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Quantifying human impact on the environment is increasingly important and particularly

so in complex mosaic landscapes. Such landscapes are prolific in the developing world,

notably in West African, small holder cocoa farming communities. Human Appropriated

Net Primary Productivity (HANPP) is a metric which has been developed to quantify the

human impact on the environment and has been used in a number of studies globally.

However, most operationalization’s of HANPP have been done on a coarse global scale

or a very local scale, and few studies exist of complex mosaic landscapes. This study

utilizes Unmanned Autonomous Vehicles (UAV), or drones, to classify land use and

HANPP for three cocoa farming regions in Ghana’s Central Region. The results of the

study indicate while all regions differ in land use composition, the primary crop for all is

cocoa, followed by palm and then land that was previously cultivated which has been

left fallow. The average HANPP was 44% for all measured regions, calculated using net

primary productivity (NPP) values of an adjacent natural tropical forest. The HANPP for

the three regions studied was found to be approximately 6.69, 8.00, and 9.85Mg C

ha−1 yr−1. These values are higher than those that have been reported in some widely

accepted global studies, and highlight the need for more regional and landscape scale

studies to supplement global assessments of HANPP.

Keywords: cocoa, complex mosaic landscape, human appropriated net primary productivity (HANPP), unmanned

aerial vehicle (UAV), smallholder agroforestry, high-resolution imagery, ghana

INTRODUCTION

Understanding and quantifying human impact on the biosphere is increasingly important in
the face of global climate change and large-scale land conversion. Under climate change, it
is predicted that these tropical regions will experience increases in inter-annual variability of
seasonality, accompanied by increasing uncertainty around the intensity, arrival and duration of
rainfall events (Feng et al., 2013). Further, these regions have undergone, and continue to undergo,
significant land conversion, often resulting in highly biodiverse landscapes being replaced with
large-scale monocropping systems or small-scale mixed cropping systems (Laurance et al., 2014).
While significant research has been done on the conversion of tropical regions to large scale
monocropping systems (Koh and Wilcove, 2008; Fox et al., 2014; Bonini et al., 2018) the dynamics
of land use and land conversion in small scale mixed cropping systems have received less attention
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(Collier and Dercon, 2014). Small scale farming is particularly
prevalent in tropical West Africa, where farmers typically keep
farms of<5 ha, and also undertake primarily rain-fed agriculture
practices (Morton, 2007; Rapsomanikis, 2015). These factors,
combined with extensive poverty amongst farmers, result in
highly complex, and potentially vulnerable agricultural systems.

Most human uses of land are dependent on the land’s
biological productivity, in other words it’s Net Primary
Productivity (NPP) per area, which is the annual rate of
production of living biomass (Imhoff et al., 2004). However,
this metric alone cannot provide sufficient evidence for the
relationship between the NPP of a natural landscape, and
the NPP of the human modified landscape. Understanding
and quantifying this distinction is of principle importance
when seeking to understand the complex relationships between
humans and the biosphere. As a result, Human Appropriation
of Net Primary Productivity (HANPP) has emerged as a primary
indicator which explicitly addresses the social-ecological nature
of human use and conversion of land systems. The indicator is
a measure of the difference between the NPP of the potential
vegetation (NPPpot) had the ecosystem not been altered by
humans and the unexploited NPP of the actual vegetation
(NPPeco) present (Figure 1). HANPP can be further dissociated
into HANPPharv which describes the biomass which is exploited
from the ecosystem (either as harvest material which is removed
from the system, or unused harvest [e.g., slash] that remains in
the ecosystem) and the land-use change-associated HANPPluc
which describes the difference in total ecosystem NPP caused by
the conversion of the native vegetation to the current land use
(Haberl et al., 2014).

Values for HANPP can vary substantially based on the
background NPP (natural vegetation), the level of conversion
which has occurred and the level of inputs in the form
of fertilizers, irrigation etc. HANPP is often displayed as a
percentage of NPP potential, where urban areas which have
undergone substantial land use conversion might have a value
close to 100% HANPP. For diverse tropical systems, it is rare to
observe values of HANPP for converted landscapes which exceed
that of the background vegetation (Figure 1). For example,
agriculture in these regions is primarily rain fed, and many
farmers lack the ability to input fertilizers on a consistent
basis which may artificially decrease the percent of HANPP.
Conversely, the input of fertilizers or irrigation can make some
landscapes more productive than the baseline natural vegetation,
for example agriculture in Saudi Arabia can generate HANPP
values in excess of −100% (in other words at least 100% more
productive than the background landscape; Haberl et al., 2014).

