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Granular materials are widely encountered in food processing, but understanding
their behavior and movement mechanisms remains in the early stages of
research. In this paper, we present our recent modeling and simulation work
on chute granular flow using both the discrete element method (DEM) and
continuum method. Based on the simulation data, we apply machine learning
techniques such as Random Forest, Linear Regression, and Ridge Regression to
evaluate the effectiveness of these models in predicting granular flow patterns.
The granular materials in our study consist of soft-sphere particles with a 1 mm
diameter, driven by gravity as they flow down a chute inclined relative to the
horizontal plane. Our DEM and continuum simulation results show good
agreement in modeling the chute flow, and the machine learning approach
demonstrates promising potential for predicting flow patterns. The results of this
chute flow study can provide a benchmark solution for more complex flow
problems involving factors such as particle shape, size, interparticle interactions,
and external obstacles.
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1 Introduction

Granular materials are among the most commonly encountered media in natural and
industrial processes, perhaps second only to water. Examples of natural granular material
processes include landslides, avalanches, sediment transport, volcanic pyroclastic flows and
lava, soil creep and erosion, debris flows, sand dune and glacial movements. Understanding
these processes is critical for predicting natural events and mitigating their impacts from
hazards. In industry, granular material processes are widely applied across various sectors:
from ore crushing, grinding, and sorting in mining, powder mixing, tablet formation, and
coating in pharmaceutical, black mass (e.g., lithium, nickel, cobalt) extracting and
classifying from end-of-life (EoL) electric vehicle (EV) batteries in recycling, to mixing,
packaging, and quality control of granular food products. Optimizing the handling,
processing, control, and transport of particulate materials is essential for improving
efficiency, productivity, quality, safety, and substantiality in industrial processes. The
growing interest in granular material processes underscores the importance of granular
flow studies for gaining a fundamental understanding of these complex systems and
addressing real-world problems.
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Granular flow studies focus on the behavior and movement of
granular materials, ranging in size from fine powders to large rocks
while exhibiting complex behaviors distinct from both solid and
fluid states. Despite its significance, understanding granular flow
remains one of the most challenging scientific knowledge gaps today
(Forterre and Pouliquen, 2008; Guo and Curtis, 2015; Gray, 2018;
Kamrin et al., 2024; Zhao et al., 2023). Accurately modeling and
simulating these systems is still difficult due to the complex nature
arising from interactions between particle-particle, particle-
boundary, and particle-environment, as well as intrinsic particle
properties associated with size, shape, friction, and cohesion. The
complexity is further compounded by the transitions between
different flow regimes. For example, a regime of moving particles
can exhibit a mixed type of gas-liquid-solid behavior during flow,
with the formation of granular shocks or particle-free regions (Cui,
2021; Cui et al., 2022; Tregaskis et al., 2022).

These complexities are particularly evident in the food industry,
where granular food ingredients (e.g., rice, barley, or malt) are
exposed to unique conditions due to irregular shapes, varying
sizes, moisture content, and particle degradation or breakage
during processing. Addressing these challenges requires accurate
models, rigorous simulations, and sophisticated experimental and
validation techniques to achieve reliable, robust, and predictive
insights into these systems (Muntán et al., 2009; Vakis et al.,
2018; Fries, 2021; Dhiman and Prabhakar, 2021).

In recent years, machine learning (ML) and artificial intelligence
(AI) are increasingly being explored to analyze vast amounts of data
generated from simulations and experiments in fluid mechanics
(Brunton et al., 2020; Molinaro et al., 2021). By incorporating
machine learning algorithms into data analytics, patterns and
relationships that traditional methods might miss can be
identified (Breiman, 2001; Choi and Kumar, 2024), and the
models can be trained to predict complex behaviors of granular
materials (Raissi et al., 2020; Mao et al., 2020). On the other hand,
machine learning can optimize simulation parameters, reducing
computational costs and time, for example, by establishing a
surrogate model between the parameter space and output
domain (Sen et al., 2018; Ma et al., 2022; Choi and Kumar, 2024).

