoumanis et al., 2004) and our 2D map prediction. As

shown in Figure 5, the validity of the 2D plots was visually

confirmed.

FIGURE 2
Comparison of the predicted and observed log change ratio for test data of Aeromonas hydrophila (A), Bacillus cereus (B), Escherichia coli (C),
Listeria monocytogenes (D), Pseudomonads (E), Staphylococcus aureus (F), Salmonella (G), and Yersinia enterocolitica (H). The solid line represents
residuals = 0.
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3.3 Interpretation of the model

3.3.1 Feature importance
We calculated the feature importance to obtain the

explanatory variable that was important in terms of

contribution to the prediction performance in model

development. Figure 6 shows the feature importance of the

developed XGBoost model. The importance of each feature

represents the ratio of the importance of each feature when

the sum of all feature importance values is 1. “Initial cell

number,” “Time,” and “aw” contributed the most to model

development and to almost the same extent. A categorical

variable “Organism” representing the name of bacteria

contributed to model development mostly to the same extent

as the numerical variables “pH” and “Temperature.” Information

regarding food, such as food category and name, also contributed

FIGURE 3
Comparison of the predicted and observed log change ratio for test data of culture medium (A), beef (B), pork (C), poultry (D), sausage (E), egg
(F), seafood (G), milk (H), cheese (I), vegetable or fruit (J), bread (K), dessert food (L), beverage (M), water (N), and sauce/dressing (O). The solid line
represents residuals = 0.
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to model development. All features contributed to the model

development to some extent.

3.3.2 SHAP value
To see the model interpretability in a deeper perspective

(i.e., the relationship between each environmental condition and

the bacterial growth), we introduced the SHAP framework. The

SHAP values for the three environmental features were

calculated to determine the contribution of the environmental

factors to bacterial growth. The SHAP value explains the

contribution of each variable to the predicted log Nt/N0

value of an instance. Positive and high SHAP values indicate

that the feature value positively affected the predicted log Nt/N0.

Conversely, negative and low SHAP values imply that the feature

FIGURE 4
Change ratio from initial cell counts in broth at 20°C with an initial concentration of 4 log CFU/g after 10 days for Aeromonas hydrophila (A),
Bacillus cereus (B), Escherichia coli (C), Listeria monocytogenes (D), Pseudomonads (E), Staphylococcus aureus (F), Salmonella (G), and Yersinia
enterocolitica (H). Each square plot represents the value of the log change ratio (log Nt/N0). Plot area by an organism is defined by the range of pH/aw
in the dataset. No-plots area represents outside of train and test data range.
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value has a negative effect. The absolute SHAP value indicates the

effect size of the environmental factors. Figure 7 shows the

SHAP-dependence plots for aw, pH, and temperature. The

higher the aw, the higher the SHAP value for aw (Figure 7A).

The SHAP value for temperature followed a similar relationship

as that of aw (Figure 7C). However, the SHAP value for pH was

the highest when the pH value was approximately 7 (Figure 7B).

According to the results of the SHAP dependency for each

environmental factor, several trends in bacterial behavior

could be suggested. When the value of aw was greater than

0.95, the aw positively affected bacterial growth. When the

pH was approximately 7, it positively influenced bacterial

growth. When the pH was less than 5.0, the low

pH negatively influenced bacterial growth. When the

temperature was 10–25°C, it positively influenced bacterial

growth.

4 Discussion

In the present study, we demonstrated the application of a

data mining approach to predict bacterial population behavior

using the ComBase database (Figures 1–3) and visualized these as

2D maps (Figure 4). Categorical data such as organism, food

category, and food name also contributed to the construction of

the model to some extent in the developed model (Figure 6). In

addition, we demonstrated the environmental effects on the

growth of the bacterial population (Figure 7). The data

mining approach allowed us to model and reveal the

multidimensional relationship between bacterial population

behavior and the food environment. We showed that a data-

driven approach to analyzing accumulated data could be useful

for addressing food safety issues.

Although the dataset used in this study consisted of

numerical and categorical variables, using a machine learning

algorithm enabled us to predict bacterial population behavior

using a single predictive model (Figure 1). Unlike numerical

variables, categorical variables (e.g., food category, food name,

and organism) must be replaced with numerical data, such as

dummy variables for numerical operations (Palaniappan and

Awang, 2008; Kim and Hong, 2017). Statistical modeling makes

it difficult to consider categorical data when multiple conditions

exist, such as food names and environmental conditions (Kim

and Hong, 2017; Hiura et al., 2021). In contrast, the machine

FIGURE 5
Comparison between observed growth (○) and no-growth (☓) and predicted change ratio from initial cell counts in a broth of Listeria
monocytogenes after 30 days at 25°C (A), with pH 5.47–5.58 (B)with aw of 0.965–0.967 (C). Experimental data were taken from Koutsoumanis et al.
(2004). Each square plot represents the value of the log change ratio (log Nt/N0); dark red is “strongly increased” (change > 3-log cycle), red is
“increased” (change of 2 ± 1 log cycle), grey is “survival” (change of 0 ± 1 log cycle), and blue is “decreased” (change of −2 ± 1 log cycle).