While HANPP is a widely accepted indicator, with many
studies cross validating one another’s results (Haberl et al., 2007,
2014) there is a dearth of research studies using field collected,
embedded data to assess HANPP. Further, any measures of
HANPP from such data need to be scaled up with relative
accuracy to provide a scale of assessment comparable to regional,
national, and global HANPP studies. Scaling of such data can
be achieved via remote sensing, however the most common
approaches, using satellite derived remote sensing imagery
remain difficult to utilize in most tropical regions, notably

West Africa. The perennial prevalence of clouds and seasonal
interference of the Harmattan (haze and dust carried down from
the Sahara) render many image collections unviable. Specifically,
there remains a lack of imagery which is collected at a fine
enough spatial resolution to capture the subtleties of small
holder complex mosaic landscapes while also being captured
frequently enough to acquire infrequent cloud-free, interference
free conditions (Kuemmerle et al., 2013). This highlights the clear
need to develop methods which can incorporate and scale up
ground based assessments of HANPP.

One strategy which could address this apparent scale-gap,
is utilizing novel Unmanned Ariel Vehicles (UAVs, commonly
referred to as drones) to capture landscape and regional scale
land use data, at extremely high resolutions (∼10 cm2). Today,
commercial UAVs offer low cost and high-resolution imagery
well-suited to complex mosaic landscapes, but have until recently
rarely been exploited to address this challenge. UAV-derived data
can eliminate the interference of factors such as clouds or haze,
while providing users with moderately large tracks (∼1 km2 per
flight) of highly detailed landscape data. The resulting imagery
can be used to scale up local and ground based HANPP data
in such a way that comparison between ground based data, and
satellite imagery becomes possible. Thus, UAV imagery can fill
the scale gap which allows comparison of field collected data with
the standard global scale HANPP maps which have served as the
basis for most HANPP studies thus far.

CASE STUDY: COMPLEX COCOA
LANDSCAPES IN GHANA

This kind of approach is particularly needed in tropical West
Africa, where smallholder agriculture is the primary driver
behind land cover change (Vittek et al., 2014)1. While many
people in rural areas cultivate numerous subsistence crops
such as cassava or plantain, substantial land transformation has
occurred to support the cultivation of cocoa trees (Kolavalli
and Vigneri, 2011). Together, Cote d’Ivoire and Ghana produce
70% of the world’s cocoa, much of which is grown in regions
which were historically tropical forest. In Ghana, cocoa beans
and associated products account for ∼60% of export earnings.
Further, cocoa contributes ∼10% of the agricultural GDP,
providing employment to over 800,000 households (Vigneri
and Kollavali, 2018). Farmers in the cocoa zones of these two
countries typically cultivate farms of<5 ha, and often utilize their
plots for a diversity of crop types. As a result, while cocoa trees
dominate the landscape, the remaining land is used to cultivate a
variety of other subsistence crops, interspersed with fallow land
and large shade trees. This results in highly complex and fine-
scale landscape of cocoa, subsistence crops, remnant tropical
forest, and fallowed areas. The importance of understanding the
land use in these regions cannot be understated, especially when
considering the lack of success many global products have at
detecting and mapping deforestation in tropical areas (Grainger,

1USGS Agricultural Expansion Across West Africa (2018). Available online

at: https://eros.usgs.gov/westafrica/agriculture-expansion (accessed September 30,

2018).
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FIGURE 1 | How to measure the HANPP of a landscape. HANPP is a combination of HANPPharv [the NPP harvested, whether it is used (removed from the

landscape) or unused (left in the landscape)] and HANPPluc (the change in NPP induced by conversion of the native ecosystem to the current land). The actual NPP

of the converted landscape includes both the NPPeco (NPP of the current ecosystem) and HANPPharv. If the combination of HANPPharv and NPPeco are lower than

NPPpot, HANPPluc is postive and added to generate HANPPTot. However, if the combination of NPPeco and HANPPharv is higher than NPPpot, HANPPluc is then

subtracted to determine HANPPTot.

2008). As such, operationalizing the measure of HANPP at a scale
which is comparable with both local and global surveys is of
particular relevance.

In order to determine the HANPP of such a mosaic landscape,
detailed measures of HANPP of cocoa must be determined.
Recent work by Morel et al. (2019) generated detailed site-level
data of NPP and HANPP in cocoa farms in the Central Region of
Ghana. The study reported a strong relationship between cocoa
farm characteristics, namely shade tree density and cocoa tree
density, and HANPP. The high level of correlation between these
factors indicate that if the cocoa density and shade tree density
can be measured at a larger scale, HANPP for an entire cocoa
mosaic landscapes could be accurately predicted.