2 Simulation methods of the
granular flows

In this paper, we will utilize both the Discrete Element Method
(DEM) and continuum modeling to simulate granular flow driven
by gravity down an inclined plane, usually referred as chute flow.
DEM offers microstructural details into particle dynamics by
capturing inter-particle and particle-wall interactions associated
with collisions, friction, and cohesion, which are crucial when the
behavior of individual particles significantly impacts the overall
system. On the other hand, continuum simulations provide a
macroscopic insight on bulk flow behavior by treating granular
materials as a continuous medium, where parameters such as flow
thickness, density, velocity, rheological laws and stresses can be
incorporated into the governing equations of fluid mechanics. By
examining both the micro-scale interactions and macro-scale
dynamics of granular materials during their flow, we aim to

achieve a more comprehensive and unified understanding of
their behaviors.

2.1 The coupled CFD-DEM method

Since the formulation of the discrete element method (DEM)
by Cundall and Strack (1979), DEM-based simulations have
gained significant popularity in recent years. This is largely due
to their ability to provide a direct understanding of the granular
material interactions and behaviors at microstructural level
(e.g., (Guo and Curtis, 2015; Kieckhefen et al., 2020; Kamrin
et al., 2024)).

Moreover, coupling the computational fluid dynamics (CFD)
calculations of the fluid phase with the DEM computations of the
granular phase has provided an enhanced platform to understand
mixed solid-liquid-gas behavior under more realistic conditions
such as granular materials immersed in an ambient fluid e.g.,
(Boyer et al., 2011; Amarsid et al., 2017; Cui et al., 2020). For the
collapse of a granular column, for example, its run-out may behave
very differently, depending on whether the use of coarse or fine
grains are immersed partially in water (Si et al., 2018; He et al., 2022).
On the other hand, the coupled CFD-DEM simulation has the
adoption of much larger time steps in simulation by incorporating
the concept of a “parcel” to represent a cloud of particles with similar
properties (Bérard et al., 2020). In this approach, the discrete
element method models the granular particle system, while the
volume-averaged Navier-Stokes equations solve the fluid flow
through a multiphase-Lagrangian framework (Crowe et al., 2012;
Vijayan et al., 2021; Li et al., 2020; Cui et al., 2022).

2.1.1 The DEM model
Our DEM simulation adopts a soft-sphere approach, allowing

particles to deform slightly upon contact. The translational and
angular motions of each individual particle can be modelled in
Equations 1, 2, respectively, as follows,

mi
du
dt

� mig +∑ni
j�1

Fn + Fd
n + Ft + Fd

t( ) + Fo, (1)

Ii
dωi

dt
� ∑ni

j�1
Tt + Tr( ), (2)

where ui and ωi are the translational and angular velocities of
particle i, respectively, with mi being its mass and Ii the moment
of inertia tensor. This model allows particle i to interact with a total
number of ni neighboring particles through both normal and
tangential contacts, denoted by subscripts ‘n’ and ‘t’, respectively,
with the superscript ‘d’ denoting the damping forces. The normal
forces are governed by the degree of overlap and the material
properties and are calculated using contact force models such as
Hertz-Mindlin model (Johnson, 1987; Renzo and Maio, 2004). The
tangential forces depend on the relative motion of particles and are
usually modelled using a spring-dashpot system to account for both
elastic and frictional forces. The damping forces simulate energy
dissipation during particle collisions and are typically proportional
to the relative velocities of the particles at the contact. The term Fo in
(1) can be used as a user-defined force to account for additional or
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empirical factors that may further enhance the accuracy of
the model.

Tt is the torque produced by the tangential force, while Tr is the
torque generated by the rolling friction. The gravitational force of
particle i is modelled by g � (g sin ζ , 0,−g cos ζ), with g � 9.80 m/
s2, to account for the effect of the chute inclination ζ according to the
coordinate system used in the DEM simulation, as illustrated
in Figure 1.

2.1.2 The CFD model
The CFD model for fluid flow adopts the volume-averaged

Navier-Stokes equations, where the volume occupied by the fluid
within each cell depends on the volume taken by the solid particles.
Let αf be the volume fraction, uf the fluid velocity, and ρf the fluid
density, the continuity equation of the CFD model can be given in
Equation 3 as

∂

∂t
ρfαf( ) + ∇ · ρfαfuf( ) � 0, (3)

and the momentum Equation 4 is

∂

∂t
ρfαfuf( ) + ∇ · ρfαfuf ⊗ uf( ) � −∇p + ∇ · αfτf( )

− Fpf + ρfαfg ,
(4)

where ∇p represents the pressure gradient, τf is fluid viscous stress
tensor, Fpf denotes the term associated with momentum transfer
between the fluid and solid phase, g is the vector of gravitational
acceleration, and ‘·’ represents the dot product while ⊗ denotes the
dyadic product.