FIGURE 6
Feature importance of the developed XGBoost model. The
x-axis indicates the relative importance, and the y-axis indicates
the feature names. Blue and gray bars indicate categorical and
numerical variables, respectively.
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learning model enabled the description of the relationship

between the food environment and bacteria, which is difficult

for statistical models or human hand definition owing to the high

dimensionality. Additionally, we succeeded in extending the

model proposed by Hiura et al. (2021) to include eight

bacterial species and 15 food categories.

We visualized the bacterial population behavior based on the

idea of panoramic evaluation of the whole trend of the microbial

response to various conditions. Our 2D map visualization

showed a combination of factors that prevented bacterial

growth (Figure 4). Compared to the literature data, our 2D

color map can describe trends of population behavior of

Listeria monocytogenes to the same extent (Figure 5), which

supports the validity of our color map. Similar to our study,

Ratkowsky & Ross (1995) proposed a growth/no-growth

interface model. The growth/no growth interface models

estimate the probability of bacterial growth and find

combinations of factors preventing growth. The growth/no

growth interface has been widely used in previous studies in

predictive microbiology (Tienungoon et al., 2000; McKellar and

Lu, 2001; Le Marc et al., 2005; Polese et al., 2011; Coroller et al.,

2012; Kuroda et al., 2019). This approach was used to determine

whether bacteria can grow easily under a wide range of

experimental conditions. However, this interface cannot

express the details of the bacterial population density. In the

present study, we succeeded in evaluating not only whether there

was growth or not, but also the change in bacterial population

density (Figure 4). Our visualizing method helps us understand

the bacterial concentration in various conditions at glance. Our

visualization methods can be useful for developing processes that

provide information for realistic estimations of food safety risks.

Thus, our 2Dmap models are important for the dissemination of

food safety regulations.

The SHAP value describes the contribution of each

explanatory variable to each predicted log Nt/N0. A positive

SHAP value indicates bacterial growth. A negative SHAP value

indicates a decrease in a bacterial population. We succeeded in

mining information regarding the relationship between bacterial

growth and environmental conditions from the dataset

(Figure 7). These results mostly conform to the general

opinion in food microbiology. For many food-spoilage and

food-poisoning bacteria such as E. coli, Pseudomonas spp.,

and B. cereus, minimum aw values for growth are

approximately 0.95 (Jay et al., 2008a). The aw value positively

affected bacterial growth if it was greater than approximately

0.95. The optimal pH range for bacterial growth was

approximately 7 (Figure 7A). Most food-spoilage and food-

poisoning bacteria grow poorly as the pH decreases, especially

below 3.5 (Adams and Nicolaides, 1997; Jay et al., 2008a).

Similarly, the pH values could be used to predict bacterial

population growth in the range of 6–7, whereas they worked

negatively under pH 5 (Figure 7B). In addition, most foodborne

microorganisms grow well at 20–45°C, and many bacterial

species, except psychotropic bacteria or psychrophiles, cannot

grow below 7°C (Jay et al., 2008a; Jay et al., 2008b). Similarly,

temperature contributes to bacterial growth at more than

approximately 10°C (Figure 7C). We showed a negative effect

on bacterial growth by computing the SHAP value. The

associations detected here replicate the well-known

characteristics of bacterial growth in food microbiology, which

supports the validity of our results and the possibility of utilizing

data mining to extract bacterial population behavior.

Although our study uses data-driven methods to analyze the

experimental data in the ComBase database with some

advantages and expectations, it also has some limitations. Our

model is not assumed to predict the ecology of microorganisms,

because the ComBase database mainly focuses on bacterial

growth and inactivation of only one type of bacterial species

for each experiment for simplification. In the future, the

competitive microbial condition would be analyzed with the

FIGURE 7
SHapley Additive eXplanations (SHAP) dependency plots for water activity (A), pH (B), and temperature (C).
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dataset containing the ecology of microorganisms by data driven

methods.

5 Conclusion

Data mining predicted the population behavior of eight

foodborne pathogens and spoilage bacteria in the 15 food

environments. In addition, growth inhibition owing to the

food environment was quantitatively evaluated using data-

driven methods. Our approach enabled us to extract useful

information regarding food safety from a large amount of

experimental data. The bacterial population behavior

predicted by this procedure can provide guidelines for

determining food processing and storage conditions. The

main findings of this study support the data mining approach

as valuable in the field of food microbiology.
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