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Fire in tropical forests increases tree mortality, degrades forest structure, and reduces

carbon stocks. Currently, there are large gaps in understanding how fire affects

understory forest structure and composition, interactions with fire recurrence, and long-

term impacts. Understanding these changes is critical to evaluate the present and

future response of tropical forests to fire. We studied post-fire changes in understory

regeneration in forests in Mato Grosso State, southern Amazonia, Brazil, aiming to

answer the following questions: (i) does forest structure (basal area) and tree community

composition vary with fire frequency and time since the last fire? (ii) does the response

differ among strata (e.g., sapling, larger trees)? (iii) are changes in diversity associated with

changes in forest structure? We surveyed trees and lianas in previously structurally intact

forests that underwent selective logging, followed by different fire histories, including 5

and 16 years after once-burned, 5 years after three times burned, and unburned (control).

Overall, species composition (abundance, richness, and number of families) and diversity

were highest for the unburned treatment and lowest for the recurrent burned areas. Fire

frequency negatively affected plant structure and basal area; basal area of small, medium,

and large plants declined significantly by more than 50% in the most frequently burned

areas. Richness was positively related to basal area in the three times burned sites and in

the 16 years regenerating site for all strata. Our results demonstrate the negative influence

of frequent fires on both the composition and structure of small trees in Amazonian forest.

These changes to the cohort of small-sized treesmay persist and have long-term impacts

on forest structure, affecting the capacity, and direction of forest recovery. With wildfire

widespread across the region and increasing in frequency, fire may negatively affect tree

diversity in remaining selectively logged forests, and affect regional carbon cycling with

consequences for the global vegetation carbon sink.
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INTRODUCTION

Logging in the Brazilian Amazon damaged 10,000−20,000 km2

y−1 of tropical forests in the early 2000’s and understory fires
burned ca. 85,000 km2 of standing forest from 1999 to 2010
(Asner et al., 2005; Morton et al., 2013). From 2004 to 2018,
150,937 km2 of Legal Amazonia was deforested through clear cut
and fire (Prodes, http://www.obt.inpe.br/). In the Amazon Basin,
fires have been associated with roads, pastures, agriculture, and
logging (Feldpausch et al., 2004; Alencar et al., 2006; Cochrane
and Barber, 2009).

Forest fires in the Amazon Basin are one of the most
important drivers of tropical forest degradation, especially
recently. In the Brazilian Amazon, fire effects on tropical forests
were first studied in the 1980’s due to concerns of land clearing
from wildfires (Uhl et al., 1981, 1982). While evidence of past
fire has been reported for some old-growth Amazonian forests
from charcoal radiocarbon dating and estimates of soil pyrogenic
carbon storage (Sanford et al., 1985; Goulart et al., 2017; Koele
et al., 2017), it is unclear whether past fire led to the selection
of fire-adapted traits among Amazon forest tree species (Massi
et al., 2017). If plant communities were adapted to past fires in
Amazon forests, current burning would impact these differently
(Brando et al., 2012). Modern undisturbed moist forests rarely
burn (Uhl and Serrao, 1998); however, forests that have burned
once are more likely to burn again (Cochrane, 1999; Zarin et al.,
2005). Fire impacts vary according to vegetation composition
and structure, and with fire regime (intensity, frequency, rate of
spread: Silva et al., 2005).

Fires occurring over recent decades in Amazonia have affected
forest dynamics and structure by increasing tree mortality
(Gerwing, 2002; Barlow and Peres, 2008; Silvério et al., 2013;
Balch et al., 2015; Massad et al., 2015). Fires in tropical forests
generally cause extensive top-kill in small trees (Hoffmann
et al., 2009) and leaf-fall in larger diameter trees, allowing
increased light to the forest floor. This higher light availability
together with lower air humidity causes dryness in the forest
environment, decreasing tree cover development with time, and
influencing species richness (Fu et al., 2013). Frequent fires
are especially dangerous because they affect forest regeneration
through alteration of the seed bank (Kennard et al., 2002)
and through the isolation of populations, making fire-tolerant
species more abundant and fire-sensitive species may disappear
(Cochrane and Barber, 2009; Brando et al., 2012). In southeastern
Amazonian, forest stem density recovered within a year after
a first burn, but after repeated fires, increased mortality, and
decreased regeneration by seedlings led to a reduction in tree
and liana densities (Balch et al., 2015). There is little information
on changes in Amazon forest composition and structure after
burning, especially on the mortality of saplings and seedlings.
These groups most affected by fire (Barlow et al., 2003) play a
critical role in post-fire recovery. Thus, studying lower forest
stratum allows understanding the consequences of disturbance
on short- and long-term forest dynamics and recovery.

