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Cultivated meat, a sustainable alternative to traditional livestock farming, has
gained attention for its potential environmental and health benefits. However,
concerns about microplastic contamination pose challenges, especially when
sourcing cells from marine organisms prone to microplastic bioaccumulation.
Additionally, the pervasive presence of microplastics in laboratory settings,
ingredients, and during the production, increases the risk of unintentional
contamination. This study focused on Atlantic mackerel (Scomber scombrus)
skeletal muscle cell lines to examine the effects of microplastic exposure,
represented by fluorescent polyethylene microspheres (10–45 µm) on cell
performance including cell proliferation, cell viability, gene expression, and
differentiation processes critical for cultivated meat production. The results
revealed significant impacts on cell attachment and proliferation at
microplastic concentrations of 1 μg/mL, 10 μg/mL, and 50 μg/mL. Notably, the
10 μg/mL concentration exerted the most pronounced effects on cell viability
during both attachment and proliferation phases. While the results indicated that
both microplastic concentration and size influence cell viability, cell
differentiation remained unaffected, and additional contributing factors require
further investigation. These findings underscore the necessity of thoroughly
exploring microplastic-cell interactions to ensure food safety and safeguard
health within the burgeoning cultivated meat industry.
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1 Introduction

Cultivated meat, derived from the cultivation of animal cells, presents an innovative
shift in food production with potential environmental and health benefits (Rischer et al.,
2020; Eibl et al., 2021; Dupuis et al., 2023; Jahir et al., 2023). Produced within controlled
environments, this approach not only minimizes the risks associated with conventional
farming contaminants but also promises a more resource-efficient methodology (Stephens
et al., 2018). Recent studies indicate that, with renewable energy integration, cultivated meat
could achieve up reductions of global warming by 92%, air pollution by 93%, land use by
95%, and water consumption by 78% compared to traditional beef farming (Vergeer et al.,
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2021; Kim et al., 2022; Sinke et al., 2023). As the industry advances,
cultivated meat is projected to command a substantial portion of the
$1.7 trillion conventional meat and seafood market, addressing
pressing challenges like deforestation, biodiversity loss, and
antibiotic resistance (Vergeer et al., 2021; Sinke et al., 2023).

In controlled laboratory environments, cultivated meat is
produced from cells, such as those from animals. These cells
undergo proliferation in specialized growth mediums to form
muscle tissue, representing a potentially safer, more ethical, and
environmentally sustainable alternative to conventional meat
production (Chriki and Hocquette, 2020; Ong et al., 2021).
However, a potential safety concern in this innovation is the
contamination of microplastics. One avenue of potential
contamination arises from the source animals. Marine
ecosystems, for instance, are known reservoirs of microplastics
(Andrady, 2011; Cole et al., 2011; Ivar do Sul and Costa, 2014).
This results in bioaccumulation within marine life, such as fish and
oysters (Galloway et al., 2017; Sharma and Chatterjee, 2017; Bhuyan,
2022; Courtene-Jones et al., 2022). When such marine organisms
serve as the source animals for cell extraction, undetected
microplastics could be inadvertently introduced into the
cultivation process. Existing analytical methodologies often fail to
detect smaller microplastic particles, leading to potential
underestimations of their abundance in source organisms
(Huppertsberg and Knepper, 2018; Lv et al., 2021; Vivekanand
et al., 2021; Adhikari et al., 2022). Another significant source of
contamination is the laboratory environment itself. Studies have
underscored the pervasive nature of microplastics in laboratory
settings, emanating from the degradation of ubiquitous plastic
equipment, containers, and consumables (Löder et al., 2017;
Schymanski et al., 2018; Koelmans et al., 2019). The production
process of cultivated meat necessitates the use of various plastic-
based apparatus, including bioreactors, pipettes, cell culture flasks,
and other equipment that come in direct contact with the medium
and growing cells (Allan et al., 2019; Lee et al., 2022).

Microplastics, tiny fragments of plastic less than 5 mm in size,
have garnered significant attention due to their ubiquity in the
environment and the potential risks they pose to human health
(Lim, 2021; Diamantidou et al., 2022; Leslie et al., 2022; Lwanga
et al., 2022; Osman et al., 2023; Tsochatzis et al., 2023). Upon
ingested, these particles can traverse the gastrointestinal tract, and
some evidence suggests that smaller micro- and nanoplastic particles
may even penetrate tissues, entering the circulatory and lymphatic
systems (Campanale et al., 2020; Hirt and Body-Malapel, 2020; Jiang
et al., 2020; Kannan & Vimalkumar, 2021; Yee et al., 2021;
Diamantidou et al., 2022; Leslie et al., 2022; Fournier et al., 2023;
Li et al., 2023; Ramsperger et al., 2023; Tsochatzis et al., 2023). These
fragments can act as carriers for various toxicants, including heavy
metals, polycyclic aromatic hydrocarbons, and endocrine-disrupting
chemicals (Campanale et al., 2020; Abbasi et al., 2021; Amelia et al.,
2021; Yee et al., 2021; Karla Lizzeth et al., 2023), thereby introducing
these harmful agents into the human body. From a cellular
perspective, the risks of microplastics become more intricate. The
direct interaction between cells and microplastics can lead to
physical disruptions, such as membrane damage (Fleury and
Baulin, 2021; Dai et al., 2022; Wang et al., 2022), and chemicals
inherent to or leached from these plastics are known to induce
oxidative stress, inflammatory responses, and genotoxic effects (Hirt

