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Conifer mountain forests influence numerous human populations by providing a host

of critical economic, sociological, and ecosystem services. Although the causes

of the elevational, transitional boundaries of these forests (i.e., upper and lower

timberlines) have been questioned for over a century, these investigations have focused

predominately on the growth limitations of saplings or mature trees at the upper

alpine boundary. Yet, the elevational movement of timberlines is dependent initially on

new seedling establishment in favorable microsites that appear to be generated by

ecological facilitation. Recent evidence suggests that this facilitation is critical during

the initial 1–2 years of growth when survival may be less than a few percent, only

cotyledons are present, and survival occurs only in favorable microsites created by

inanimate objects (e.g., boulders, dead stems), microtopography, or already established

vegetation. Dramatic changes in tree form (e.g., krummholz mats) across the timberline

ecotone also plays an important role in generating microsite facilitation. These favorable,

facilitated microsites have been characterized broadly as experiencing low sky exposure

during summer (day and night) and leeward wind exposure during winter that generates

protective snow cover, all of which are needed for new seedling survival. Thus,

determining the specificmicroclimate and edaphic characteristics of favorablemicrosites,

and their frequency at timberline, will provide a more mechanistic understanding and

greater predictability of the future elevation and extent of conifer mountain forests. In

addition, although the ecophysiological advantages of a needle-like leaf morphology is

well established for adult conifer trees, the advantage of this phylogenetically unique

trait in emergent seedlings has not been thoroughly evaluated. Understanding seedling

ecophysiology and the functional morphology that contributes to survival, plus the nature

and frequency of favorable microsites at timberline, will enable more reliable estimates
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of future elevational shifts in conifer mountain forests. This approach could also lead

to the development of a valuable and sensitive tool for forest managers interested in

evaluating future changes in these forests under increased large-scale infestation and

drought mortality, as well as for current scenarios of predicted climate change.

Keywords: conifer forest, timberline, treeline, ecophysiology, facilitation, mountain, seedling survival

INTRODUCTION

Ecosystem services provided by conifer mountain forests include
water capture and supply, anthropogenic carbon sequestration,
forest products, biodiversity, recreation and esthetics (e.g.,
Funnell and Parish, 2005; Grêt-Regamey et al., 2012). These
forests extend from the upper elevation (alpine) to the lower
elevation limits defined by transitional forest timberlines.
Because of their position at high elevation, upper forest limits
are projected to experience the impact of climate change earlier
than lower elevation forests, and therefore serve as harbingers of
future change in these and other forest ecosystems (Rangwala and
Miller, 2012; Rangwala et al., 2012; Mountain Research Initiative
EDW Working Group et al., 2015). Higher elevation plant
communities, in general, may be particularly sensitive to changes
in climatic conditions because their composition is strongly
affected by abiotic forces generating narrow bioclimatic niches
(e.g., Harte and Shaw, 1995; Debinski et al., 2000; de Valpine and
Harte, 2001; Smith et al., 2009; Shaw and Etterson, 2012).

Recent conifer mortality episodes on a large spatial scale have
occurred throughout the western USA and Canada (Auclair et al.,
1990; Allen et al., 2010), highlighting the vulnerability of today’s
mountain forests. Also, new research has helped identify the
underlying physiological mechanisms that will lead to greater
tree mortality in a warmer, drier environment (Breshears et al.,
2005; Pyatt et al., 2016; Brodrick and Asner, 2017; Choat et al.,
2018). Yet, despite over 100 years of investigation, large gaps still
persist in our understanding of how mountain forests function
at the mechanistic level, particularly at high elevation. This
includes characterization of the physiological and demographic
characteristics that made these forests resilient under past
climate, but increasingly vulnerable given recent extreme weather
events and large-scale forest die-back (e.g., Allen et al., 2010).

Increasing tree abundance at timberlines, or
advancing/contracting the upper and lower bounds of these
subalpine forests, will alter total biomass and tree cover,
thus inducing significant changes in ecosystem functioning.
Therefore, understanding the long-term stability and up- or
down-slope migration of these mountain forest boundaries
is critical. For these predominately sexually reproducing
species, plant communities, migration is dependent on
new seedling establishment at or away from an existing
timberline. Unfortunately, a comprehensive understanding
of seedling survival and persistence is challenging because of
the multidimensional biotic (e.g., grazing) and abiotic (low
temperatures) stress factors that can change markedly with
elevation. Compounding this complexity are that survival
begins with newly emerged seedlings that require favorable

microsite conditions to germinate and survive the first few
years (see below). Once established, timberline trees are resilient
(capable of storing carbon and water to offset particularly
extreme conditions) and often live for hundreds of years.
Thus, understanding the interactions between new seedlings
and their biotic and biophysical landscape at timberline
will help identify the regions where forest managers can
predict where and how a species might migrate up- or down-
slope, or where mitigation strategies might be employed to
encourage new tree establishment and growth via appropriate
planting techniques.

