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An anomalous event of drought and heat occurred in central Italy during the summer
of 2017. Based on the SPI (Standardized Precipitation Index) and data from the
European Space Agency, this event started in November 2016 and was characterized
by a strong reduction of precipitation and soil moisture, especially in lowland areas
with Mediterranean climate. The aim of this case report were to describe the impact
of this event on representative forest communities in central Italy, to analyze the
different responses of deciduous and evergreen tree and shrub species in contrasting
environmental conditions and to assess their subsequent capacity of recovery or, if not,
mortality. Trees suffered severe impacts consisting of widespread crown defoliation, leaf
desiccation, crown dieback and whole tree mortality. Deciduous tree species (Fagus
Sylvatica, Quercus pubescens, Quercus cerris) shed their leaves during the summer,
but apical buds and twigs were preserved. This allowed these species to produce new
shoots in the following year (2018) and to restore the canopy closure of the stands.
Mediterranean evergreen broadleaves, such as Quercus ilex and Phillyrea latifolia suffered
of total or partial crown desiccation with wilting leaves and branch dieback. These species
partially resprouted in 2018 from axillary and latent buds. The case presented here is
discussed within the wider context of the impacts of climate change on Mediterranean
forests. Future research directions should include an effective forest monitoring system
that combines terrestrial and remote sensing surveys, ad hoc field climate change
experiments and silvicultural trials from the perspective of proactive management for the
adaptation of forests to future climatic conditions.

Keywords: defoliation, drought, heatwave, extreme event, Mediterranean forests, resilience, tree mortality

BACKGROUND

Events of extensive tree dieback and mortality related to drought have been detected across the
world and described in several papers (Gitlin et al., 2006; Allen et al., 2010, 2015; Anderegg et al,,
2013, 2015; Choat et al., 2018). Increasing drought conditions, together with rising temperatures,
weaken trees making them prone to insect and pathogen attacks that in some cases are the

Frontiers in Forests and Global Change | www.frontiersin.org 1

November 2019 | Volume 2 | Article 74


https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2019.00074
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2019.00074&domain=pdf&date_stamp=2019-11-14
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles
https://creativecommons.org/licenses/by/4.0/
mailto:martina.pollastrini@unifi.it
https://doi.org/10.3389/ffgc.2019.00074
https://www.frontiersin.org/articles/10.3389/ffgc.2019.00074/full
http://loop.frontiersin.org/people/418076/overview
http://loop.frontiersin.org/people/838255/overview
http://loop.frontiersin.org/people/836624/overview
http://loop.frontiersin.org/people/93058/overview

Pollastrini et al.

Extreme Drought Events

ultimate cause of tree death (Dobbertin et al., 2007; Wermelinger
et al., 2007; Anderegg et al., 2015; McDowell et al.,, 2019). In
Europe, a large body of literature deals with the dieback of Scots
pine (Pinus sylvestris L.) at the southernmost portion of its range
(see Bussotti et al., 2014, 2015 for review), especially in Valais,
Switzerland (Rigling et al., 2013) and Spain (Vila-Cabrera et al,,
2011). Concerning the broadleaf tree species, the so-called “oak
decline” is an issue addressed in Europe (Thomas et al., 2002)
from the 80s of the twentieth century and is considered the result
of the interactive action of drought stress and weakness parasites.

Evergreen sclerophyllous tree and shrub species of the
Mediterranean areas in Southern Europe are commonly
considered resistant to drought and other environmental
stressors typical of this region, such as high temperatures, high
solar irradiation, UV radiations etc. (Bussotti et al., 2014).
In recent years, however, these forests were subject to both
continuous increase of drought and temperature and to recurrent
extreme episodes with waves of heat and dry spells, as reported
from the Iberian peninsula (Lloret et al., 2004; Carnicer et al.,
2011; Camarero et al., 2015a,b; Pefiuelas et al., 2018). The
Mediterranean sclerophyllous forests can restore the “before
event” conditions (resilience) by regenerating the crowns due
to the resprouting ability of axillary and suppressed buds at the
stump and branches (Del Tredici, 2001). This ability evolved
in plants subjected to recurrent environmental disturbances,
like fire and severe drought (Pausas and Keeley, 2014) and
represents a strategy to rapidly restore the closure of the
canopies. Recent research underlines the role of non-structural
carbohydrates in plant growth (Mason et al., 2014): after the
loss of the shoot tip, sugars are rapidly redistributed over large
distances between different parts and organs of the plant and
accumulated in axillary buds within a timeframe compatible
with the resumption of their activity. Causing the depletion of
non-structural carbohydrates in plant tissues, however, recurrent
drought episodes can dramatically reduce the resprouting ability
and the resilience of the whole plant (Barbeta and Pefuelas,
2016). In turn, this is likely to result in a shift from forest
to Mediterranean steppe if severe drought will persist in the
long-term (Jacobsen and Pratt, 2018).