Here we present a novel medium-scale study of HANPP in
a mosaic tree crop and agricultural landscape in West Africa.
Our work combines results from detailed in situ studies of
NPP and HANPP, with landscape extrapolation based on maps
of vegetation cover generated from high resolution imagery
collected from a UAV. Further, this study is the first attempt to
reliably scale up ground-based measures to a scale comparable to
the grain size of benchmark global studies of HANPP.

We address the following questions:

• What are the patterns of land use in our case study tropical
mosaic landscape, and how much does cocoa dominate
this landscape?

• What is the HANPP associated with this landscape, and how
does it vary across the landscape?

• How well do large scale products capture the HANPP that we
have quantified at the fine scale?

METHODS

Study Site and SupportingMaterials
This study was carried out in the Central Region of southern
Ghana around six communities bordering Kakum Conservation
Area (5◦33′42.712′′ N, 1◦20′ 55.234′′ W; see Figure 2). The area
of study was further subdivided into three distinct regions, each
inclusive of two focal villages and the surrounding land use
areas, following the sampling design of Morel et al. (2019). These
regions are: AB (including the villages of Aboabo and Asorefie),
HM (including the villages of Homaho and Nsuoekyi), and KA
(including the villages of Kwame Amoabeng and Tufokrom).
The entire landscape, inclusive of AB, HM, and KA, is typified
to a high extent by small holder cocoa farmers, who produce
cocoa, as well as oil palm (which is native to this region
and is a food crop), and subsistence crops such as vegetables
(Hirons et al., 2018a). The work was carried out as a part of
the larger ECOLIMITS project which collected data between
2014 and 2017 to better understand the relationship between
poverty and ecosystem services (Hirons et al., 2018b). The project
intensively monitored two forest plots within Kakum National
Park as well as eight cocoa farm plots under varying levels of
management intensity for NPP and HANPP over 3 years as well
as collected above ground biomass and cocoa yield data for 28
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FIGURE 2 | Study sites for the ECOLIMITS project surrounding Kakum National Park in southern Ghana. ECOLIMITS ecological plots (+) were intensively monitored

for 3 years between 2014 and 2017. Six villages (•) where the household surveys for the ECOLIMITS project were conducted.

additional plots (Morel et al., 2019). Each of the intensive plots
was 60 × 60m (0.36 ha), and field measurements followed the
Global EcosystemsMonitoring (GEM) protocol (Marthews et al.,
2014). For shade trees, three components of NPP were estimated
(canopyNPP, woodyNPP, and fine root NPP). These components
were also measured for cocoa trees in addition to the estimated
NPP of cocoa pod production. Detailed descriptions of the full
methods used to generate the NPP of cocoa farms as well the
background forest NPP can be found in Morel et al. (2019). NPP
values for the cocoa farms were then compared to NPP values
collected for the conservation area forest plots (∼17Mg C ha−1

yr−1) to generate an estimate of HANPP of the cocoa farms.
While high, these values are comparable to several other tropical
regions and other studies have confirmed that West Africa has
very high NPP values (Moore et al., 2017). Further, this value sits
within upper bounds calculated for synthesis studies of tropical
forest NPP (Clark et al., 2001).

Drone Image Collection and Processing
Image Data Collection
Aerial data were collected between November 2016 and January
2017. Data were collecting using DJI Phantom 3 Professional

drones (www.dji.com). Each drone is equipped with a 12.4
Megapixel RGB camera. Areas surrounding each community
were divided into 1 km2 grids. Flights were then conducted as
close to the center of these grids as possible. Each flight aimed
to capture ∼1 km2 area. Flights were flown at 120–220m above
ground level, where flight height was dependent on factors such
as cloud cover, and Harmattan (dry season Saharan dust haze)
conditions. The drone operation software DJI GO and Pix4D
were used to carry out the drone surveys. Data were captured as
individual pictures taken sequentially, with minimum 70% side
overlap, and minimum 60% top/bottom overlap. This level of
overlap is consistent with expert opinion on the overlap needed to
generate orthomosaic images of each flight (where all individual
images are rendered together to create a single, large GeoTIFF of
each flight).

Drone Data Processing
After trying a number of options and facing several challenges,
it was found that drone imagery could best be processed using
a combination of software, including DroneDeploy2, Event 38

2DroneDeploy 2018. https://www.dronedeploy.com/
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FIGURE 3 | Drone image processing workflow: data were captured from the drone as individual images. These were then fed into drone spatial software capable of

generating georectified orthomosaics (i.e., Drone Deploy, Event 38 unmanned systems). If these softwares were incapable of producing an orthomosaic, the images

were fed into an advanced image editing software (Affinity Photo). The resulting orthomosaic was not georeferenced, so it was then uploaded to GIS software capable

of georeferencing (ArcGIS) to produce a final georectified orthomosaic.