and Body-Malapel, 2020; Goodman et al., 2021; Alqahtani et al.,
2023; Cao et al., 2023; Herrala et al., 2023; Jeyavani et al., 2023;
Mattioda et al., 2023). Potential risks of such interactions encompass
DNA lesions, organ dysfunctions, metabolic irregularities,
immunological aberrations, neurotoxicity, and perturbations in
reproductive and developmental processes (Galluzzi et al., 2018).
Furthermore, previous research has indicated a potential link
between microplastic exposure and the development or
exacerbation of certain chronic diseases such as cardiovascular
diseases including thrombosis, atherosclerosis, cancer, and
diabetes (Lee et al., 2023; Wu et al., 2023). Given the
documented adverse effects of microplastics upon ingestion,
understanding and mitigating these risks is paramount for the
cultivated meat industry (EFSA Panel on Contaminants in the
Food Chain CONTAM, 2016; Rubio-Armendáriz et al., 2022;
Mamun et al., 2023; Ziani et al., 2023).

While the presence and potential hazards of microplastics are
increasingly acknowledged, understanding the exact mechanisms
by which they influence cellular functions remains a critical
research frontier (O’Neill and Lawler, 2021; Thornton Hampton
et al., 2022). To understand the cellular impacts of microplastic
exposure more comprehensively, we utilized Atlantic mackerel
(Scomber scombrus) skeletal muscle cell lines, previously
established and characterized by Saad et al. (2023), given their
relevance to cultivated meat processing. This study employed
fluorescent polyethylene microspheres (10–45 µm) as
representative microplastics, a size range previously documented
in fish (Thiele et al., 2021; Makhdoumi et al., 2023). We aimed to
elucidate the effects of microplastics on cellular performance,
emphasizing cell viability during the attachment and growth
phases, as well as cell differentiation, which are pivotal
processes in cultivated meat production (O’Neill et al., 2021;
Reiss et al., 2021). The study employed microplastic
concentrations of 1 μg/mL, 10 μg/mL, and 50 μg/mL.
Preliminary results indicated that all treatments significantly
affected cell attachment (on day 2) and proliferation (on day 4),
with no discernible effects on cell differentiation after 2 weeks.
Variables such as microplastic size and concentration potentially
influenced these outcomes. These findings, albeit initial, provide
foundational insights for subsequent research, emphasizing the
importance of understanding microplastic-cell interactions for
ensuring food safety, protecting human health, and mitigating
environmental impacts.

2 Materials and methods

2.1 Cell lines preparation and maintenance

The mackerel cell lines (MACK2) used in this study were
obtained from Dr. David L. Kaplan Lab at Tufts University. The
cell preparation followed the protocol described in Saad et al. (2023).
Briefly, frozen cells at passage 81 were thawed using 9 mL of
complete growth medium, which comprised Leivovitz’s L-15
medium (Gibco™, Billings, MT, United States) and
supplemented with 20% fetal bovine serum (FBS, Gibco™,
Billings, MT, United States), 1 ng/mL FGF2-G3 (human) growth
factor (Defined Bioscience, San Diego, CA, United States), 20 mM
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HEPES (Gibco™, Billings, MT, United States), and 1%
Antibiotic–Antimycotic (Gibco™, Billings, MT, United States).
The cell suspension was then centrifuged at 500 RCF for 6 min,
and the resulting pellet was resuspended in 10 mL of growth
medium. The cells were incubated in a 75 cm2 culture flask
(Thermo Fisher Scientific, Waltham, MA, United States) at 27°C
in a CO2 free incubator. Maintenance of the cells involved regular
passaging at approximately 70% confluency and seeding at a density
of approximately 5000 cells/cm2. Alternatively, cells were stored by
freezing in growth medium supplemented with 10% dimethyl
sulfoxide (DMSO, Sigma Aldrich, St. Louis, MO, US).

2.2 Microplastic preparation and exposure

Fluorescent green polyethylene microspheres obtained from
Cospheric LLC (Goleta, CA, United States) were used in this study.
The microspheres exhibited a size range of 10–45 µm. Prior to
experiments, a sterilization process was undertaken using 91%
isopropyl alcohol (IPA), allowing excess fluid to drain as the spheres
gradually underwent evaporation. Subsequently, the sterilized
microspheres were integrated into the completed growth medium
supplemented with 0.01% Tween 20. Microspheres were introduced
into the experimental setup at concentrations of 1, 10, and 50 μg/mL
based on previous studies (Schirinzi et al., 2017; Hwang et al., 2020;
Palaniappan et al., 2022). An experimental control consisting of the
complete growth medium with 0.01% Tween 20 but devoid of
microspheres was included in the study. To achieve a consistent
distribution of the microspheres within the growth medium, a pre-
experimental step involved subjecting the microsphere medium to
sonication prior to each experiment.