The aim of this review is to propose new lines of research
that will be most efficacious in identifying ecophysiological
mechanisms driving boundary stability and movement in
mountain conifer forests. Our framework here focuses on
changes in elevation and thus, the extent of a conifer mountain
forest with a focus on the reproductive ecology and life history
of conifer species growing at timberline. The following is a list of
specific objectives:

(1) outline the critical, persistent knowledge gaps regarding
our understanding of mountain conifer forest
boundaries (timberlines);

(2) offer suggestions for unifying the terminology and data
collection standards that will allow for greater cross-study
comparisons, specifically the cotyledonous life stage;

(3) to articulate a plausible hypothesis that can guide future
research evaluating the critical survival of first-year seedlings
at timberline;

(4) develop a conceptual, mechanistic framework that can yield
new insights into the ecophysiology of conifer tree seedlings
at timberline, and provide guidance for future research that
could benefit mountain forest management.

The foundation for this review came from an international
workshop involving all the coauthors (please see
Acknowledgments). Our emphasis here is on the continental
mountain ranges of western North America because of
their relatively undisturbed timberlines, their early historical
research emphasis on very young, emergent (cotyledonous)
timberline seedlings, and their severe abiotic environments
which can serve as model systems for monitoring and testing
experimentally the underlying principles of forest boundary
stability for conifer mountain forests. An admitted limitation
here is our almost singular focus on the Rocky Mountains,
USA, although this is where much of the seminal work
on young seedling ecophysiology at timberline has been
reported. What follows is an explanation of the mechanisms
underlying the establishment and stability of an alpine
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timberline typical of the continental Rocky Mountains,
USA (Figure 1).

IMPORTANCE OF SEED PRODUCTION
AND DISPERSAL, GERMINATION AND
SURVIVAL AT TIMBERLINE

Seedling germination and survival constrains the expansion
of conifer forests up- or down-slope and could be limited
initially by the production and dispersal of viable seeds by
mature trees. Seed production by trees within the western North
American timberline ecotone has been studied to a limited
extent, but is likely highly episodic (Kearney, 1982) with mast
years generating an abundance of seeds (Holtmeier and Broll,
2017). However, little is known regarding seed viability, the
climatic conditions preceding masting events, or the long-term
viability of the soil seed bank in the forest-alpine ecotone
(see reviews by Körner, 2012 and Wieser et al., 2014). Cone
and viable seed production is certainly related to the vigor
of mature trees in a given year, or possibly a combination of
the consecutive years needed for cone maturation. However,
we currently do not have an adequate understanding of the
relationship between tree physiology and seed production for
these species and, in particular, the legacy effects of poor
growth years on future seed production. Additional complexity
arises from the highly variable environmental conditions over
small altitudinal gradients and potential effects on growth and
reproduction. For example, studies on the relationship between
altitude and seed mass are mixed, with some showing declines
with altitude (e.g., Tranquillini, 1979; Marcora et al., 2013) or
increases (Holm, 1994; Kollas et al., 2012). These differences are
likely site and species specific, as well as dependent on both

biotic (e.g., seed predation; Jameson et al., 2015) and abiotic
conditions (Cuevas, 2000; Holtmeier, 2009; Wang et al., 2016).
Parent-tree abundance within close proximity to the timberline
boundary may also be critical (Kroiss and HilleRisLambers,
2015; Lyu et al., 2016; Wang et al., 2016). Broadly, subalpine
forest migration upward into the alpine could be constrained
by seed-source limitation, along with low seedling survival or
the low occurrence of favorable microsites (Smith et al., 2009;
Wang et al., 2016; Kueppers et al., 2017). Comprehensive studies
comparing the combination of seed abundance, germination
success, and new seedling establishment near conifer timberlines
do not exist. Additional demographic studies are needed to
comprehensively evaluate the impact of the different life stages
limiting timberline elevations, especially in combination with
concurrent measurements on potential limitations due to other
life stages.

In addition to the above, the development of more detailed
seedling nomenclature (Table 1) is necessary for comparing and
defining this earliest life stage among studies. The US Forest
Service defines seedlings as trees smaller than 2.5 cm at breast
height and that are at least 15.2 cm in height for softwood
(conifer) tree species (https://www.nrs.fs.fed.us/fia/data-tools/
state-reports/glossary/default.asp). Yet, trees in this size class
within alpine timberline ecotones may vary in age by decades,
depending on elevation and microsite exposure. Delineating
this life stage into more discrete categories (e.g., cotyledonous)
is important for interspecific comparisons and the potential
differences in physiological demands and mortality.