Unmanned Systems (Drone Data Management System (DDMS),
2018), ArcGIS 10.0 (ESRI, 2018), and Affinity Photo3 (Figure 3).
Drone images were processed in single flight batches, and the
resulting orthomosaics which were produced varied in size from
0.75 to 1.6 km2. Size variation was due to flight duration, flying
height and conditions, such as wind, on the day of the flight.

Land Use Classification and Cocoa Data Processing

Land-use categories and classification
Land use was determined by undertaking manual classification
of the drone images using QGIS software to produce a land
use vector layer. The very high resolution of the imagery
made it possible to easily distinguish different land use types.
Classification was carried out by one individual (the lead
author), who trained using ground truth points to establish
confidence in the resulting land use classifications. Land use
was partitioned into nine categories: Cocoa (CCO), Cocoa with
Timber Trees (CTT), Cassava (CSV), Fallow (FAL), Grass (GRS),
Palm (PLM), Plantain/Banana (PLB), Settlement (SET), and
Vegetables (VEG) (Table 1).

Manual classification of the landscape yielded classifications
for 90% of the captured land cover (Figure 4). The remaining
10% of land-use could not be discerned confidently using the
drone imagery, however the areas were classified into one
of two additional classes via manual classification, so that
landscape level estimates of land use could be determined. The
two additional classifications which were included were listed
as distorted and unknown. Distorted was the class given to
areas of the landscape where the images had become distorted,
typically during the mosaic stitching process, or were too blurry

3Serif (Europe) Ltd. Affinity Photo (2018). Available online at: https://affinity.serif.

com/en-gb/photo/

to classify with confidence (often due to the drone changing
direction). Additionally, Unknown was used to classify areas of
the landscape which could not be classified with confidence,
and could potentially include any of the utilized land use types
presenting in a non-standard way (i.e., potentially very young
cocoa) or alternate land-use types, such as rice.

Detailed processing of cocoa
The land use classifications were used to clip the dronemosaics to
produce rasters for analysis. Cocoa land use was further clipped
from the rasters to generate cocoa only rasters. These rasters
were then examined in detail and timber trees were isolated,
while also removing other land-uses which were not captured
in the original classification. To focus NPP/HANPP calculations
on solely cocoa areas, bare ground visible between cocoa trees
was removed using interactive supervised classification in ArcGIS
Map 10.0.

Cocoa density was determined by comparing different
estimates of cocoa density with ground-truthed data from the
eight cocoa farm plots. The cocoa density measures were then
calibrated using these data, and then scaled up to determine the
cocoa density per hectare for the drone-sampled area.

HANPP Calculations

Measures of HANPP for cocoa
Calculations described by Morel et al. (2019) indicate that
HANPP for cocoa could be estimated with relatively high
accuracy from cocoa tree density and number of shade trees
(Figure 5). Values for HANPP varied from−4.6 to 5.2Mg C ha-1

yr-1 or across the plots, with the negative values being recorded at
a particularly shade-tree dense, young cocoa farm, and an older
farmmanaged largely for timber. Themodel suggests that density
of shade trees is the largest driver of HANPP in cocoa farms,
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TABLE 1 | Description of dominant land use classes in regions surrounding Kakum National Park.

Land use name Land use

acronym

Description Example

Cocoa CCO >75% coverage of cocoa trees (Theobroma cacao).

Cassava CSV >75% coverage of cassava (Manihot esculenta)

Fallow FAL An area dominated by wild vegetation including trees

and shrubs, shows no evidence that it is being actively

maintained.

Grass GRS An area dominated by short wild grassy vegetation,

shows no evidence that it is being actively maintained.

(Continued)
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TABLE 1 | Continued

Land use name Land use

acronym

Description Example

Palm PLM >75% coverage of palm trees. This is inclusive of all

trees from the Arecaceae, though tends to be dominated

by Elaeis guineensis, the oil palm.

Plantain/Banana PLB >75% coverage of plantain or bananas stocks (the Musa

family). Plantain and banana are indiscernible using areal

imagery of this scale, and as such were grouped

together.

Settlement SET >75% coverage of a settlement or obvious human

occupation. The surrounding ground or cleared urban

space is also captured.

Vegetables VEG >75% coverage of vegetables including tomatoes,

garden eggs, peppers etc.

followed to a lesser extent by cocoa tree density (R2 = 0.859,
p < 0.01; Figure 5). As both, or either, of the variables increase,
the level of HANPP decreases.

Cocoa density could not be accurately determined using the
drone data, so two values for cocoa density were used initially
used. The first value was 600 trees/ha which was the average cocoa
tree density reported by Morel et al. (2019). The second was 719
trees/ha which was the maximum cocoa tree density reported by
Morel et al. (2019). This value was chosen due to the removal of
‘ground’ from cocoa raster’s described above, thereby resulting in
a higher than average cocoa density.