2.3 Effects of microplastic on cell
attachment and viability

Mackerel cells were seeded in triplicate in the 6-well plates at a
seeding density of approximately 5000 cells/cm2. The cells were
cultured at a constant temperature of 27°C and devoid of CO2. To
investigate the influence of microplastics on different stages of cell
growth, two distinct experimental conditions were employed. In the
first scenario, microplastics were incorporated into the cell medium
prior to seeding to assess their influence on cell attachment, a crucial
initial step in cell proliferation. After 48 h of incubation, cells
reached the logarithmic growth phase and were detached from
the plate surface using 0.25% trypsin–EDTA (Thermo Fisher
Scientific, Waltham, MA, United States). The cell viability was
evaluated using the Trypan Blue Assay and the Countess 3 FL
Automated Cell Counter (Invitrogen™, Thermo Fisher Scientific,
Waltham, MA, United States). This assay exploits differential
cellular uptake of Trypan Blue dye to discern and enumerate
viable versus non-viable cells. Instrument parameters, including
counting thresholds and dye dilution ratios, were set in
accordance with the manufacturer’s specifications to ensure
accuracy and reproducibility of the viability metrics, In the
second scenario, microplastics were introduced to the cell
medium after the logarithmic growth phase was attained, with
the old medium replaced by either microplastic-containing or

control fresh medium. Subsequent to the introduction of
microplastics, the cells remained undisturbed for a period of
4 days, allowing for the exploration of potential interactions
between microplastics and the cells. After this interaction period,
the cells were detached, and the viable cell count was determined,
offering insights into the effect of microplastics on cell growth after
the initial proliferation stages.

2.4 Effects of microplastic on cell
differentiation

2.4.1 RT-qPCR gene expression analysis
Mackerel cells at passage 82 were detached from 6-well plates

using trypsin for 3–4 min and pelleted by a 7.5 min centrifugation
at 500 RCF. RNA was extracted from samples using the
NucleoSpin RNA kit (Mackerey-Nagel, Dueren, Germany) and
quantified with a Qubit 4 Fluorometer using the Qubit RNA High
Sensitivity (HS) assay kit (Thermo Fisher Scientific, Waltham,
MA, United States). cDNA libraries for each sample were
constructed from 100 ng of RNA using the PrimeScript RT
master mix (Takara Bio, Kutatsu, Japan) under manufacturer
specifications. A minus reverse transcriptase control (-RT) was
made from the sample exhibiting the higher RNA yield by not
adding the master mix to the sample. The PrimeScript RT master
mix contains both random hexamers and oligo dT primers. RT-
qPCR was performed in a CFX Opus 96 thermocycler (Bio-Rad,
Hercules, CA, United States) using the TB Green Advantage
qPCR premix (Takara Bio, Kutatsu, Japan) and the
oligonucleotides specified in Table 1. Primers were designed
using a reference genome for southern bluefin tuna (Thunnus
maccoyii; NBCI RefSeq GCF_910596095.1) by Saad et al. (2023).
Three technical replicates were performed per sample and gene,
as well as for the—RT and no template controls (NTC).
Amplification conditions were as follows: initial step of 30 s at
95°C, followed by 40 cycles of 5 s at 95°C and 30 s at 60°C, and a
final dissociation analysis of 15 s at 65°C and 0.5°C/s increases
until reaching 95°C. Absolute gene expression values were
calculated as 2̂(-ΔCt) using the hypoxanthine guanine
phosphoribosyltransferase (HPRT) gene as the housekeeping
gene. Relative gene expression values were calculated as 2̂(-
ΔΔCt) over the 0 ng/mL microplastics control.

TABLE 1 Oligonucleotides used for RT-qPCR of mackerel cells.

Primer Sequence (5′–3′)

HPRT fwd GTCTACGTTGACAGGCAAGAATGT

HPRT rev GTCTGGTCGGTAGCCAACACT

MYOD1 fwd TTGGAGCACTACAGCGGGGA

MYOD1 rev GCTGGTGTCGGTACTGATCCG

MYOG fwd GGAGCACCCTGATGAACCCC

MYOG rev CGCTTGACGACGACACTCTGG

TNNT3A fwd TCAGCGCGGTAAGTTTGCAG

TNNT3A rev CTCCTCTTCTACGGCCTCGACA
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2.4.2 Immunostaining
To observe the influence of microplastics on cell differentiation,