Successful transition from the seedling to sapling to mature

tree in timberline ecotones has received limited attention in the

literature. One problem is the lack of criteria and consistency
in defining the seedling age, size, and height that determines
the transition from seedling to sapling (Table 1). This is a

FIGURE 1 | A representative timberline landscape in the central Rocky Mountains, USA (Snowy Range, Medicine Bow Mountains, southeastern Wyoming) showing

tree forms [spruce, Picea engelmanii and fir, Abies lasiocarpa)] across the timberline ecotone. Characteristic krummholz (twisted wood) mats occur at the highest

elevation (no escaped stems) (A), mats with vertical stems showing severe flagging occur lower in the ecotone (B), and finally tree islands adjacent to the transitional

timberline (C) (also see Figure 3). Although these growth habits are excellent snow collectors, blowing snow abrasion and needle death by desiccation occurs

annually for new vertical shoots that grew beyond the snow-covered surface of the mat during the previous summers (see Wieser et al., 2014). The resulting blowing

snow abrasion creates the tapered, windswept appearance of these mats (prevailing wind from the left in picture). Changes in these krummholz mats across this

ecotone (treeline to timberline) provide a smaller-scale, functional analogy of the ecological facilitation needed for a tree to grow to forest-tree stature and forest

migration upward. The same wind and abrasion forces limiting the successful escape of stems away from the krummholz mat surface also occur across the ecotone,

decreasing from the treeline to the timberline in response to greater landscape facilitation (Figure 3). See text for more detailed explanation of the functional similarity

between the conditions allowing stem escape and flagged stems from krummholz mats, and the changes in plant form that occur across the timberline/treeline

ecotone.
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TABLE 1 | A proposed common nomenclature for more precisely differentiating

the life history stages of conifer tree species at timberline.

Emergent seedling: A tree within the period between the point of emergence

from the soil, the development and maturation of the cotyledonous leaves, and

until the development of the first set of primary leaves.

Established seedling: This stage begins with the maturation of the first set of

primary leaves and senescence of the cotyledons. This transition is critical,

marking not only the greater photosynthetic potential of the seedling, but also the

accompanying development of a root system to adequately supply water and

nutrients to the substantially increased foliage area (Leck et al., 2008), along with

a much greater probability of long-term survival. Any designation of height and

age is arbitrary due to the severe growth suppression at timberline and above,

i.e., same-height seedlings can vary in age by decades depending on exposure.

Sapling: Trees that have multiple branch nodes, but are not yet producing

seeds.

Mature tree: Trees that produce seeds.

We recommend the terminology proposed by (Fenner and Thompson, 2005), in

chronological order with slight modification. The rationale for delineating the youngest

life history stages into discrete categories is based on recent research suggesting that

mortality is exceptionally high during the initial years of seedling growth and that the

physiological cause of mortality following their first few growing seasons is significantly

lower due to more developed photosynthetic, vascular, and root systems.

key issue, as there are recognized ecophysiological advantages
to remaining short at such high elevations, as evidenced so
well by the “krummholz” growth forms described in more
detail below (Hadley and Smith, 1987; Wieser et al., 2014;
Figure 1). High elevation conifer timberlines typically have
trees with uneven age class distributions, which indicates that
either seed/seedling limitations are occurring, or macroclimatic
conditions are influencing the occurrence of favorable microsites
on sporadic years (also see Juntunen andNeuvonen, 2006; League
and Veblen, 2006; Holtmeier, 2009). Also, the idea that favored
microsites for seedling establishment are ecologically facilitated
and may act as a bottleneck to the movement of an alpine
timberline has been suggested previously (Smith et al., 2003,
2009). However, the specific biotic and abiotic characteristics
of these favorable microsites and their spatial abundance and
temporal dynamics are current areas of study (e.g., Shen et al.,
2014; Kroiss and HilleRisLambers, 2015; Pyatt et al., 2016). For
example, Germino and Smith (2002) reported that shading by
overstory grasses was more beneficial for seedling survival than
the detriment of water competition.