2.2 The depth-averaged granular
flow model

The continuum simulation of chute flow is based on solving a
depth-averaged granular flow model of the shallow water type

(Stoker, 1957; Eglit and Shahinpoor, 1983; Savage and Hutter,
1989). By averaging the properties of the granular flow across the
depth of the flow, this model reduces the computational complexity
associated with simulating three-dimensional simulations. With the
normal velocity component w in the z direction omitted, the mass
and momentum equations of dimensionless form can be expressed
as follows (Gray et al., 1999; Cui and Gray, 2013; Tregaskis
et al., 2022).

∂h

∂t
+ ∇ · h�u( ) � 0, (5)

∂

∂t
h�u( ) + ∇ · h�u ⊗ �u( ) + ∇

1
2
gh2 cos ζ( ) � S, (6)

where h is the flow thickness, �u � (�u, �v) represents the velocity and
its components in the x and y directions, respectively, and the
gradient operator is ∇ � (∂/∂x, ∂/∂y). The source term S � (Sx, Sy)
on the right-hand side accounts for the effects of gravitational force
and frictional resistance exerted on the basal surface, and is given in
Equation 7 by

S � gh i sin ζ − μ �u/|�u|( )cos ζ( ), (7)

where μ � tan δ is the coefficient of friction with δ being the basal
friction angle, |�u| � (�u2 + �v2)12, and i is the unit vector in
the x−direction.

Using the conservative variables h, m � h�u and n � h�v, we can
rewrite the system of Equations 5 and 6 into a non-strict hyperbolic
form in Equations 8

∂U
∂t

+ ∂E
∂x

+ ∂F
∂y

� S, (8)

where U � (h,m, n)T with the superscript T denoting the transpose
to a row vector. The respective fluxes and source term vector are
given in Equation 9 below

E � m,m2/h + 1
2
gh2 cos ζ , mn/h( )T

,

F � n,mn/h, n2/h + 1
2
gh2 cos ζ( )T

,

S � 0, Sx, Sy( )T.

(9)

To align with the dimensional DEM simulations, the following
scaling is used: the length scale is set to l � 0.03 meters, velocities are
scaled by

��
gl

√ � 0.54 ms−1, and time is scaled by
���
l/g

√ � 0.055
seconds. Additionally, the Froude number Fr is defined as the ratio
of the flow speed |�u| to the wave speed c � ������

h cos ζ
√

, such that Fr �
|�u|/c.

2.3 Implementation of the numerical
simulations

Without considering the complexity of the flow released from
the hopper and gate, we focus our simulation on a region of the flow
that is sufficiently developed along the slope of the chute. As shown
in Figure 1, a typical chute flow set-up consists of a hopper, a release
gate, and a chute with a bed and sidewalls. The chute has a

FIGURE 1
Schematic of the chute flow set-up. The Cartesian coordinate
(x, y, z) is aligned with the release gate, representing the downslope,
cross-slope, upward normal directions, respectively. The DEM domain
and continuum simulation domain are denoted in the top-
right inset.
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downslope length L (e.g., 1,000 mm), a cross-slope width W (e.g.,
300 mm), and an adjustable inclination ζ relative to the horizontal.
The sidewalls of the chute are usually made of transparent material
and have a height H (e.g., 100 mm).Although our current focus is
on numerical simulations, we follow the experimental setup for
chute flows, such as described in Cui and Gray (2013); Cui et al.
(2022), to define our computational domain. This alignment
ensures that the initial flow thickness h0 and velocity u0 (e.g.,
obtained through high speed camera measurements using the
particle image velocimetry (PIV) method) are well defined at a
specific location in the chute. In Figure 1, this location is set at
x � X0 with the Cartesian coordinate (x, y, z) aligned with the
release gate. Such initial conditions are crucial for both DEM and
continuum simulations. Consequently, the continuum simulation
domain can be defined within a basal surface region with a
downslope length of X1 and a cross-slope width of Y1, as
illustrated in the top-right inset in Figure 1. In our case, we
select X1 � 150 mm and Y1 � 20 mm, as no obstacles are used
to divert the flow.