immunostaining for myosin heavy chain was conducted following
the protocol outlined in Saad et al. (2023). Mackerel cells were
cultured at 100% confluency in growth medium and exposed to
microplastics at varying concentrations, with subsequent
observation over a 14-day differentiation period. Following
culture, cells were fixed with 4% paraformaldehyde at room
temperature for 30 min (Thermo Fisher Scientific, Waltham, MA,
United States). Subsequently, the cells were rinsed with Phosphate
Buffered Saline (PBS, Sigma Aldrich, Burlington, MA, United States)
and permeabilized for 10 min using 0.1% Triton-X (Sigma Aldrich,
Burlington, MA, United States). Subsequent to permeabilization, the
cells were blocked for 30 min using 1 × blocking buffer (Abcam,
Cambridge, United Kingdom), followed by an additional PBS wash.
The primary antibody solution, MF-20 (4 μg/mL), was applied to the
cells and allowed to incubate overnight at 4°C. After a subsequent
PBS wash, the cells underwent an additional 30-min blocking step
using 1 × blocking buffer and were then incubated for 1 h with
secondary antibodies—Goat Anti-Mouse IgG H&L (Alexa Fluor®

594, Abcam, Cambridge, United Kingdom), and Phalloidin-iFluor
488 Reagent (Abcam, Cambridge, United Kingdom)—each diluted
at 1:1000 in 1 × blocking buffer. After a final wash with PBS, the cell
nuclei were stained with 4′,6-diamidino-2-phenylindole (DAPI,
1 μg/mL, Thermo Fisher Scientific, Waltham, MA, United States)
in PBS for 15 min at room temperature. Imaging was conducted
using a fluorescence microscope (DP27, Olympus Life Science,
Tokyo, Japan) equipped with an LED Illumination system
(CoolLED, Andover, United Kingdom). Multiple objective lenses
(4x, 10x, 20x) were utilized to evaluate the cell morphology and
structure at various levels of detail. Images taken with 4x and 10x
lenses were used for general orientation and lower-resolution
overviews, while the 20x lens was employed for detailed
visualization necessary for the conclusions.

2.5 Statistical analysis

Statistical analysis was conducted using One-way ANOVA, with
a t-test utilized for comparisons between two parameters using
Minitab Statistical Software.

3 Results and discussion

3.1 Cell viability

The viability of cells during both the attachment and growth
phases is paramount to the cultivation of meat. In the attachment
phase, cells must successfully anchor to a scaffold or matrix to
prevent their loss during media changes, establishing a robust
foundation for subsequent stages. Following successful
attachment, it is imperative for these cells to proliferate
efficiently, ensuring an adequate cellular population for muscle
tissue formation. Any significant cell mortality or diminished
proliferation during these phases could undermine the entire
production yield and efficiency (Allan et al., 2019; Bodiou et al.,
2020). In order to investigate the effects of microplastics on

mackerel cell viability at attachment and growth phases,
microplastics were introduced to cells at different times in this
study. Figure 1A highlighted the outcomes of microplastics on
initial cell attachment when introduced into the cell medium
before seeding, and statistical analysis revealed a highly
significant difference in cell counts between the groups
(ANOVA, p < 0.001). Conversely, Figure 1B depicted the
impact of microplastics on cell proliferation when added after
the cells had reached the logarithmic growth phase, also
demonstrated statistically significant alterations in proliferation
rates (ANOVA, p < 0.001). The initial number of cells for seeding
was -5000 cells/cm2, and the surface area of the 6-well is 9.6 cm2.
Data collection occurred on Day 2 for Figure 1A and Day 4 for
Figure 1B, corresponding with a marked increase in cell death and
detachment. In Figure 1A, the experimental control group (no
microplastic) showed a cell count of 410,000, whereas
microplastic-treated cells evidenced a decline to approximately
half this number. Similarly, Figure 1B displayed a control cell
count of 1,100,000, with those treated with microplastics showing a
range from 510,000 to 730,000. Notably, the presence of
microplastics led to a decrease in cell counts, with the 10 μg/mL

FIGURE 1
Effects of microplastics on cell viability. (A) Influence of
microplastics on initial cell attachment when introduced to the cell
medium prior to seeding. (B) Impact of microplastics on cell
proliferation after cells reached the logarithmic growth phase.
Error bars represent standard deviation. The t-test was used to
evaluate the differences between each MPs treatment with
experimental control; asterisks indicate a significant difference at p <
0.01 (**) and p < 0.001 (***).
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concentration consistently showing the lowest viability. The
underlying causes and potential mechanisms responsible for
this trend are explored in detail in the subsequent sections.