In Italy, cases of severe tree decline and mortality induced by
long periods of drought stress have been documented on oak
and pine species (Ragazzi et al., 1989; Castagneri et al., 2015;
Colangelo et al., 2017; Gentilesca et al., 2017), but until now
there were no reports about the impacts of drought at ecosystem
level, affecting contemporaneously a large number of woody
and herbaceous species coexisting in a forest communities. No
similar event had been previously documented for Italy. The
2017 summer drought impact was observed in the Italian ICP
Forests Level I survey (lacopetti et al., 2019), although the
structure of this monitoring network fails to capture and describe
in detail events at spatial local scale (Bussotti and Pollastrini,
2017). With the present report, we give original information
about this case of tree dieback and mortality in central Italy
to contribute to a more comprehensive understanding of the
consequences of recurring extreme heat and drought waves in
the Mediterranean region. Resilience processes, such as those
allowing the restoration of the conditions before the event, were

also considered. Finally, indications for the future direction of
research are provided.

CASE DESCRIPTION

Forest Types, Climate and Drought

Conditions

Half of the surface of Tuscany is covered by forests (1M
ha, data from Forest Inventory of Tuscany, Hoffman et al,
1998). The main forest types are distributed along an altitudinal
(from low to high altitude) and a geographic (from southwest
to northeast) gradient. These are (a) evergreen Mediterranean
forests with Quercus ilex L. (holm oak) as the dominant
species in coastal and sub-coastal areas (240,000 ha); (b)
supra-Mediterranean thermophilous deciduous forests with
deciduous oaks (Quercus cerris L., Turkey oak, covering 240,000
ha; Quercus pubescens Willd.,, downy oak, 127,000 ha) and
Castanea sativa Mill. (sweet chestnut, 177,000 ha) as the
dominant tree species in the hilly areas in central Tuscany,
from 300 to 800m a.sl; and (c) mesophilous deciduous
forests with Fagus sylvatica L. (beech) as the dominant species
(76,000 ha) at the highest altitudes in the mountain areas
(800-1,200m a.s.l.). Along this altitudinal gradient, there is
a strong variation from Mediterranean to montane climate
type (Rapetti and Vittorini, 2012). Average annual precipitation
and annual temperature range from 1,500 to 2,500 mm and
from 7°C to 10°C, respectively, in the mountain areas and
from 600 to 850 mm and 13°C to 17°C, respectively, in the
Mediterranean areas.

Temperatures and summer heatwaves have increased in
recent decades, and severe drought episodes are recurring
every 4-5 years; the last ones occurred in the years 2011-
2012 and 2016-2017 (Magno et al., 2018). This latter event was
characterized by strong decline in soil moisture, documented
by the European Space Agency (https://phys.org/news/2017-09-
italy-drought-space.html). Soil water deficit began during spring,
and partially in the preceding winter (Magno et al., 2018).
Figures 1A-C show the patterns of monthly precipitation and
temperatures (average of maximum) during 2017, compared
with the means of the last 30 years, in three localities
of Tuscany representative of coastal areas (Follonica, Lat.
47.54N., Long. 16.44 E; Alt. 15m as.l), hilly areas (Gaiole
in Chianti, Lat. 48.14N., Long. 16.95 E; Alt. 360m a.s.l.) and
mountain areas (Vallombrosa, Lat. 48.45, Long. 17.05; Alt.
980 m a.s.l.). Increase of temperatures and drop of precipitation
are evident in spring and summer months in all sites.
Frequent temperature peaks over 40°C were also registered.
Drought conditions were characterized using the Standardized
Precipitation Index (SPI; Guttman, 1998, 1999). This index uses
historical precipitation data at a given location to develop a
probability of precipitation that can be computed at different
timescales. SPI is calculated on a time series of 30 years of
data and has an intensity scale (0 to 3), in which both positive
and negative values correspond, respectively, to wet and dry
events. Whereas the value 0 indicates no anomalies, drought
conditions occur when SPI = —1 (moderate drought). The
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FIGURE 1 | Left: Annual pattern of monthly precipitations (Pmm, total monthly, columns) and temperatures (T°C, mean of daily maximum, lines) in coastal (A), hilly (B),
and mountain (C) areas of Tuscany. P and T are presented as average of the last 30 years (mean) and as values of the critical year (2017). The data were collected from
http://www.sir.toscana.it/ricerca-dati. Right: Annual pattern (2017) of SPI (Standardized Precipitation Index) in coastal (D), hilly (E), and mountain (F) areas of Tuscany.
SPl s reported for short (3 months) and long (12 months) periods. Negative values indicate drought conditions. The scale indicates moderate (—1), severe (—2), and
extreme (—3) drought. Absence of anomalies is indicated with O (no bar). The data were collected from: http://www.lamma.rete.toscana.it/archivio- bollettini-siccit.