The HANPP levels of cocoa were then determined using the
following equation derived by Morel et al. (2019).

HANPP = 3.32− 0.993∗CocoaDensity

−2.4∗NumberofShade Trees (1)

HANPP values for cocoa were calculated using a 1 ha grid
overlaid over all study regions. In order to decrease random bias
whichmay emerge from using a single grid, the results of this grid
were compared to three other grids, each offset by 0.5 ha from the
original, as well as a tessellated 0.25 ha grid. There was found to
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FIGURE 4 | Land use classifications in the Aboabo (AB), Homaho (HM), and Kwameamoabeng (KA) regions of the Central Region of Ghana captured using drone

imagery. Land use classifications include cocoa (CCO), cassava (CSV), fallow (FAL), forest (FOR), grassy fallow (GRS), plantain/banana (PLB), palm trees (PLM),

settlements (SET), and vegetables (VEG). These communities border Kakum National Park which can be seen in the bottom left inset, depicted in green.

be no significant difference between the grid approaches, so the
first grid was used.

HANPP levels for other land-use
HANPP levels for the remaining classified land uses were derived
from NPP estimates taken from multiple literature sources
for each land use. HANPP was then calculated by subtracting
the resulting average NPP value for each land use from the
natural NPP levels from Kakum National park, measured by
Morel et al. (2019) to be 17Mg C ha−1 yr−1 (Table 2). The
calculation of HANPP normally explicitly includes the land use
and harvested components of NPP, however the calculation
used here automatically combines those two factors due to the
harvested component (yield) already being accounted for in the
calculation of NPP from literature values.

HANPP values for Cassava, Plantain/Banana, Oil Plam,
and Vegetables were determined using methods proposed by
Monfreda et al. (2008), along with average yield estimates from
various sources (detailed in Table S1). HANPP values for fallow
and grassy fallow were derived using values from the literature
(Haberl et al., 2007; Olson et al., 2013), while the HANPP value
proposed by Haberl et al. (2007) for urban was used as a proxy

for settlement (Table 2; Table S1). Detailed accounts of each
calculation are provided in Supplementary Materials.

Overall HANPP calculations
Median HANPP values were calculated for each region using
derived cocoa values and values from the literature as described
above. Due to relatively small sample sizes for each of the
literature-derived values, Monte Carlo simulation was carried out
to propagate uncertainty of the values presented.

RESULTS

General Summary Information
The total area covered by the drone surveys for the all regions
ranged from 20.62 km2 for AB, to 17.73 km2 for HM, to 21.88
km2 for KA, ∼62 km2 in total (Table 3). On average, 90% of the
land use in each region was classified (∼54 km2 in total). Cocoa
was the most prominent crop in each area: the proportion of
cocoa varied from 52.78% in AB, to 40.24% in HM to 26.60%
in KA. In the AB and HM regions, the next most dominant
land class was fallow lands which constituted 11.11 and 21.58%,
respectively. For both regions the following most dominant
land class was palm oil at 8.78 and 15.75%, respectively. The
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FIGURE 5 | The relationship between measured HANPP and modeled

HANPP using cocoa density and shade tree density per hectare as indicators

(r2 = 0.86). Adapted from Morel et al. (2019).

KA region differed from the others most notably both in the
proportionally smaller cocoa crop area, but also the much higher
presence of palm oil (25.81%), a similar land area to the cocoa
crops (Figure S1).

Cocoa Density and HANPP
The HANPP levels for cocoa were calculated using two different
cocoa densities, 600 trees/ha, and 719 trees/ha. When assuming
a cocoa density of 600, overall average HANPP was 6.15 ±

0.73Mg C ha−1 yr−1, with the regional average HANPP values
ranging from 6.41 ± 0.86Mg C ha−1 yr−1 for AB to 5.95 ±

0.86Mg C ha−1 yr−1 for HM to 5.98 ± 0.85Mg C ha−1 yr−1

for KA (Figure S2). The average HANPP value as a percent of
NPPpot was 36%, with each region being 38, 35, and 35%. When
assuming a cocoa density of 719, overall average HANPP was
5.71 ± 0.73Mg C ha−1 yr−1, with the regional average HANPP
values ranging from 5.97± 0.36Mg C ha−1 yr−1 for AB to 5.51±
0.86Mg C ha−1 yr−1 for HM to 5.54 ± 0.85Mg C ha−1 yr−1 for
KA (Figure S2). These values were slightly lower as a percentage
of NPPpot, with an average value of 34%, with each region being
35, 32, and 33%. Henceforth we report using only results with a
cocoa density of 600 trees/ha, the mean cocoa density reported
for our study.