3.1.1 Concentration effects on cell viability
This study elucidates the intricate dynamics of microplastic

(MP) exposure and its impact on the viability of mackerel cells,
revealing a potentially non-linear dose-response
relationship. Methodologically, the cells underwent exposure to
MPs at concentrations of 1, 10, and 50 μg/mL. Remarkably, the
most pronounced decrease in cell viability was observed at the
intermediate concentration (10 μg/mL), challenging the
conventional dose-response paradigm that posits increased
toxicity with higher concentrations. This was evidenced by the
cell viability trends where, for Figure 1A, the order was
control >1 μg/mL > 50 μg/mL > 10 μg/mL, and for Figure 1B,
control >50 μg/mL > 1 μg/mL > 10 μg/mL. These findings
contrast with several prior studies where a direct dose-dependent
toxicity of MPs was reported. For instance, Palaniappan et al. (2022)
performed an investigation involving L929 murine fibroblasts and
MDCK epithelial cell lines and noted a dose-dependent decrease in
cell viability when exposed to 1, 10, or 20 μg/mL of PE or PS
microspheres. Furthermore, their study highlighted amplified
oxidative stress at higher MP doses, as evidenced by increased
SOD3 gene expression. In another study (Lee et al., 2021),
human umbilical vein endothelial cells (HUVECs) were exposed
to polystyrene microplastics (PS-MPs, 0–100 μg/mL), revealing that
higher doses markedly reduced cell viability and disrupted
angiogenic tube formation in the short term, while inducing
autophagic and necrotic cell death after prolonged exposure.
Besides, in a distinct investigation focusing on the human
intestinal milieu (Herrala et al., 2023), researchers assessed the
toxicological ramifications of ultra-high molecular-weight
polyethylene particles (250–1,000 μg/mL) on human colorectal
adenocarcinoma Caco-2 and HT-29 cells. A 48-h exposure to
these polyethylene particles precipitated a dose-dependent decline
in cell viability and a concomitant upsurge in oxidative stress. The
oxidative damage was particularly pronounced in the mitochondria,
illuminating the broader health concerns.

The intricate interplay between MP concentration and its
potential cytotoxic effects is evident. While a substantial
proportion of literature supports a dose-dependent decrease in
cell viability, certain exceptions persist. In a recent in vitro study
examining the impact of microplastics (PVC and PE) on gilthead
seabream and European sea bass head-kidney leucocytes (HKLs)
(Espinosa et al., 2018), it was observed that exposure to varying
concentrations of microplastics for 1 and 24 h did not
significantly affect HKL cell viability. Additionally, high doses
of microplastics resulted in minimal changes to key cellular
innate immune functions, including a decrease in phagocytosis
and an elevation in respiratory burst activity. These divergent
findings underline the significance of further investigations,
accounting for microplastic type, size, and the specific cellular
environment, to draw conclusive inferences on the broader
impacts of MPs on cellular health. Our findings contribute to
this evolving narrative, suggesting that the interaction between
MPs and biological systems may be more complex than
previously understood.

3.1.2 Influence of microplastic size and
aggregation

In addition to concentration, we observed that the size and
aggregation state of MPs played a pivotal role in mediating their
interaction with mackerel cells. Specifically, at a concentration of
10 μg/mL, MPs were prone to adhere to the cell surface, either
individually or as small aggregates, leading to the most significant
reduction in cell viability. Conversely, the 50 μg/mL concentration
resulted in larger MP aggregates that remained suspended in the
culture medium, limiting their contact with cells, as evidenced in
Figure 2. This lack of cellular interaction, particularly in scenarios
where MPs were introduced post-cell attachment, corresponds with
the minimal impact on cell viability observed at this higher
concentration (Figure 1B cell count trend: control >50 μg/
mL >1 μg/mL >10 μg/mL). Therefore, the pronounced effects at
10 μg/mL highlight the potential for specific MP sizes that maintain
close cellular contact to disrupt cell viability. Reflecting on the role of
microplastic size and aggregation in cell viability, our results align
with the emerging research that examines the complex effects of
microplastics on cellular health. A systematic review assessed
dose–response relationships regarding microplastics and cell
viability by evaluating studies up to March 2021 (Danopoulos
et al., 2022). Of the 17 studies reviewed, 8 were included in a
meta-regression analysis. The review identified four MP-associated
effects: cytotoxicity, immune response, oxidative stress, and barrier
attributes, with genotoxicity showing no effect. Key predictors of cell
death were irregular MP shape, exposure duration, and MP
concentration. Notably, Caco-2 cells displayed heightened
susceptibility to MPs. Concentrations as low as 10 μg/mL
(5–200 µm) affected cell viability, while 20 μg/mL (0.4 µm)
influenced cytokine release. These findings are in line with our
observations, specifically the significant cell viability reduction at
10 μg/mL, suggesting that not only the concentration but also the
physical form of MPs modulates their cytotoxicity.