Following the selection of the simulation domain, the DEM
simulation is conducted in a three-dimensional region where
x ∈ [0, 150] mm, y ∈ [0, 20] mm, and z ∈ [0, h0] mm within the
chute. The initial conditions are set h0 � 22 mm and u0 � 0.5492 m/s
with an inclination angle ζ � 38°. This setup results in an initial mass
flow rate of 0.1961 kg/s at the inlet. In the continuum simulation, the
same initial conditions of h0 and u0 are applied. Key physical and

control parameters used for the DEM simulation are summarized
in Table 1.

The governing Equation 8 is solved numerically using a finite-
difference method (Cui, 2014; Cui, 2021) on a uniform H-grid
covering the domain defined by x ∈ [0, 150] mm and y ∈ [0, 20]
mm.With a grid interval of 1 mm, the computational grid consists of
151 × 21 points for the simulation. Due to the simplicity of the
domain without obstacles, only the initial conditions of h0 � 22mm,
�u0 � 0.5492 m/s, and �v0 � 0 m/s are needed at the upstream
boundary. The other boundaries develop naturally as the flow
propagates downstream. Since the numerical method is explicit,
the time step is automatically controlled according to the CFL
(Courant-Friedrichs-Lewy) stability condition (Anderson,
1995).Finally, the coupled CFD-DEM simulations were
conducted using the Simcenter Star-CCM + package, and our
continuum simulations utilized an in-house code developed for
the finite difference method based on an explicit non-oscillatory
central (NOC) scheme (Nessyahu and Tadmor, 1990).

3 DEM and continuum simulations of
granular flow

3.1 Time-dependent development of the
granular flow

Since DEM and continuum simulations are based on
fundamentally different modeling frameworks in both spatial and
temporal domains, it is particularly effective to first investigate the
time-dependent development of the simulations. This approach
provides an overall perspective, as well as a qualitative
comparison, between the two methods. To achieve this, we
simulate spherical particles with a diameter of 1 mm flowing
down a 150 mm slope inclined at ζ � 38°.

As shown in Figure 2, the DEM solutions on the left-hand side
generally agree well with the continuum solutions on the right-hand
side, particularly at later stages of development, say, from t � 0.152
seconds onward. Even at earlier times, such as t � 0.070 and 0.1 s,
the flow evolution is largely consistent between the DEM and
continuum simulations. However, the results at t � 0.035 seconds
show an interesting difference, especially in the moving fronts. This
discrepancy arises because, in the DEM simulation, a sheet of
particles is injected at the inlet surface, and the particles then
move down the slope in a solid-like state. In contrast, the
continuum simulation produces a fluid-phase solution from the
inlet, causing its moving front to become infinitely thin. Overall, due
to mass conservation, the flow thickness decreases as its velocity
increases while propagating further downslope.

3.2 Spatial-temporal averaged velocity and
velocity profile

Figure 3 provides a more quantitative comparison for the
spatial-temporal averaged downslope velocity <u>. This velocity
is calculated during the simulation in a form of∑ni

j�1ui/N, where ui is
the downslope velocity of a particle, ni is the temporal number of

TABLE 1 Parameters and conditions used in the DEM simulation of
chute flow.

Chute condition Down-slope length (mm) 150

cross-slope width W (mm) 20

inclination ζ 38°

basal friction coefficient 0.4245*

Particles spherical diameter dp (mm) 1

density ρs (kg/m
3) 811.54

Poisson ratio 0.25

Young’s modulus (MPa) 5.17

number of particles 34,756

Particle-particle restitution coefficient 0.55

friction coefficient 0.4877*

rolling friction coefficient 0.005

Inlet conditions flow thickness h0 (mm) 22

average velocity u0 (m/s) 0.5492

mass flow rate _m0 (kg/s) 0.1961

Solvers time step (seconds) 0.001

Lagrangian max. sub-step 2 × 104

multiphase courant number 0.05 ~ 0.35

CFL number 50

athe basal friction is calculated as μ � tan(23°) (Cui and Gray, 2013).
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particles in the simulation, and N represents the total number of
particles in the steady-state solution. Normalizing <u> by N allows
its DEM solution to be directly comparable with the continuum
solution, which is averaged over the entire computational

domain–either the number of particles in the DEM steady-state
solution (e.g., Ndem � 34756) or grid points in the continuum
simulation (e.g., Ncon � 151 × 21 � 3171). In this figure, both the
DEM and continuum solutions converge to a steady state around the

FIGURE 2
DEM and continuum simulations of time-dependent development in granular flow down a 150 mm by 20 mm slope.
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same time scale, approximately 0.25 s, though they exhibit notably
different build-up histories. The figure also shows the steady-state
downslope velocities obtained from the DEM solution at the free
surface, mid-depth, and basal surface. The free-surface velocity
aligns closely with the continuum solution, consistent with the
granular flow being treated as a plug-flow type (Cui and Gray,
2013). On the other hand, the DEM solution at mid-depth closely
matches the overall velocity profile, indicating a macroscopic
representation of the particle velocities. Given that Ndem and
Ncon are completely independent measures of particle/grid
details, the result in Figure 3 is particularly promising for
assessing the microscopic and macroscopic behaviors.