values —2 and —3 indicate, respectively, severe and extreme
drought. The SPI values reported in Figures 1D-F, presented
for short (3 months) and long (12 months) periods, are an
elaboration of the data reported in the “drought bulletins®
for Tuscany available online (http://www.lamma.rete.toscana.
it/archivio-bollettini-siccit). Coastal areas suffered long-term
(12 months) and short-term (3 months) drought stress from
the very beginning of 2017, whereas stress conditions started
between the late spring and early summer in hilly and
mountain areas.

Description of the Impact of Drought on
Forests

Preliminary visual field observations were carried out from
mid-August to October 2017 on 118 observation points
randomly selected between drought-damaged and non-damaged
forest stands on the mountain, supra-Mediterranean and
Mediterranean forests to obtain a first description of the impacts.
In each point we carried out a summary description of the plant
species (trees, shrubs and perennial herbs) affected by leaf loss,
discoloration and desiccation, as well crown dieback, branch
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desiccation, and the possible presence of fungal and pest attacks.
Physical site features such as altitude, bedrock, aspect and slope
were included in such description. Deciduous broadleaved trees
(beech dominated forests in the mountain and deciduous oaks
dominated forests in hilly areas) were affected by leaf desiccation
and defoliation starting from the second half of July. Fagus
sylvatica trees were subjected to a leaf early senescence and
shedding across the mountain areas of Tuscany. Q. pubescens
was strongly defoliated, especially on the hills with calcareous
soil in central Tuscany, where this species was prone to water
depletion and high soil temperature. In the shrub layer, we found
desiccation on Spartium junceum L. Severe impacts were also
observed on the Mediterranean evergreen vegetation, especially
on Q. ilex coppices (Figures2A,B) growing in the southern
coastal areas. All the evergreen Mediterranean shrub species
(Phillyrea latifolia L., Arbutus unedo L., Juniperus oxycedrus L.,
Mpyrtus communis L.., Erica sp. pl.) with the only exception
of Pistacia lentiscus L., were affected by drought. In Q. ilex,
high forest desiccation occurred on individual trees depending
on local micro-environmental conditions. No fungal infections
or pest attacks connected to such dieback were detected. The
subsequent autumn and winter months (2017-2018) were wet
and rainy (Figure 1), favoring a substantial recovery from
drought. In June 2018, the foliar mass of F. sylvatica forests
appeared almost completely restored (data confirmed by airborne
observations, Puletti et al., 2019). Quercus pubescens showed a
similar pattern. After the 2017 drought, the organs (stem and
branches) of F. sylvatica and Q. pubescens remained alive and
were able to resprout from the apical buds in spring 2018. The
severe dieback of branches and twigs, as well the persistence of
dead leaves on the crowns, made visible the impact of the 2017
drought in Q. ilex dominated forests also 1 year after the event.
A more accurate analysis of the effects of extreme summer
events on the vegetation was carried out on Mediterranean
evergreen forests since they were subjected to stronger and
long-term drought stress with respect to the deciduous forests
(Figures 1A-C). The purpose of this analysis was to provide
baseline data and to start following the subsequent phases of
recovery or decline in the long-term. Four permanent plots,
from 100 to 200 m? depending on the structure of the forests,
were established in October 2017 in unmanaged stands (latest
interventions date back to the half of the past century) within the
nature reserves of Caselli (Pisa, Lat. 43.23, Long. 10.68, Alt. 55m
a.s.l.) and Casole Val d’Elsa (Pisa, Lat. 43.37, Long. 11.01, Alt.
60m a.s.l), both with Mediterranean climates (see Figure 1A).
Plots were selected in high forests and old coppices (70-80 years
old), where Q. ilex and Phillyrea latifolia were the dominant
species and Arbutus unedo, Erica arborea, Viburnum tinus L. were
the most common associated species. The number of plants per
ha ranges from 575 to 3,475, and the basal area ranges from
12 to 31 m? ha~!, which is common in Mediterranean forests
in Italy. In each plot, all woody plants with DBH (diameter at
breast height) >3 cm were numbered and measured (DBH and
height). Then, defoliation (i.e., loss of leaves as compared to a
reference tree with a completely foliated crown) and damaged
and dead leaves (partially and completely dry leaves, respectively)
were visually evaluated for each plant by well-trained crews, in