In a detailed investigation by Zhang et al. (2022), the impacts of
polystyrene microspheres (PS-MPs) and nanospheres (PS-NPs)
were explored across four distinct sizes: 0.1, 0.5, 1, and 5 μm.
This research identified a marked preference for cellular uptake
among the smaller nanoparticles compared to their larger
counterparts. Notably, the PS-MPs presented minimal effects on
cell viability and apoptosis. However, subtle indications of oxidative
stress were discernible in high-concentration groups. A striking
differentiation was evident in membrane damage, with PS-MPs
inducing substantially greater damage than PS-NPs, emphasizing
the size-dependent cellular responses to MPs. Building on the effects
of microplastic size on cells, an investigation into polystyrene (PS)
particle toxicity further elucidated these intricate relationships
(Hwang et al., 2020). Researchers found that PS particles act as
potential immune stimulants, triggering cytokine and chemokine
production in a manner determined by size and concentration.
Larger PS particles (10–100 µm in diameter) exhibited negligible
cytotoxicity. In contrast, smaller particles, specifically those at
460 nm and 1 μm, detrimentally affected red blood cells. Their
increased surface area, which facilitates stronger interactions like
van der Waals forces, was pinpointed as the cause for hemolysis.
Furthermore, exposure to these smaller PS particles resulted in
elevated IL-6 secretion, signifying potential early-stage
inflammation. However, the study also highlighted no
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substantial rise in histamine secretion, mitigating concerns of
histamine-driven inflammation or allergic reactions. Particle
uptake predominantly occurred through endocytosis and
phagocytosis by phagocytic cells, leading to localized
inflammation via pro-inflammatory cytokine release, rather
than inducing direct cytotoxicity (Hwang et al., 2020). In
addition to the examples described, other studies have

consistently indicated that the size of microplastic particles
significantly influences cellular interactions. Notably, smaller
particles are linked to heightened cellular uptake, more
pronounced inflammatory responses, increased apoptosis rates,
and enhanced cellular stress responses (Wright and Kelly, 2017;
Revel et al., 2018; Yong et al., 2020). These findings highlight the
potential health risks associated with finer microplastic particles.

FIGURE 2
Morphological analysis ofmackerel cells with andwithout MP treatments: (A) Low-magnification (4X objective) images showcasing themorphology
of mackerel cells after 4 days of incubation with varying concentrations of MPs. Red arrows highlight observable MP or MP aggregates. Scale bar
represents 500 µm. (B) High-magnification (10X objective) images providing detailed views of cell morphology for the 10 µg/mL and 50 µg/mL MP
treatments, corresponding to the samples depicted in Figure 2A. Scale bar represents 200 µm.
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3.1.3 Potential interactions and other
involved factors

The interaction between cells and microplastics is a multifaceted
process, influenced by a confluence of factors, such as the
physicochemical properties of microplastics, cellular
characteristics, toxicity of the monomers, additives and oligomers
in particles and prevailing environmental conditions (Revel et al.,
2018; Smith et al., 2018; Campanale et al., 2020; Leslie et al., 2022).
This dynamic interplay gains significance when contemplating the
potential ramifications of microplastics on cellular health (Lee et al.,
2023; Li et al., 2023). While this study predominantly illustrated the
influence of microplastic size and dose on cell viability, it is vital to
embed these insights within the expansive framework of factors
modulating microplastic-cell interactions. The polymer
composition (e.g., polymer type, presence of additives, and
potential for the microplastics to absorb other environmental
contaminants) of microplastics, for instance, is often associated
with discrete cytotoxic effects (Duis and Coors, 2016; Revel et al.,
2018; Hwang et al., 2020). The shape of microplastics further refines
this interaction spectrum. Fibrous microplastics have been reported
to potentially introduce physical harm, further affect tissues or
induce blockages (Wright et al., 2013; Watts et al., 2015;
Diamantidou et al., 2022; Leslie et al., 2022; Tsochatzis et al.,
2023), whereas spherical microbeads, prevalent in personal care
products, could facilitate a smoother cellular internalization (Wright
et al., 2013). Additive blooming in polymer materials such as
plasticizers, lubricants, stabilizers, antoioxidants, which are added
by the manufacturer to improve the properties of the polymers, may
immigrate to the surface of the polymers due to the phase separation
(Nouman et al., 2017). Generally, these additives are unsubstituted
amides derived from long-chain fatty acids. Reports have indicated
that the cytotoxicity associated with these additives can arise from
the leaching of bloomed materials in a soluble form or from direct
contact between the bloomed substances and the cells (Kim
et al., 2003).

Nanoscale microplastics can lead to the creation of reactive
oxygen species (ROS), suggesting that they may cause stress to cells
by promoting oxidative reactions (Campanale et al., 2020; Paul et al.,
2020; Yee et al., 2021). Concurrent inflammatory responses may
destabilize cellular homeostasis, possibly marking the onset of
apoptosis (Elmore, 2007; Wright et al., 2013; Lamichhane et al.,
2023). There could also be direct physical effects, such as potential
damage or blockages in tissues, especially in organisms with multiple
cell types (Bhagat et al., 2021; Yee et al., 2021). Certain cellular stress
signals, specifically p-JNK and p-p38, emphasize that microplastics
can be regarded as stress-causing agents (Jeong et al., 2016; Jeong
et al., 2017; Scopetani et al., 2020). It’s also worth noting that
different organisms and cell types can react differently to these
plastics (Jeong and Choi, 2019; Bhagat et al., 2021). Comprehending
these multifaceted interactions is crucial for elucidating the effects of
microplastics on cellular viability and for devising strategies to
mitigate their potential adverse impacts.