Total NPP and HANPP
NPP values per region varied as expected depending on the
percent land use of each type (Figure 6; Figure S3). Cocoa was
the most dominant land use in all areas, and therefore had a
disproportionate influence on the average NPP per hectare. With
a cocoa density of 600 trees/ha, the median NPP per hectare
was 10.31 ± 0.48, 9.00 ± 0.96, and 7.15 ± 1.39Mg C ha−1

TABLE 2 | Mean NPP and HANPP values for land uses within the study region.

NPP mean

(Mg C ha−1 yr−1)

HANPP mean

(Mg C ha−1 yr−1)

HANPP as % of

potential NPP

(17Mg C ha−1 yr−1)

Cassava* 4.01 ± 0.3 12.99 76.5

Plantain/Banana* 3.22 ± 0.7 13.78 81.1

Oil Palm* 14.40 ± 2.6 2.60 15.3

Grassy Fallow◦ 6.11 ± 1.6 10.89 64.1

Veg* 1.79 ± 1.5 15.21 89.5

Fallow§ 14.79 ± 3.0 2.21 13

Settlement§ 0 17.0 100

HANPP is also displayed as a percent (%) of the potential NPP. Value calculated using:
*Monfreda et al. (2008), §Haberl et al. (2007), and ◦Olson et al. (2013).

yr−1.The distributions of NPP values in each area peaked around
11–12Mg C ha−1 yr−1 due to the dominance of cocoa on the
landscape. This peak was particularly notable in the AB region.
The distribution of NPP values in KA also had a second peak
around 2–3Mg C ha−1 yr−1 due to the prevalence of palm trees
within that region (Figure S4).When using 17Mg C ha−1 yr−1

as the baseline NPP for the natural forest, the median HANPP
values were then calculated to be 6.69, 8.00, and 9.85Mg C ha−1

yr−1 for AB, HM, and KA respectively (Figure 7). These values
represent 39, 47, and 56% of the NPPpot.

DISCUSSION

The results of this study highlight the significant and diverse
land use practices in this complex mosaic landscape. Further,
the application of HANPP as a focal metric, demonstrates the
intensity of land use in the region, while also highlighting the
diversity of land use practice and intensity within and between
three regions surrounding Kakum National Park. Finally, the
use of a novel UAV approach to capture data was successful,
capturing a substantial area of land (∼62 km2), where 90%
was classified by land use (∼54 km2) to a very high degree of
resolution (<10 cm2).

Diversity of Land Use Across Regions
Each region of study surrounding the Kakum Conservation Area
displayed a diversity of different land use practices. In all regions
of study, the most dominant crop was cocoa, constituting ∼53,
∼40, and ∼27% of overall land cover in Aboabo, Homaho, and
Kwame Amoabeng. Given the prominence of cocoa production
in the region, it could have been assumed that cocoa production
may have been more uniform between regions. However, the
high resolution imagery used in this study indicates a much
more complex and diverse scenario. The westernmost region
containing the villages of Aboabo and Asorefie (Figure 3, AB)
had the highest density of cocoa farms. Both this region and
the HM region (north eastern region containing the villages of
Homaho and Nsuoekyi; Figure 3, HM) were dominated by cocoa
trees. The next most dominant land use types in both areas were
fallow areas followed by palm trees.
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TABLE 3 | Land use codes, area covered per land use, and percent land use for all the regions.

Crop Code AB region HM region KA region

Area (ha) % Area Area (ha) % Area Area (ha) % Area

Cocoa CCO 10.88 52.78 7.13 40.24 5.82 26.60

Cassava CSV 0.3 1.43 0.57 3.24 0.66 3.01

Plantain/Banana PLB 0.89 4.31 0.73 4.13 0.82 3.76

Oil Palm PLM 1.81 8.78 2.79 15.75 5.65 25.81

Vegetables VEG 0.26 1.27 0.53 2.97 0.69 3.16

Settlement SET 0.38 1.83 0.22 1.23 0.53 2.42

Fallow FAL 2.29 11.11 3.83 21.58 4.38 20.00

Grassy Fallow GRS 0.84 4.07 0.96 5.42 1.15 5.24

Subtotal 15.92 85.59 16.76 94.56 19.70 90.00

Unknown DK 2.25 10.89 0.54 3.05 1.30 5.95

Distorted DST 0.72 3.52 0.43 2.39 0.89 4.05

Total 20.62 100 17.73 100 21.88 100

FIGURE 6 | NPP and standard deviation values per hectare of the AB, HM, and KA regions assuming a density of 600 trees per hectare.