MICROSITE FACILITATION:
MICROTOPOGRAPHY AND
NEIGHBORING PLANTS

Seedling germination and establishment at timberline likely
requires ecological facilitation that generates favorable microsites
for survival (Harper, 1977 safe sites; Walter, 2012; Callaway
et al., 2002; Leck et al., 2008; Tingstad et al., 2015; Lyu et al.,
2016). Favorable microsites can change in space and time during
even a single summer growth season, but must consist of a
suite of micro-environmental conditions that are favorable for
seedling germination, survival, and establishment. For all of these
conditions to be satisfied is probably rare for any time scale.
Also, the details of what defines a favorable microsite, plus their

frequency in both space and time across a timberline landscape,
is not well characterized among different timberline ecotones
(but see Callaway, 1998; Resler et al., 2005; Batllori et al., 2009;
Munier et al., 2010; Pyatt et al., 2016). This knowledge gap is
problematic because it limits our ability to predict when, where,
and why a seedling population might establish and persist within
the extrememicroclimatic and edaphic gradients that exist within
an alpine timberline ecotone (e.g., Resler et al., 2005). As in many
other ecosystems, the emergent seedling life stage is likely the
most vulnerable of all life stages, especially for long-lived tree
species that may persist for centuries if they survive the seedling
stage (Leck et al., 2008). For that matter, forest regeneration
below the timberline following episodic events such as forest
fires, pest invasion, and blowdowns may face similar challenges
for regeneration.

More specifically, emergent seedling survival at the alpine
timberline appears constrained to favorable microsites facilitated
by microtopography (e.g., depressions), existing vegetation
(Wheeler et al., 2011), or inanimate structures such as boulders,
rocks, and fallen logs (Smith et al., 2003; Körner, 2012; Wagner
et al., 2018). These structures within the environment serve
multiple roles such as accumulating leeward snow and snowmelt
water that is available later in summer, buffering seedlings from
extreme maximum and minimum temperature fluctuations, and
protecting seedlings from high winds that often carry abrasive
ice crystals that can damage the waxy needle cuticle and lead to
desiccation death (Hadley and Smith, 1986; Renard et al., 2016).
Besides wind, less exposure to the sun and nighttime sky (Jordan
and Smith, 1995) have also been associated with higher seedling
occurrence and survival in spruce and fir timberline species of
the Rocky Mountains, USA (Germino et al., 2002; Maher and
Germino, 2006) andmore recently for other treelines across three
different continents (Bader et al., 2007; McIntire et al., 2016).
However, general characterizations of what favorable microsites
entail during both summer and winter are available for only a
few study areas worldwide (Smith et al., 2003, 2009; Johnson
et al., 2011; Körner, 2012; Wieser et al., 2014). It is important
to understand that facilitative structures reducing sun and
nighttime sky exposure can occur across a variety of spatial scales,
including the leaf level, the arrangement of leaves on stems,
and the clustering of stems and whole plants into crowns and
canopies (Smith et al., 2004). Similar concerns for microedaphic
factors have been neglected almost entirely. More research is
needed to describe the prodigious range of combinations of both
microclimate and edaphic factors that could define a favorable
microsite for seedling survival. Co-occurring herbaceous and
woody species, site characteristics (e.g., slope, aspect, soil type,
snowpack, etc.) and both stochastic weather events and longterm
trends must all be considered.

IMPORTANCE OF SEEDLING FORM

The close similarity in seedling architecture between the
cotyledonous seedlings and adult leaves occurs almost exclusively
in conifers (Leck et al., 2008, R. L. Simpson and C. Baskin,
personal communications). The first few centimeters above
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the soil surface that emergent seedlings occupy are commonly
associated with opposing exponential gradients of declining wind
speed and increasing air temperatures (e.g., seminal review of
Geiger et al., 2009). Conifer seedling morphology (Figure 2) is
adaptively important in this type of high elevation environment
where the cylindrical needle form limits sun incidence and
enables higher convective heat exchange, thus avoiding higher
temperatures and the risk of desiccation (e.g., Jordan and
Smith, 1993; Smith and Brewer, 1994; Germino and Smith,
1999; Johnson et al., 2011). By comparison, broadleaf seedling
morphology presents a laminar leaf surface toward the sun,
leading to higher leaf temperatures during the day, plus the risk
of high radiative heat loss to the cold night sky and freezing
temperatures, as well as a much greater vulnerability to wind
damage. Thus, broadleaf cotyledon temperatures can fall below
even the coldest air temperatures that occur next to the soil
surface at night (Geiger et al., 2009). As such, herbaceous species
in the coldest and highest elevation environments are often
characterized by clustered smaller leaves close to the ground
(cushion plants), which enables leaves to stay within specific
thermal boundaries (Wright et al., 2018). Measurements of
conifer cotyledon temperatures under natural conditions are rare
(Cui and Smith, 1991; Kolb and Robberecht, 1996; Germino
and Smith, 1999; Maher et al., 2005) and development of a
moremechanistic framework for understanding seedling survival
under natural field conditions will depend on this type of
information (Johnson et al., 2011).