One of the main interests in studying fire in Amazonia has
been the effect of fire on forest carbon storage and cycling.
Amazonian forests store ca. 100 Pg C in trees (Feldpausch et al.,

2012), contribute to global net productivity (Brienen et al., 2015),
and affect global climate (Fearnside, 2018). In drought years,
forest fires have the potential to turn the Amazon Basin into
a net C source (Aragão et al., 2018; Metcalfe et al., 2018; Silva
Junior et al., 2019). Fire and drought effects are not restricted
to upland forests. Riparian forests have large biomass loss over
periods spanning drought and fire, losing ca. −3.3Mg ha−1

year−1 (Nogueira et al., 2019). Following fire, recovery of biomass
and forest structure is likely to be impeded by abundant lianas
and the high incidence of crown and stem damage in the residual
stands (Gerwing, 2002) and the infestation of exotic grasses in
highly disturbed sites (Silvério et al., 2013).

Fires may also affect the species composition of forests because
trees species suffer varying rates of mortality from fire (Brando
et al., 2014; Massad et al., 2015). In southern Amazonia, diversity
in triennially burned forest was more similar to unburned than
in annually burned forest, and the community composition of
triennially burned forest was intermediate between unburned
and annually burned areas (Massad et al., 2015). Changes in
forest composition may also affect the capacity of forests to
recover and store carbon, resulting in multiple alternative stable
states with varying carbon storage and diversity when a site is
disturbed. However, little is known about these potential changes
in Amazon tree biodiversity and carbon cycling despite the
increasing frequency of fires over recent decades (Brando et al.,
2014; Barlow et al., 2016).

Southern Amazonia is undergoing changes making these
forests more fire prone. Selective logging is pervasive throughout
the region, which is then followed by the northward advancing
“arc of deforestation” and agricultural frontier, with fire from
associated anthropogenic activities (Souza et al., 2013) having
enormous impacts on the remaining forest ecosystems (Morton
et al., 2013; Alencar et al., 2015). In El Niño dry years, the area
that burned increased (Marengo et al., 2011; Doughty et al., 2015;
Chen et al., 2017; Liu et al., 2017; Prodes, http://www.obt.inpe.
br/). The region lacks intact forests, having the highest rates
of fire detection and selective logging of Amazonia (Hummel
et al., 2010). Protection from fire is particularly urgent in this
region due to threats from land-use change and proximity to
the savanna, a fire-dependent biome (Massad et al., 2015). In
the last few years, studies have focused on understanding fire
impacts on Amazonian vegetation (Barlow and Peres, 2008;
Silvério et al., 2013; Balch et al., 2015; Massad et al., 2015),
but one of the main challenges remains to understanding
how Amazonian species will respond to a more frequent fire
disturbance scenario (Schwenk et al., 2009). It is expected that
disturbed and altered ecosystems will be less diverse and have
less ecological functionality and ecosystem services, with some
species becoming locally extinct (Potter et al., 2013).

The aim of our study was to evaluate fire effects on
small individuals (seedlings and saplings < 10 cm diameter)
of trees and lianas species in forests affected by fire in
southern Amazonia.We addressed the following questions: (i) do
changes in vegetation structure (i.e., basal area) and community
composition (e.g., species richness and diversity) vary with fire
frequency and time since the last fire? (ii) does the response differ
among strata (e.g., sapling, larger trees)? (iii) are these changes
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in forest composition associated with changes in forest structure
(using basal area loss of large trees as a proxy for fire severity)?