The third region in the south east, containing the villages
of Kwame Amoabeng and Tofukrom (Figure 3, KA), had
considerably different land use practices. The area of the land
which was cocoa (∼27%) was onlymarginally larger than the area
which was used for palm tree cultivation (∼26%). It is probable
that there are some portions of the palm tree cultivation in all
areas, but especially in the KA region, which are also used for
the production of palm wine. Palm wine production involves
completely felling the trees, but some farmers only use palm trees
for the production of palm wine after a tree has surpassed its peak
production for palm oil (Taabazuing et al., 2012). This could be
assumed to be the common practice for all regions, but within
the KA region there is a much larger emphasis on the production
of palm wine, than in the other regions. This may explain the
proportionally higher density of palm production in the region.

Further, the KA region is under significantly different land tenure
arrangements than the other study regions. For example, it is
not a requirement to cultivate cocoa in the KA region, while in
the AB and HM regions it is a requirement of many of the land
tenure agreements.

Following cocoa and palm, fallowed areas were found to
occupy the next most significant proportion of the landscape
in each of the regions studied. In Ghana, given the availability
of land for agriculture, and the expense of products such as
fertilizer and pesticides, the primary mechanism for farmers
to increase yields is by fallowing. However, due to uncertainty
associated with a lack of land tenure rights, farmers with fewer
land tenure rights tend to fallow land for shorter periods of
time (Goldstein and Udry, 2008). This could provide a possible
explanation for the relatively smaller proportion of fallowed and
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FIGURE 7 | HANPP for all measured regions surrounding Kakum National Park.

grassy fallow land (∼14%) in the AB region, than in the other
regions (∼26%).

Contribution of Cocoa to HANPP
The average HANPP values for cocoa for each region were 6.41
± 0.86Mg C ha−1 yr−1 for AB to 5.95 ± 0.86Mg C ha−1 yr−1

for HM to 5.98 ± 0.85Mg C ha−1 yr−1 for KA, when assuming
a cocoa density of 600 trees per hectare. Each value decreased by
∼0.4Mg C ha−1 yr−1 when the cocoa density was assumed to be
719 trees per hectare. The cocoa density did not appear to have
a significant impact on the variation in HANPP values for each
region. While there remain a lack of studies which explicitly look
at the HANPP of cocoa, some studies examine the NPP of cocoa
across different tropical landscapes. Abou Rajab et al. (2016)
reported cocoa NPP varying from 7.4 to 9.1Mg C ha−1 yr−1 and
Moser et al. (2010) reported NPP values of 8.46 to 9.13MgC ha−1

yr−1, both for cocoa farms of varying shade levels (monoculture
to shaded intercropping) in Indonesia. These values are lower
than those for our study which ranged from 10.59 to 11.05Mg
C ha−1 yr−1. The high productivity noted in tropical forests of

Ghana (Moore et al., 2017; Morel et al., 2019) could possibly
explain these differences.

One feature of the HANPP of cocoa which this study was
not able to determine was the contribution of cocoa pod
production to HANPP, due to the inability to use aerial data to
determine cocoa pod abundance or harvest. Other studies have
highlighted contribution of cocoa pod production in determining
the HANPP of a cocoa farm, at times resulting in farms appearing
more productive than baseline forest landscape (Morel et al.,
2019). However, pod production was not easily predicted from
cocoa or shade tree density. For this system, Morel et al. (2019)
reported pod production as responsible for ∼3% of NPP. Given
the propensity formany farmers in this landscape to leave the pod
shells and all associated harvest material in the farms themselves
and just remove the beans (Morel et al., 2019). Another study
by Abou Rajab et al. (2016), indicated that the NPP of cocoa
beans only contributed to 5% of NPP in a shade-tree and cocoa
landscape in Indonesia. Thus, NPP in a complex mosaic cocoa
landscape which is removed generally would only make up a
small fraction of the farms productivity.
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The number of shade trees, on the other hand, had a
substantial impact on the HANPP values for cocoa while also
being easily detectable using aerial imagery. The highest number
of shade trees recorded in a single grid square was 38 trees, with
many grids indicating no shade trees. It should be noted that
using this method only allowed for the detection of emergent
shade trees. When comparing the values recorded via drone
imagery with those collected byMorel et al. (2019), the shade tree
densities were generally smaller, some substantially so. Therefore,
it is probable there was a greater density of other trees that
were not visible using conventional drone data. This could have
implications for HANPP estimates, likely overestimating them
in the case of underestimating the number of shade trees. In
order to measure the presence of all trees both above and below
the canopy, a drone equipped with LiDAR technology would
be necessary.