Because of the shallow root depth in emergent seedlings,
the low moisture retaining properties of this shallow soil level,
and the high vapor pressure deficits occurring at high elevation
(Smith and Geller, 1979), exposure to desiccation is likely a major
driver of seedling mortality (Cui and Smith, 1991; Germino
et al., 2002). Rocks, coarse woody debris, and similar structures
can provide protection from desiccating solar insolation and
wind, generate increases in snow accumulation (soil moisture),
and provide thermal stability, thereby creating a unique
microenvironment where conifer seeds can germinate and grow.
Subalpine fir (Abies lasiocarpa) has phenotypic plasticity in leaf
and stem morphology, with flat prostrate needles in the shade
and the characteristic bottlebrush needle arrangement in the
sun (Carter and Smith, 1985; Germino and Smith, 1999). This
simple change in both needle shape and arrangement on a stem
leads to a more upright, bottlebrush leaf display that substantially
reduces excessive sunlight exposure, yet traps warm air among
the needles. This needle warming above the characteristically low
air temperatures of high elevation leads to greater photosynthesis
during the day without the negative effects of photoinhibition
due to excessive sunlight (Gregory and Smith, 1985). Similar
changes in cotyledon orientation from near horizontal to vertical,
especially in more sky-exposed microsites (Figure 2B; Germino
and Smith, 2002) needs further investigation.

High mortality in tree seedlings at timberline during the first
few years following germination (often greatest in sun-exposed
microsites), followed by much reduced mortality for surviving
seedlings thereafter, has been reported for Picea engelmannii,
Abies lasiocarpa, Pinus albicaulis, and Pinus flexilis (Germino
et al., 2002; Mellmann-Brown, 2005; Maher and Germino, 2006;

Pyatt et al., 2016; Conlisk et al., 2017; Kueppers et al., 2017). After
surviving the emergent seedling stage, high elevation conifers are
resilient and long-lived (centuries) with mortality coming only
from larger scale, episodic events such as fire, severe drought,
parasite infestation, or wind blow-down (Arno, 2000; Paulsen
et al., 2000). Identifying potential ecophysiological mechanisms
that underlie early seedling survival in the timberline ecotones,
both low and high elevation, will provide a more mechanistic
understanding of the forces driving the elevational boundaries
of a conifer forest, but also regeneration capabilities inside
the forest.

CHANGES IN TREE FORM AND SPACING
ACROSS THE TIMBERLINE LANDSCAPE

Clearly, to advance a timberline upward, timberline trees first
transition from the krummholz mats to form tree islands
(Figures 3, 4). Collectively, these islands modify the prevailing
winds and environmental conditions even more such that,
ultimately, tree islands with nearly forest-stature trees spatially
coalesce to form a new subalpine forest (Smith et al., 2003;
Holtmeier, 2009; Harsch and Bader, 2011). Tree thinning away
from the forest edge also occurs (most likely due to sunlight
competition), although this process has not been studied in detail.
A replica of this landscape process can be observed on a smaller
spatial and structural scale via the gradual formation of larger
and larger krummholz mats with taller, less flagged, and more
abundant escaped stems as one approaches the intact subalpine
forest (Figures 1, 3, 4).

The final stage of new timberline formation at the alpine-
forest boundary comes from the fusion of tree islands closest
to the intact subalpine forest (Figures 3, 4), along with the
beginning of sapling thinning due to light competition that
is typical when inside a subalpine forest (Holtmeier, 2009;
Smith et al., 2009). Regardless, forest-size trees can occur only
after experiencing the community level facilitation that occurs
within a mature forest, i.e., forest-size trees are possible only
when ecologically facilitated by the surrounding trees of the
forest itself (Lucas-Borja et al., 2016). It is noteworthy that
different tree species besides conifer trees show much less
capability for krummholz mat formation (which has not been
evaluated thoroughly). This capability to form these snow-
collecting, protecting mats may be limited by developmental
constraints (e.g., apical dominance effects) on stem and canopy
growth responses to the environment. Although conifer forest
timberlines do exist without krummholz growth forms, these
are most likely due to the absence of blowing, crystalline snow
exposure and the subsequent dominance of non-krummholz
forming tree species (Hadley and Smith, 1987, 1989; Arno, 2000).

It is important to note that in the western United States,
high elevation sites characterized by trees growing in the form
of krummholz mats are typically dominated by subalpine fir
(Abies lasiocarpa) and Engelmann spruce (Picea engelmanii).
Thus, much of our more recent understanding about timberline
ecophysiology and the potential importance of seedling
establishment comes from these species. This selection toward
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FIGURE 2 | Unique structure of emergent seedlings in conifer tree species: (A) Typical broadleaf cotyledons of most all vascular plant species, e.g., the tree species