A key advantage of continuum simulations over DEM
simulations is their significantly lower computational cost. In our
case, under similar computing conditions, the continuum
simulation required only 42 s on a 151 × 21 grid with a time
step of 0.00055 s, whereas the DEM simulation took 8,750 s for
up to 34,756 particles with an implicit time step of 0.001 s, both
simulating up to 1 s of physical time. This demonstrates that the

continuum simulation is over 200 times faster than the DEM. For a
three-dimensional simulation, the continuum approach could still
maintain a computational advantage, being approximately 10 times
faster on a 151 × 21 × 23 grid, with 23 grid points extended in the
z−direction to cover a range of 22 mm (� h0).

Further details of velocities obtained from the DEM steady-state
solution are shown in Figure 4. In this figure, the velocities have been
averaged in the cross-slope y direction to produce a velocity field,
<u′> and <w′> , in the downslope x and normal z directions,
respectively. Since there is no obstacle in the flow field, the cross-
slope velocity v remains close to zero. In Figure 4A, the velocity field
is overlaid with the magnitude of the velocity, showing a gradual
increase from the basal surface at z � 0 to the free surface. Also
shown in Figure 4A is the steady-state free-surface height of the flow
obtained from the continuum simulation, denoted in green circular
symbols. The agreement of the free-surface heights between the
DEM and continuum simulations is overly good, given the fact that
these results are obtained independently, using only the same initial
inlet conditions defined by h0 and u0 fogure 4b presents the velocity
profiles along the flow thickness direction at various downslope
locations x � 30, 50, . . . , 150 mm, obtained from the DEM
simulation. Due to the “no-slip” viscous condition applied at the
base of the slope, a significant velocity change is observed near the
basal boundary, resembling a “boundary layer”. Beyond this layer,
the velocity increases roughly linearly toward the free-surface. The
corresponding depth-averaged velocity, �u, obtained from the
continuum simulation is also shown in green circular symbols in
Figure 4B. Since these velocities are based on the free-surface flow
for a basal friction angle δ � 23° where μ � tan δ (see, (7)), they
closely match but are slightly higher than the free-surface solution of
DEM. This may be generally expected in continuum simulations, as
granular materials are assumed dry, cohesionless, and isotropic. By
increasing the value of δ to 30°, the continuum’s free-surface
velocities align well with the DEM velocity profiles, as illustrated
by white-filled circular symbols labelled δ � 30° that cross the DEM
profiles in Figure 4B (note, the vertical sense of h has been discarded
for this δ � 30° case). In other words, analyzing velocity profiles of
DEM can help better calibrate the basal friction coefficient, μ, in
continuum simulations, leading to a more consistent solution for
granular flows.

FIGURE 3
Time-dependent development of downslope velocity over a
150 mm slope: the solid line shows the depth-averaged continuum
model result; the dash-dot line indicates the normalized DEM
simulation velocity. The dash-dot-dot, dotted, and dashed lines
represent the normalized velocities at the free surface, mid-depth,
and basal surface, respectively.

FIGURE 4
Velocity profiles between the DEM and continuum simulations: (A) velocity field in the x − z plane, overlaid by the free-surface thickness of the flow;
(B) velocity distributions along the flow thickness direction at various downslope locations from the DEM simulation, compared with the depth-averaged
velocity from the continuum simulation.
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Accurately capturing the velocity profile is crucial for
modelling the rheological behaviour of granular flows,
particularly in continuum simulations (Pouliquen, 1999; GDR,
2004; Franci and Cremonesi, 2019; Tregaskis et al., 2022), while
also serving as a metric for assessing the robustness and
effectiveness of DEM simulations. As particle characteristics
become more complex–such as in shape, size, moisture
content, attrition, breakage, and mixing–modelling inter-
particle contact and interaction becomes increasingly
challenging (Guo and Curtis, 2015; Zhong et al., 2016; Vakis
et al., 2018). However, detailed insights into particle velocity
profiles are vital for uncovering critical physical insights into
particle dynamics and behaviors. Since spherical particles
represent the most typical shape, our results could offer a
benchmark solution for further studies, including the
application of machine learning.