3.2 Cell differentiation

Cell differentiation is paramount in the cultivated meat
production process, serving as an indispensable determinant

of the final product’s organoleptic and nutritional
characteristics. This involves guiding pluripotent or
multipotent cells, predominantly stem cells, through specific
differentiation pathways to yield the requisite specialized cell
types constituting meat, such as myocytes, adipocytes, and
fibroblasts (Allan et al., 2019; Zakrzewski et al., 2019; Reiss
et al., 2021). The meticulous orchestration of myocyte
differentiation is pivotal for the formation of myofibrils,
conferring the unique texture and mouthfeel characteristic of
meat (Listrat et al., 2016; Lee et al., 2021). In parallel, the directed
differentiation of adipocytes is crucial for the deposition of
intramuscular fat, a critical determinant of flavor profile and
marbling (Li et al., 2020). Additionally, fibroblast differentiation
and subsequent connective tissue formation offer essential
structural integrity and have implications for meat tenderness
(Purslow, 2020). Therefore, an in-depth understanding and
precise control over these differentiation processes are
indispensable for the optimization and scalability of
cultivated meat, ensuring both its commercial viability and
alignment with consumer expectations (Reiss et al., 2021;
Bomkamp et al., 2023).

3.2.1 Differential gene expression
In this study, we assessed the impact of microplastics on

muscle cell differentiation by measuring the expression levels of
three key myogenic markers: MYOD1, MYOG, and TNNT3A.
MYOD1 is characteristic of myogenic progenitors (myoblasts)
during the early phases of muscle cell differentiation, MYOG is
expressed at the myocyte stage, and TNNT3A acts as a late
marker associated with skeletal muscle function. Figure 3A
illustrates the absolute gene expression values for MYOD1,
MYOG, and TNNT3A of mackerel cells cultivated in varying
concentrations of microplastics (0, 1, 10, and 50 μg/mL).
Remarkably, a heightened expression of MYOG compared to
MYOD1 was observed, denoting that the cells were in a well-
differentiated myocyte state. However, the absence of TNNT3A
expression implies that full maturation into functioning muscle
fibers had not occurred. Figures 3B,C depict the fold-change
expression of MYOD1 and MYOG genes, represented as 2̂(-
ΔΔCt), over the control treatment with no microplastics.
HPRT served as the housekeeping gene for expression
normalization. Notably, a general lack of statistical difference
was observed between the treatments in gene expression under
varied microplastic concentrations, as calculated by one-way
ANOVA. The exception was a single noteworthy difference in
MYOD1 expression between 10 μg/mL and 50 μg/mL
concentrations; however, this observation was tenuously
supported with a p-value bordering on 0.05, indicating a weak
statistical significance.

The observed increase in MYOG expression, coupled with the
non-expression of TNNT3A, indicated a state of well-differentiated
cells that had not yet reached the later stages of muscle development.
This observation could be attributed to the potential onset of cellular
senescence or reduced cell viability, especially considering that the
mackerel cell line utilized was at passage #82, a stage at which cells
often exhibit altered differentiation patterns due to accumulated
genetic and epigenetic changes (Di Micco et al., 2021). Despite the
variations in microplastic concentrations, the overall gene
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expression exhibited minimal statistically significant differences,
emphasizing the need for further exploration into the
interactions between microplastics and cell differentiation processes.

3.2.2 Immunocytochemical analysis
Complementary to our qPCR findings, immunocytochemical

assays provided a visual confirmation of cell differentiation
processes. Cells subjected to various microplastic concentrations
(0, 1, 10, 50 μg/mL) over 14 days and were subsequently probed
with MF20, DAPI, and Phalloidin, targeting myosin, cellular
nuclei, and actin filaments, respectively. As depicted in
Figure 4, each experimental condition displayed characteristic
staining patterns across the trio of molecular markers. Notably,
elongated structures positive for myosin, specifically stained by
MF20, were evident in all conditions. This consistent staining
pattern underscores mackerel cell differentiation into muscle cells.
Importantly, the similarities observed between MP-exposed
groups and the control suggest that the tested MP
concentrations had a negligible impact on mackerel cell
differentiation.

The observed minimal variation in gene expression across
different MP concentrations suggests that muscle cell
differentiation may possess an inherent resilience to microplastic-
induced stress. Such resilience has been documented in various
cellular systems that maintain homeostasis and continue
differentiation despite environmental perturbations (Gugliuzza
and Crist, 2022). Alternatively, the consistent gene expression
might imply a threshold effect, where only microplastic
concentrations or particle sizes above/below a specific level are
disruptive enough to perturb cellular processes (Campanale et al.,
2020). For instance, literature suggests that cellular stress responses
can be size-dependent when it comes to nanoparticle interaction,
which will be elaborated upon in the subsequent section.