MATERIALS AND METHODS

Study Site
The study took place in nine seasonal evergreen forest
sites (Ivanauskas et al., 2008) in southern Amazonia in the
municipality of Feliz Natal, Mato Grosso, Brazil (Lat:−12.38 and
Long:−54.92, Figure 1). Soils are dystrophic red-yellow Latosols
following the Brazilian classification (BRASIL and IBGE, 2009).
The Köppen climate class is Am with an average temperature of
26◦C, a mean annual precipitation (P) of 2,512mm, and with
a strong dry season (4 months with <100mm of rainfall); the
wet season takes place from November to March (Alvares et al.,
2013). Despite 43% of the Brazilian Amazon biome experiencing
significant negative maximum cumulative water deficit (MCWD)
anomalies during the study year of 2015, the Feliz Natal region
had positive MCWD anomalies (Aragão et al., 2018). The
MCWD corresponds to the maximum value of the accumulated
water deficit (Aragão et al., 2007) based on the estimate that moist

tropical forest canopies transpire ∼100 mm/month, a mean
evapotranspiration value obtained from ground measurements
for Amazonia. When monthly precipitation is <100mm, the
forest enters into water deficit conditions. The annual MCWD
for a given area is the most negative value of the climatological
water deficit among all months in a given year.

Experimental Design
Fieldwork was carried out in August 2015 in nine selectively
logged forest sites where data of previous fires were available.
Forest plots were classified according to fire frequency and
year burned, namely Not-Burned (NB), Burned-1999 (burned
one time in 1999), Burned-2010 (burned one time in 2010)
and Burned-3x (burned three times in 2006, 2010, and 2013)
(Table 1). Data of fire frequency and period were obtained
from local inhabitants and from Landsat satellite data, which
confirmed the fire occurrence in the areas. We established four
permanent plots of 50 × 50m per forest site, each plot separated
by 100m, where small trees, woody lianas, and large trees were
sampled in a nested design for 1 ha total of surveyed forest
per area (Figure 2). Diameter (D) measurement and species

FIGURE 1 | Study sites in southern Amazonia in Mato Grosso State, in the municipality of Feliz Natal, showing the distribution of nine study sites, with four plots per

site. Sites were classified as “not-burned (T04, T05, and T06)”, “burned-1999 (T07, T08, and T09)”, “burned only once, in 2010 (T03),” and “Burned-3x (burned three

times in 2006, 2010, and 2013) (T01 and T02)”.
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identification within the nested plots were as follows: (i) 50 ×

50m, all large trees (named LT)≥ 35 cmDwere surveyed, (ii) 5×
50m, all medium trees (MT) 10–34.9 cm D; (iii) 2 × 50m, small
trees and woody lianas (SML) 5–9.9 cmD; (iv) 2× 10m, saplings
(SP) 2.5–4.9 cm diameter at ground height (DG); (v) and 1× 5m
plot, seedlings (SE) < 2.5 cm DG (Figure 2). Smaller plants were
measured with a ruler and caliper and for larger diameter plants,
we used a measuring tape to the nearest millimeter.

Large trees (≥ 10 cm D) were identified in the field by
local parataxonomists. For trees < 10 D, vouchers were
collected for unknown species and later compared to herbarium
specimens. Plant material was identified and fertile specimens
were archived at the Universidade do Estado de Mato Grosso
(UNEMAT) Herbarium. For plant family classification, we used
the Angiosperm Phylogeny Group IV (APG IV, 2016) and Brazil
Flora List (http://www.floradobrasil.jbrj.gov.br).

TABLE 1 | Area characteristics of burned and unburned forests and number of

plots sampled (T01–T09) in Mato Grosso, southern Amazonia, Brazil.