FIGURE 2 | Images of drought impact and recovery on Mediterranean
vegetation in Tuscany (ltaly) after the drought and heat event of summer 2017.
(A) Impact at landscape level (November 2017). (B) Crown dieback on
Quercus flex (November 2017); (C) Partial crown recovery on Quercus ilex
(July 2018).

classes of severity of 20% (ICP Forests guidelines, Eichhorn et al.,
2016 modified). In June 2018, a second measurement on the
same plants was carried out focusing on the amount of new
shoots by suppressed and adventitious buds (i.e., resprouting
capacity) on the distinct parts of plant (crown, stem and stump).
The same scoring system to the previous one was used. Data
analysis includes the calculation of mean and standard deviation
of all the measured attributes, as well their correlations by using
the non-parametric test of Spearmann r. All the analyses were
performed with Statistica 7.0 (Statsoft, Tulsa, OK, USA) and R (R
Core Team, 2016). The intensity of defoliation of P. latifolia and
Q. ilex were similar across sites (30-40%). The amount of dead
leaves was significantly higher in Q. ilex in both sites (Table 1),
whereas partially damaged leaves were more abundant at Casole
d’Elsa than Caselli in both species. The resprouting capacity from
the different parts of the plant (crown, stem, stump, and total)
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TABLE 1 | Drought-induced damage and recovery parameters of the most abundant plant species Phillyrea latifolia and Quercus ilex in 2018 in the permanent plots at

Caselli and Casole d’Elsa (n = number of the assessed trees at each site).

Phillyrea latifolia Quercus ilex
(Caselli n = 23) (Casole n = 56) (Caselli n = 29) (Casole n = 32)

Mean St.dev. Mean St.dev. Mean St.dev. Mean St.dev.
N/Ha 575 3,457 725 1,975
DBH (cm) 6.17 +2.32B 5.45 +1.56 B 10.91 +3.25A 10.74 +3.68 A
H (m) 4.22 +1.42B 4.40 +1.03 747 +2.00 aA 5.51 +0.78 b
Defoliation (%) 39 +15 32 +21 35 +15 40 +19
Dead leaves (%) ihl +12B 4 +9B 43 +28A 32 +26 A
Damaged leaves (%) 5 +9b 15 +9a 2 +6b iR +15a
Crown resp. (%) 14 +17 7 +11 6 +11 16 +17
Stump resp. (%) 3 +8 bB 6 +10aB 12 +14A 18 +15 A
Stem resp. (%) 2 +7 bB 11 +16 aB 10 +13A 16 +12 A
Total resp. (%) 34 +43 38 +41B 43 +37 Db 77 +42 aA

DBH, Diameter at Breast Height; H, Height; Defoliation, loss of leaves. Dead leaves, completely dry leaves. Damaged leaves, partially dry leaves. Crown, Stump, Stem and Total resp.,
resprouting from dormant and adventitious buds in the crown, stump, stem and in total, respectively. Different letters indicate significant differences (P < 0.05). Capital letters indicate
differences between species at the same site; lower cases indicate the differences on the same species between different sites (P < 0.05).

was in general higher in Q. ilex than in P. latifolia. Overall, the
amount of dead leaves showed significantly positive correlations
(P < 0.05) with tree size parameters (diameter and height,
Figure 3), whereas the partially damaged leaves showed the
opposite behavior. Tree diameter was positively related (P < 0.05)
to resprouting from the stem (epicormic shoots) and stump.

DISCUSSION AND CONCLUSIONS

The drought and heatwave in 2017 had a different impact
on deciduous and evergreen forest tree species. Deciduous
species (namely the F. sylvatica and Q. pubescens dominated
forests) lose their leaves early in the summer to avoid
water loss and desiccation of branches, whereas evergreen
sclerophyllous species (Q. ilex dominated forests) maintain
their leaves so enhancing water loss and branch desiccation.
These different behaviors may be partially determined by
intrinsic characteristics of the species, but also by the level of
drought experienced in the summer, that was higher in the
Mediterranean areas.