3.2.3 Effects of microplastics on cell differentiation
While our findings demonstrated cell differentiation, the

effects of microplastics on this process remained indiscernible;
all treatment groups and controls yielded analogous outcomes. In
contrast, earlier research has highlighted distinct impacts of
microplastics on cell differentiation. For instance, Najahi et al.
(2022) examined the influence of polyethylene terephthalate
microplastics (MPs-PET, <1 μm and <2.6 μm) on human
mesenchymal stromal cells, revealing a 30% reduction in cell
proliferation and alterations in the differentiation potential of
adipose and bone marrow cells. Concurrently, Han et al. (2020)
found that polyvinyl chloride (PVC) and acrylonitrile butadiene
styrene (ABS) microplastics influenced non-adhesive peripheral
blood mononuclear cells (PBMCs) to differentiate into dendritic
cells, implying that such plastic exposures might instigate human
immune responses. In another study, Hua et al. (2022)
highlighted that PS microplastics could disrupt cortical layer
differentiation in cerebral spheroids, emphasizing the potential
neurotoxic implications. Similarly, Im et al. (2022) reported that
polystyrene nanoparticles, especially those with decreased
crosslinking density, influenced reactive oxygen species
activity and notably promoted adipogenic differentiation in
mesenchymal stem cells. Moreover, it was reported that the
stage of cell differentiation could influence the cell’s
interaction with microplastics, especially regarding the uptake
of these particles (Peng et al., 2023). In that study, researchers
demonstrated that 2-μm polystyrene (PS) microplastics affected
human cell lines differently based on their differentiation state,
with undifferentiated Caco-2 cells showing significant PS uptake,
whereas differentiated cells presented a reduced capacity for PS
internalization. Collectively, these findings underscore the
multifaceted impacts of micro/nanoplastics on cell
differentiation across different cell types, emphasizing the

FIGURE 3
Expression of muscle differentiation gene markers in mackerel cell growing with/without MPs: (A) Absolute gene expression values for MYOD1,
MYOG and TNNT3A of MACK cells. Gene expression is represented as 2̂(-ΔCt). (B and C) Fold-change expression of MYOD1 and MYOG genes over the
control treatment. Points indicate single data points for each biological replicate and bars indicate their mean value (n = 3 experimental, n = 3 technical).
HPRT was used as the housekeeping gene for expression normalization. Statistical significance calculated by one-way ANOVA is indicated by
asterisks, in which p < 0.05 (*).
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need for comprehensive understanding and vigilant monitoring.
Additionally, variables including the specific plastic type,
exposure duration, and plastic concentration remain crucial
determinants that could further modulate these effects (Smith
et al., 2018).

To unravel the complex dynamics between microplastics and
muscle cell differentiation, it is crucial for future research to
investigate the molecular interactions that support this process.
Investigations should extend beyond traditional myogenic
markers to include an array of molecular targets potentially
influenced by microplastic exposure. A comprehensive approach
that encompasses the study of cellular senescence, epigenetic
modifications, and a wide spectrum of differentiation-related
biomarkers will be instrumental in advancing our understanding
of the implications of microplastic exposure. It is imperative that
future studies incorporate these aspects to elucidate the cellular and
molecular mechanisms affected by microplastics, which will
ultimately refine our understanding of their impact on cell fate
decisions and tissue development.

4 Conclusion

In conclusion, this study evaluated the impact of microplastics on
Atlanticmackerel (S. scombrus) skeletalmuscle cell lines, usingfluorescent
polyethylenemicrospheres (10–45 µm) asmodelmicroplastics. The focus
was primarily on understanding the effects of microplastic exposure on
essential cellular processes, namely, cell viability during attachment and
growth phases and cell differentiation, which hold paramount significance
in cultivated meat production. Utilizing microplastic concentrations of
1 μg/mL, 10 μg/mL, and 50 μg/mL, alongside a control devoid of
microplastics, the study adopted the Trypan Blue Assay for cell
viability assessment. The findings highlighted a marked difference in
cell viability among microplastic-exposed treatments compared to the
control. In parallel, cell differentiation was investigated using RT-qPCR
for gene expression analysis and immunostaining methodologies.
Notwithstanding the observable cell differentiation, the study discerned
no pronounced influence of microplastics on cell differentiation.

The findings of this study elucidate the interplay between
microplastics and cellular mechanisms, highlighting the potential

FIGURE 4
Representative immunostaining images of mackerel cells with and without MP exposure. DAPI (blue) labels nuclei, Phalloidin (green) highlights actin
filaments, and MF20 (red) detects muscle fiber differentiation. Captured using a 20X lens; scale bar = 100 µm.
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ramifications for cellular processes. As preliminary data, this
investigation lays a foundation for subsequent, more detailed
studies. Given the pervasive presence of microplastics in
contemporary environments, it is imperative to explore their
broader effects on cellular systems. Recognizing and
understanding these implications is not only vital for advancing
biotechnological applications but also for discerning potential long-
term impacts on broader ecological and human health contexts.
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