4 Machine learning on the granular
flow dataset

With the rapid advancement of computing technologies, artificial
intelligence and machine learning are increasingly being applied to
analyze fluid mechanics problems (Brunton et al., 2020; Molinaro et al.,
2021). This section explores the use of machine learning techniques to
analyze and interpret the granular flowdataset generated from theDEM
simulations discussed in Section 3.1.

4.1 Machine learning framework

Using the Random Forest method as an example, we briefly
explain how machine learning can be applied to granular flow data

analysis (Breiman, 2001; Zaki and Meira, 2014; Clarke et al., 2009)
from training, optimization, to prediction.

LetX � {x1, x2, . . . , xn} be the input dataset, with each feature vector
xi � [xi1, xi2, . . . , xim]T in Rm. In our case, the feature vector xi can be
defined to include particle-related information such as position, velocity,
particle ID, forces, stresses, and volume fraction at each output time step
from the DEM simulation. For example, if we use a time interval of 0.02 s
over a total simulation time of 1 s, we would generate N � 100 feature
vectors, forming the input (or training) datasetX, stored in the spaceRm.

LetY � {y1, y2, . . . , yn} represent the corresponding set of labels
or target values, where yi ∈ R for regression tasks. In this context, we
test RandomForest, LinearRegression, and RidgeRegression models.
The RandomForest model operates by building multiple decision
trees, denoted by Tj, during training process and then aggregating
their results to improve prediction accuracy. This can be expressed
in Equation 10 as:

ŷ � F x( ) � 1
B
∑B
j�1

Tj x( ) (10)

where B is the total number of trees, Tj(x) is the prediction from the
j-th decision tree, and F(x) can be a generic machine learning model.

Consequently, a loss function, e.g., the Mean Squared Error
(MSE), as given in Equation 11 as follows

L Y, Ŷ( ) � 1
n
∑n
i�1

yi − ŷi( )2 (11)

can be used to measure the discrepancy between the true labelsY
and the predicted labels Ŷ.

Without repeating further details of the training process
(Breiman, 2001), the model is evaluated using a test dataset
(Xtest,Ytest). Metrics such as the R2-score can be used to assess
the model’s effectiveness, as demonstrated in Figure 5.

FIGURE 5
The R2 scores versus the number of feature vectors N for the RandomForest, LinearRegression, and RidgeRegression methods in the machine
learning of the granular flow dataset.

Frontiers in Food Science and Technology frontiersin.org07

Cui et al. 10.3389/frfst.2024.1491396

https://www.frontiersin.org/journals/food-science-and-technology
https://www.frontiersin.org
https://doi.org/10.3389/frfst.2024.1491396


The trained RandomForest model is then applied to predict
outputs for new, unseen data points xnew, using Equation 12:

ŷnew � 1
B
∑B
j�1

Tj xnew( ). (12)

4.2 Implementation of the machine
learning method

When training a machine learning model, it is essential to split
the dataset (X,Y) into a training set (Xtrain,Ytrain) and a test set
(Xtest,Ytest). Typically, around 80% of the data is allocated to
training, while the remaining 20% is reserved for testing. This
split allows the model to learn patterns from the training data
and then assess its performance on the test data to evaluate how well
it has generalized those patterns, which can be measured by the
R2-score for the loss function (11).

In Figure 5, three machine learning models–RandomForest,
LinearRegression, and RidgeRegression–are used to train the
granular flow dataset with different numbers of feature vectors at
N � 30, 50, 75, 100, 150. Notably, the RandomForest model
consistently outperforms both the Linear and Ridge regression
models, which rely on fitting a linear relation to the observed
model. Additionally, increasing the number of feature vectors N
does not appear to significantly improve the model scores.

Figure 6 shows the predicted output, ŷnew, generated by the
Random Forest, Ridge Regression, and Linear Regression models for
the granular flow dataset. In this case, the models are used to predict
particle positions. The images in the top panel, (a) and (b), are drawn
from the test data and represent the true steady-state solution of
DEM, as shown in Figure 2 e.g., at t � 0.5 seconds. The
corresponding predictions by the Random Forest model are
shown in Figures 6C, D, by the Ridge Regression model in (e)
and (f), and by the Linear Regression in (g) and (h), respectively. The
images on the left (a,c,e,g) and right (b,d,f,h) panels show the same
result from different viewing angles.