In deciduous tree species at intermediate (hilly) and high
(mountain) elevation, twigs and buds remained alive and the
crowns were fully regenerated by the activity of the terminal
buds in the following year (2018). The loss of leaves during the
growing season, however, may harm the budget and dynamics
of the stored carbohydrates (D’Andrea et al., 2019), making
trees more sensitive to additional stress factors (Hartmann and
Trumbore, 2016). In sclerophyllous species at the Mediterranean
areas, subjected to branch desiccation, the crowns are restored
with of the activity of the adventitious buds. In this case the
recovery processes are slow, and the evidences of the drought
impact were detected in the year 2018 with a remote sensing
survey (Puletti et al., 2019).

In the first months after the drought event, evergreen trees
retain the dead leaves, so, at least in the short period, the amount

Def
Dead.leaves

Damag.Leaves

w

[

=

Def ’ 3

-

o

@

E

Dead leaves ]
(]

‘ Crown Resp
. Stump Resp

Crown.Resp g
Q
14
St R §
ump.Res 2
p.Resp & a
w
D
14
Stem.Resp =
Fins
ot Resp ‘ ' . .
1 08 06 04 02 0 02 04 06 08 1

FIGURE 3 | Correlation matrix (non-parametric test, Spearman r) between the
variables assessed in the permanent plots for Quercus ilex and Phillyrea
latifolia together. DBH, Diameter at Breast Height; H, Height; Def., defoliation;
Dead.leaves, dead leaves (completely dry leaves); Damag.Leaves, damaged
leaves (partially dry leaves); Crown.Resp., Stump.Resp., Stem.Resp.,
Tot.Resp., resprouting from dormant and adventitious buds from the crown,
stump, stem and in total. Bar indicates the r values.

of dry leaves on the plant is a better indicator of drought impact
than defoliation. Defoliation levels were close to those observed
in previous surveys carried out on Mediterranean forests in
Tuscany, on forests not affected by drought (Pollastrini et al.,
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2016). The results presented in Table 1 suggest therefore that
Q. ilex, with a significantly higher amount of dead leaves, is
more drought sensitive than P. latifolia, in line with a large body
of evidence on the comparative behavior of these two species
under stress conditions (Pefiuelas et al., 1998, 2000; Ogaya and
Peniuelas, 2003; Ogaya et al., 2003; Barbeta et al., 2013; Rosas
et al., 2013; Sperlich et al., 2015). Drought impact was greater on
the largest trees (Grote et al., 2016). The resprouting capacity of
defoliated trees is higher in trees with high DBH (Matula et al,,
2019), but it declines with age (Clarke et al., 2013). According
to Crouchet et al. (2019), the impact of the drought is higher on
the dense stands and affects the less competitive trees, including
smaller and older plants. Mediterranean coppices are very
complex and dynamic systems (Fabbio, 2016) rich in diversity,
in which increasing drought conditions may affect competition
processes with changes in structure and composition. Rapidly
changing climatic conditions can, therefore, lead to reaching new
ecological equilibriums.

The extreme heat and drought wave that occurred in Tuscany
in summer 2017 was an occurrence within the wider context of
the fate of the South European forest vegetation under climate
change (Bussotti et al., 2014). Cumulative episodes of extreme
drought may compromise the resilience of the ecosystems (Lloret
et al,, 2011) and may damage the long-term performance and
survival of Mediterranean evergreen forests (Galiano et al., 2012;
Peguero-Pina et al.,, 2018). Extreme climatic events, rather than
trends (Jentsch et al., 2007), drive forest dieback and mortality
and can result in dramatic changes at the landscape level. On
the contrary, a gradual shift of climate parameters is supposed to
promote the acclimation of tree species within the limits of their
phenotypic plasticity (Nicotra et al., 2010).

The event described in this report invites us to pay more
attention to the impact of climate change on the forests of
the Mediterranean region. We underline the importance to
pursue long-term monitoring with terrestrial and remote sensing
techniques, experimental studies in the field and silvicultural
trials (Giuggiola et al., 2015; Vila-Cabrera et al., 2018). The
questions to be addressed in future research should concern:
(a) the geographic extent and intensity of the climate impacts
and the identification of the most fragile forest structures and
species assemblages; (b) the re-organization of the current forest
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