Acacia tortilis (Umbrella acacia); (B) cotyledonous seedling of Abies lasiocarpa (subalpine fir) growing in the timberline ecotone shown in Figure 1. Emergent, first-year

conifer tree seedlings have cotelydons similar in size and form to adult needle-like leaves, in contrast to the generally laminar, horizontal broadleaf morphology of

cotyledons of most all other vascular plant species, regardless of adult leaf and branching morphology. The seedling in (A) is ca. 12 cm in height and in (B) ca. 1–2 cm

in height, typical for this emergent (cotyledonous) life stage immediately following germination (measured on Jun 20); (C) the same seedling deceased and with

cotyledons fully curled upward later in summer (Oct 9), possibly in response to water stress (see Figure 5).

a limited number of tree species, and a few other associated
woody and non-woody species, may only reflect the adaptive
plasticity needed to tolerate the conditions found at the alpine
timberline transition. However, demographics, dispersal, and
land-use history make interpretation of current distribution
patterns challenging. Because environmental conditions can be
so dramatically different over just a few 100m in elevation or
site exposure, a highly plastic response in terms of structure and
physiology is required to become established and persistent.
Architectural and morphological plasticity is one of the most
striking characteristics of A. lasiocarpa and P. engelmanii,
particularly in their growth habit at the fragmented forest
margins at high elevation compared to the more intact lower
elevation forest. It is notable that Pinus species, with less
morphological and architectural plasticity (Schoettle and Smith,
1999; Reinhardt et al., 2011), are found rarely in the timberline
ecotone. Instead, these conifer species usually dominate lower
elevations or are found at or above timberline as solitary plants
or in small groups (e.g., Pinus flexilis and Pinus albicaulis).
However, these timberline pines can also be pioneering colonists
of alpine areas, providing facilitation for spruce and fir seedling
establishment (Resler et al., 2005).

SEEDLING ECOPHYSIOLOGY

Understanding the physiological mechanisms of seedling death
(e.g., photo-damage, temperature, desiccation) will provide
a critical link for characterizing the biotic and abiotic
environmental factors that dictate seedling survival (Figure 5).
Recent synthesis papers about treeline seedlings (Johnson et al.,
2011), and trees more broadly (Bansal et al., 2011; Zurbriggen
et al., 2013; Gill et al., 2015; Adams et al., 2017; Choat et al.,
2018), point to photosynthetic carbon gain limitations and
hydraulic dysfunction as primary drivers of tree mortality,

particularly during periods of low soil moisture availability and
high vapor pressure deficit (i.e., conditions typically associated
with drought and high elevation). The most common scenario
is that water deficit strongly impacts photosynthetic carbon gain
(Davis et al., 1999), which then forces trees to deplete stored non-
structural carbohydrates (NSC) needed for respiration, storage
and defensive compounds. This then becomes a significant
problem for emergent seedlings with such a limited root
systems and capacity for water uptake (Hartmen et al., 2013;
Moyes et al., 2013; Loranger et al., 2016, 2017). Persistent
exposure to low soil moisture after rapid snowmelt runoff and
excessive evapotranspiration at high altitudes during summer are
characteristic of the alpine timberline ecotone. When coupled
with the short window of time where air and soil temperatures
allow trees to generate net carbon gain, this environment has
selectively excluded most tree species except for those that have
adapted to both cold and drought such as the evergreen conifers.

The harsh environment within the transitional timberline
ecotone, even within the favorable microsites where seedlings
typically establish, ultimately limits carbon gain and, thus, critical
root growth. This can occur because of stomatal closure in
response to high vapor pressure deficit and low soil moisture
(Reinhardt et al., 2011; Moyes et al., 2013). As described by
Sala et al. (2010), adult trees experiencing prolonged drought
conditions can die of carbon starvation, hydraulic failure, or
both. Trees with reduced stores of NSC resulting from stomatal

closure during drought are then at greater risk of mortality from
pests or pathogens. But additional work has also pointed out that

NSC values alone cannot implicate a role for carbon starvation
(Bansal and Germino, 2010; Germino, 2015). Regardless, a recent
growth analyses of several conifer species at treeline revealed
a strikingly marginal carbon balance in the weeks following
germination that should render seedlings highly vulnerable to
carbon starvation (Lazarus et al., 2018).
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FIGURE 3 | The importance of ecological facilitation (microsite and landscape) to the upslope migration of an alpine forest timberline can be observed in the

progression of growth forms and spacing from the highest elevation krummholz mats at treeline down to the larger tree islands with taller trees nearest the timberline

transition. (A) The seedling that initiated the growth of the strongly tapered krummholz mat shown (wind from the left) germinated and survived in the wind-sheltered,

favorable microsite generated by the white, ca. 35 cm boulder (i.e., microsite facilitation). (B) Increased growth into larger krummholz mats enables escaped stems on

leeward, wind-protected sides. (C) These larger mats become tree islands closer to timberline where landscape facilitation is greatest. (D) Clustered tree islands are

the final landscape growth form before maximum vegetative facilitation occurs within the intact forest, enabling growth of forest-size trees and an upward shift in

timberline elevation. Conceptually, the same aerodynamic forces that generate progressive, structural changes at the individual plant (krummholz) level (i.e., more

escaped stems on leeward sides with increasing mat size) are also acting at the landscape level whereby lower wind speeds nearer the timberline enable escaped

stems to become more abundant and taller, i.e., tree islands. These tree islands then provide increased mutual facilitation that allows more forest-like tree growth and,

ultimately, the formation of new subalpine forest and a new timberline at a higher elevation.