NPP and HANPP of Complex Mosaic
Landscape
The median HANPP values for each region ranged from 6.69Mg
C ha−1 yr−1 for AB to 9.85Mg C ha−1 yr−1 for KA. These
values vary substantially from those presented in some of the
benchmark global studies of HANPP. For these same regions,
the global map of Haberl et al. (2007) estimates the value of
HANPP as being 2.79Mg C ha−1 yr−1 for AB, 2.75Mg C ha−1

yr−1 for HM, and 2.64Mg C ha−1 yr−1 for KA for the year
2000. Our values are significantly higher than those found in
the Haberl study, with an approximate difference of ∼4Mg C
ha−1 yr−1 per region. The results presented here suggest that
there is significant underestimation of HANPP for this cocoa
growing region in Ghana. This is probably due to the evergreen
nature of cocoa and palm trees, which may present a similar
spectral signal to tropical forest. In addition, the highly fine scale
mixed use agriculture in the region may distort results from areas
such as these. Alternately, given the resolution of the data (∼85
km2) presented by Haberl et al. (2007), the results presented here
could highlight that by not being able to differentiate these high
resolution dynamics of land use, such large scale studies are likely
under-estimating the scale of HANPP.

The results of this study highlight how global studies of
HANPP, and potentially other global assessments, need to take
special care when studying the tropics, most notably areas where
mixed agriculture land uses are common. Such underestimation
of HANPP is likely to be a feature of most smallholder tree
crop mosaics, leading to substantial underestimation in regional
HANPP. Curtis et al. (2018) recently reported that all of African
deforestation was due to slash and burn agriculture as opposed
to being commodity-driven, which this study suggests is not the
case in tropical regions of West Africa. While global assessments
provide substantial and important insight into drivers of global
change, these studies must continue to be complemented or
challenged by regional and local scale studies such as this one.

HANPP is a useful metric to help quantify the impact of
humans on the biosphere. Decreasing HANPP is increasingly
important, because lower levels of HANPP relate to higher levels
of productivity, high levels of biomass and nutrient availability

to support biodiversity, and possibly higher capacity to sequester
carbon. Studies such as that by Krausmann et al. (2013) highlight
that between 1910 and 2005, the global HANPP doubled from 13
to 25%. The results presented here indicate an average HANPP of
44% in this landscape, compared to contiguous, natural tropical
forest. This value highlights the need to attempt to decrease
HANPP where possible in tropical mosaic landscapes. While this
study did not focus on cocoa density, the variations in density
which were applied tended to have a relatively small influence
on HANPP value. Alternately, the influence of shade tree density
on HANPP values was substantial. The most important strategy
for decreasing HANPP in cocoa dominated landscapes is to
encourage the cultivation of shade trees. Research has also shown
that cocoa yields can increase with increasing canopy cover
provided by shade trees (Schroth et al., 2017; Asare et al., 2019),
further strengthening the case that the key to climate smart
strategies for cocoa is the presence of shade trees. Increasing
shade tree cover not only reduces HANPP, but has other benefits
including increased biodiversity and possibly more resilience of
the cocoa crop to climate extremes and regional warming (Rice
and Greenberg, 2000; Schroth et al., 2016).

Future Work
This study represents a significant step forward in meaningfully
quantifying human impact in a complex mosaic landscape at
a resolution fine enough to detect subtle differences in land
use, while also being a large enough spatial scale to compare to
benchmark global studies. There are a number of ways forward
which can build upon this work. The first is the incorporation
of temporal variability. The drone data used in this study were
collected over a relatively short period of time, and the surveys
were not repeated. Further work using the same approach to
capture high resolution drone imagery could greatly expand our
understanding of the dynamics of land use change in complex
mosaic landscapes. As mentioned above, further work could
undertake similar surveys using more sophisticated equipment,
such as LiDAR, to examine shade trees which are not easily
detectable in drone imagery, such as trees which are only 1–2m
above the canopy.

CONCLUSIONS

This study highlights the diversity and complexity of small-
holder cocoa landscapes, and the importance of utilizing a
range of approaches, including drone imagery and field collected
data, to gain a broad understanding of such landscapes. While
accurately classifying land use and land use change remain a
challenge in the tropics, tools such as drones or the Sentinel
II satellite, continue to emerge which can enable the capture
of imagery which broaden our understanding of these highly
important and often misrepresented landscapes. Global scale
analysis can provide exceptional insights into many processes,
such as HANPP (Haberl et al., 2007) or deforestation, however,
this study highlights the continued need for approaches that can
bridge these large scale products with the most detailed ground
collected data. Quantifying human impact on the biosphere
should remain a priority given the continued, varying, and
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diverse impact of humans on all aspects of the natural world.
Studying HANPP remains one of the most practical approaches
to understanding this inherently complex system, however
continued efforts, such as those demonstrated here, are needed
to ensure landscapes, particularly complex landscapes, are both
accurately captured and assessed.
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