FIGURE 6
Random Forest, Ridge Regression and Linear Regressionmachine learning applied to the granular flow dataset, with a comparison to the “true” flow
pattern in the test data. (A, B) Test data (C) Random forest (D) Random forest (E) Ridge regression (F) Ridge regression (G) Linear regression (H) Linear
regression
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Even with the RandomForest model, the predicted result shows a
significant discrepancy from the true solution, highlighting the
challenges of applying machine learning to accurately predict even
relatively simple granular flow patterns. One possible reason for this
disagreement is that the original training dataset was selected from the
initial injection phase of the flow through to its steady state. This may
have complicated (deliberately) the training process due to the
continuously evolving flow patterns, as seen in Figure 2. Nevertheless,
there is ongoing development inmachine learning techniques to address
such complexities, with methods like physics-informed neural networks
(PINNs) (Karniadakis et al., 2021; Wang et al., 2021; Mao et al., 2020)
and graph neural networks (GNNs) (Choi and Kumar, 2024) being
tested for tackling complex fluid mechanics problems.

5 Conclusions and recommendations

In this study, we investigated the dynamics of granular flow using
both Discrete Element Method (DEM) and continuum modeling,
providing an insight to the micro-scale interactions and macro-scale
behavior of granular materials. The comparative analysis revealed that
although both methods produced generally consistent results,
discrepancies, particularly in early-stage flow development,
underscore the complexity of accurately simulating granular
materials. Furthermore, we explored the application of machine
learning techniques, including Random Forest, Ridge Regression,
and Linear Regression models, to predict particle positions within
the granular flow. While the Random Forest model outperformed the
linearmodels, the overall prediction accuracy highlighted the inherent
challenges in using machine learning for complex granular systems.

While the use of spherical particle shapes provides robustness in
DEM simulations, actual particle conditions are often more
complex, especially in food processing applications.These factors
may impose significant complexity to understanding granular
particle behaviors. As illustrate in Figure 7, particle size and shape,

even for spheres and capsules, can substantially influence particle
packing condition, measured by the volume fraction. Within the
moving flow mass, particles tend to segregate noticeably based on
volume fraction. On the other hand, food particles frequently exhibit
varying properties across seasons and regions, making it further
challenging to accurately model and simulate their behavior due to
the limited knowledge of their complex compositions (Vakis et al.,
2018; Fries, 2021). Further exploration in the field of contact
mechanics, fracture mechanics, and tribology is therefore
essential for more realistically modeling particle interactions at
the microscopic scale. Similarly, improvements in granular process
rheology are needed to more accurately capture macroscopic flow
behaviors (Dunatunga and Kamrin, 2015; Krishnaraj and Nott,
2015). These remain some of the most demanding tasks in the
modeling and simulation of granular food processes.

Using the rice milling process as an example, it involves several
mechanical processes that exert various forces on the grain, significantly
influencing the extent of breakage (Einav, 2007). Particle breakage
under impact conditions is often modeled by considering energy
dissipation, material resistance, and energy efficiency (Vogel and
Peukert, 2003; Shitanda et al., 2001), and DEM-PBM (particle
balance method) simulations have been tested for this purpose (Han
et al., 2016; Metta et al., 2018; Cabiscol et al., 2021; Nakamura et al.,
2022). Additionally, the Material Point Method (MPM) has been
introduced in continuum modeling to allow granular materials to
transition through various phases during the flow process
(Dunatunga and Kamrin, 2015; Haeri and Skonieczny, 2022).

Given the challenges faced by traditionalmachine learningmodels in
predicting granular flow patterns, future efforts should explore advanced
techniques, such as physics-informed neural networks (PINNs) and
graph neural networks (GNNs) (Cai et al., 2020; Choi and Kumar,
2024). These methods, which integrate physical laws and complex
network structures, could offer more accurate predictions by better
capturing the inherent dynamics of granular materials.

Finally, continuous validation of simulation results against
experimental data is crucial for ensuring the reliability of both
DEM and continuum models. Establishing benchmark cases,
particularly for spherical particles, as presented in this study, can
provide a valuable reference for future research, enabling the
comparison and improvement of various modeling approaches.
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