Recent work suggests that, because of the critical link between
hydraulic failure and tree mortality, stomata will typically close
during drought and forego photosynthetic carbon gain to prevent
the buildup of excessively high xylem sap tension that can
lead to xylem cavitation and hydraulic failure (Figure 5). If
adult conifers can persist through the drought with much
of the tree’s hydraulic capacity intact, they may recover by
growing new xylem the following year (Adams et al., 2017).
The likelihood of survival is much higher in older trees with
their more extensive root systems, and their multiple annual
rings available to serve as redundant hydraulic pathways and
greater capacitive storage, as evidenced by the long lifespan
of mature trees at timberline. In strong contrast, seedlings
with limited secondary xylem and shallow and immature root
systems are likely unable to adequately supply the foliage with
water for photosynthesis (Miller and Johnson, 2017). Indeed,
recent work suggests that drying soil is a major driver of
seedling mortality in the timberline ecotone (Dolanc et al.,
2014; Moyes et al., 2015; Reinhardt et al., 2015; Loranger
et al., 2017; Lazarus et al., 2018). Cotyledonous conifer seedlings
can only decouple from the strong thermal gradients so close
to the ground by the morphological advantages of a unique

needle-like morphology and changes in orientation to the sky

(Figures 2, 5).
The timing of germination and establishment of conifer

seedlings at the timberline is also critical. Seedlings that
germinate too early are likely exposed to extremely cold
temperatures or burial by late spring snow events, and

seedlings that germinate too late may be exposed to extremely
high temperatures and low soil moisture availability (Moyes
et al., 2015). Given that the developmental time frame for
maturation of the primary leaves, xylem network, and root
system can take many days to weeks (Miller and Johnson,
2017; Venturas et al., 2017), that period must also coincide
with a very specific set of environmental conditions that has
yet to be rigorously and experimentally defined. Temperature,
soil moisture, and plant desiccation are interwoven and could
ultimately lead to carbon acquisition and processing limitations
for emergent seedlings especially. Low soil moisture availability
coupled with high temperature affects xylem transport (via
cavitation and hydraulic failure), but also carbon gain and
export to the roots via the phloem because of water recycling
between the two systems. Their dependence on hydrostatic
pressure gradients for proper function (e.g., lack of carbon
production from photosynthesis) will eventually eliminate the
pressure gradients from source to sink tissues). Elevated
temperatures at the root collar located at the air-soil boundary
can be lethal, presumably linked to phloem girdling and
a hydraulic disconnection between the leaves and roots
(Kolb and Robberecht, 1996; Figure 5).

SUMMARY AND CONCLUSIONS

Elevational shifts (up or down) in conifer forest boundaries
will determine the distribution and extent of conifer mountain
forests of the future, both of which could have multiple
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FIGURE 4 | Schematic diagram showing the transitional stages from a treeline to the timberline to the contiguous subalpine forest below (Figures 1, 3). Beginning at

the treeline, a seedling germinates and grows on the leeward side of a microtopographic object such as a stone, rock, dead plant material, or even surface depression

that reduces wind and sky (sunlight) exposure (x). This initial seedling grows to form a krummholz (twisted wood) mat that tapers downwind away from the facilitating

structure. As the growing mat becomes larger, eliminating the leeward advantage of the favorable microsite, the mat taper reverses direction and aligns in the wind

direction. Initially, the smallest mats have no escaped (vertical) stems on their leeward edges due to their inability to slow wind flow enough to reduce the blowing

snow abrasion that kills emerged stem buds (Hadley and Smith, 1987, 1989). Ultimately, larger mats generate greater frictional drag that slows wind at leeward edges,

increasing survival of apical buds and, thus, stem escape. However, these escaped stems still show severe abrasion and a lack of lateral bud, shoot, or needle survival

closer to the mat surface. All vertical stems coming from mats show severe flagging due to needle death on wind exposed sides of individual branches, as well as

secondary shoots. As mats continue to increase in size and have closer spacing more stems escape, become taller and are flagged only at tree tops (tree islands),

similar to the adjacent subalpine forest. Forest trees may still be flagged at their tops for some distance into the forest due to greater wind exposure to snow abrasion.

As illustrated in Figure 3, ecological facilitation via microtopography that enables initial seedling survival •, plus the ensuing krummholz mat growth form and spacing

across this landscape, underlie the ultimate transition of the timberline/treeline ecotone into subalpine forest.

and potentially severe impacts on critical ecosystem services
(Grêt-Regamey et al., 2012). Albeit, for decades very little
forestry research has focused on the potential movement
of a timberline based on seedling establishment success
(Moir et al., 1999), although a number of papers are
appearing recently (e.g., Liang et al., 2013; Lett and Dorrepaal,
2018). Mechanisms enabling new seedling establishment are
beginning to be evaluated for alpine timberlines, but only
for seedlings older than the cotyledonous, first year and

that have dramatically lower mortality rates. Resolving the
precise way that climate, or other factors, inhibit the initial
years of seedling establishment in the alpine will require
correspondingly more refined and resolute research questions

and methodologies. It is also possible that other life stages
may be serving as bottlenecks to survival for other species
and timberline locations. We therefore present below a list
of research priorities that will greatly expand our mechanistic
understanding of how mountain conifer trees tolerate current
conditions, and what predicted climate change scenarios might
mean for the future elevational boundaries and extent of
these forests.

(1) Investment and establishment of long-term monitoring
of young seedling abundance and mortality at both
upper and lower forest boundaries, as well as monitoring
the health and growth of established mature trees and
demographic surveys.
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FIGURE 5 | Microsite effects on seedling ecophysiology and mortality. Solid lines indicate an increasing influence and dashed lines a decreasing effect. Greater sky

exposure generates excessive sunlight levels and temperatures (e.g., leaf temperature, Tleaf), but colder nighttime temperatures often near freezing. Shade facilitation

generates the opposite effect. Microsite facilitation by adjacent vegetation or inanimate objects (e.g., boulders) also provides protective snow cover during winter and

less sky exposure during summer. Hypothetically, unfavorable microsites will generate rapid death by potentially rapid hydraulic dysfunction or more gradually due to

carbon gain limitations to root and shoot growth. The impact of mycorrhizal colonization is relatively unstudied as to its effects on hydraulics and desiccation potential

of seedlings at timberline, or the possible association with favorable microsites (Hasselquist et al., 2005).

(2) Identify microsites with high seedling survival, their
spatial abundance, and specific microsite parameters that
facilitate survival (maximum and minimum daily and
seasonal temperatures, sun and sky exposure, slope, aspect,
edaphic properties, precipitation, soil moisture, and co-
occurring species).

(3) Measure the ecophysiology associated with seedling survival,
including photosynthetic carbon gain and respiration,
water status, architectural changes, growth form transition
dates (e.g., development of primary needles), root growth,
mycorrhizal colonization, and hydraulic limitations of the
vascular tissue. Several of these measurements continue to
be a challenge today due to the small size and frailty of these
youngest seedlings.

Working within this mechanistic framework will allow
development of better projections for mountain forest responses
to climate change. By understanding the mechanisms behind
tree mortality, we can then improve our demographic modeling
efforts to take into account the vulnerability of each life
history stage to different sets of environmental conditions
that will differentially affect young and old trees. Correlating
predicted changes in future macroclimate (e.g., from current
global circulation models) with the abundant data at the
mesoclimate level (standard weather box measurements
available world-wide), and then extrapolating to the seedling
microsite level could be fundamental for estimating future
effects of global change on the elevations and extent of our
conifer mountain forests (Smith et al., 2009). These data
could be particularly relevant for predicting the impacts

of potentially more severe drought episodes of the future
(Allen et al., 2010; Clark et al., 2016).

Finally, the above framework also makes planning and
management of forests for both merchantable timber and
preservation more robust in that the underlying assumptions
can be based on site- and region-specific experimental work.
The mortality risks associated with a warmer, drier environment
are now well described for adult trees (Adams et al.,
2017; Schwalm et al., 2018), including a specific focus on
hydraulic failure as a main driver of large-scale mortality
(Choat et al., 2018). Although declines in productivity (growth
alone) affect forest management decisions, the implications for
the associated increased risk due to pests and disease that are
now becoming a growing problem (e.g., beetle damage and
fires, https://www.fs.fed.us/rmrs/projects/bark-beetles-natural-
and-dramatic-forest-disturbance). Knowing how each of the
dominant timberline species within these regions will respond
to climate change at each life history stage influencing forest
regeneration is critical. These data will also enable predictions of
the future influence of these forests on such important ecosystem
services as carbon sequestration, evapotranspiration to the water
cycle, plus the storage and processing of water that enters critical
hydrological systems downslope and downstream.
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