Area Plots Treatment

T04, T05, and T06 12 Not-Burned (NB)

T07, T08, and T09 12 Burned-1999 (B1-1999)

T03 4 Burned-2010 (B1-2010)

T01 and T02 8 Burned-3x (B-3x. in 2006, 2010, and 2013)

As this research was not conducted in prescribed fire
experiments, fire intervals, severity and timing were not
controlled. Thus, we used the change in total basal area as an
indicator of fire severity. The random locations of wildfire and
limited access to install plots in farms across the region created
challenges to establish a large number of experimental replicates
(Oksanen, 2001). For purposes of analyzing the effect of time
since last fire, we applied a conservative estimate of at least 50
years to the non-burned site, because these sites had no evidence
of fire scars on trunks or fire scars in satellite data and AMS
radiocarbon dating indicates that structurally intact forests in
the region have not burned for at least 100 years (T. Feldpausch
unpublished data).

Statistical Analyses
To evaluate differences between richness and diversity (Shannon
Wiener index) in treatments (NB, B1-1999, B1-2010, and B-3x)
and strata (SE, SP, SML, MT, and LT), we used the interpolation
and extrapolation method in iNEXT (an R package modified
from the original version supplied in the Supplement of Chao
et al., 2014; Hsieh et al., 2016). This analysis allows calculating
the diversity of samples by extrapolating up to twice the size of
the plot abundance or a specified size, and also allows evaluating
diversity in terms of sample adequacy associated with 95%
confidence intervals (Chao and Jost, 2012).

We estimated plant stem density (ha−1) and basal area (sum of
the cross-section area of the trunk in m2 ha−1) on a per hectare
basis for each nested plot. Skewness tests were used to evaluate

FIGURE 2 | Sampling plot and nested subplot distribution. Each transect consisted of four 50 × 50m plots composed of five subplots corresponding to the separate

strata: 1 × 5m, Seedling (SE); 2 × 10m, Saplings (SP); 2 × 50m, Small Trees and Lianas (SML); 5 × 50m, Medium Trees (MT); 50 × 50m, Large Trees (LT).
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the distribution of basal area among strata and treatments. To
examine differences in plant basal area according to treatment,
we performed Kruskal-Wallis tests for each stratum. Analyses of
covariance (ANCOVA) were used to evaluate whether richness,
diversity (Shannon index), number of families and abundance
of plant species were related to basal area and treatments. In
these analyses, the average basal area per plot/stratum/treatment
was used. We tested the assumptions of homogeneity, normality,
linearity, and regression homogeneity. Analyses are thought to be
robust when data have different group sizes andwhen samples are
unbalanced. In these analyses, we used the mean basal area per
plot/stratum/treatment. The relationship between plant richness,
basal area, and time since the last fire in each stratum was
examined with linear and non-linear regression. Due to non-
linearity between richness and basal area, we used non-linear
regression (nls procedures in R) through asymptotic models.

All analyses were performed in R statistical software version
3.5.0 (R Core Team, 2017) using the following packages: ggplot2
(Wickham, 2016), dplyr (Wickham et al., 2019), gridExtra
(Auguie, 2017), vegan (Oksanen et al., 2019), FSA (Ogle et al.,

2019), MASS (Venables and Ripley, 2002), moments (Komsta
and Novomestky, 2015), and dunn.test (Dinno, 2017).

RESULTS

Changes in Species Composition Due to
Fire
Across all study sites, we sampled a total of 1,561 individual
plants, distributed in 149 species from 49 families. The
most abundant species sampled (n > 50 individuals) were
Tachigali cf. glauca (8%, n = 129), Protium sagotianum (6%,
n = 98), Trattinnickia glaziovii (4%, n = 70), Passiflora sp.
(4%, n = 67), Hirtella gracilipes (3%, n = 56), Doliocarpus
dentatus (3%, n= 55), Cheiloclinium cognatum (3%, n = 54),
and Qualea paraensis (3%, n = 50). The most frequent
species, i.e., found in all four treatments (B-3x, B1-1999, B1-
2010, NB) were Abuta grandifolia, Anemopaegma sp., Aniba
parviflora,Ocotea glomerata, Passiflora sp.,Qualea paraensis, and
Trattinnickia glaziovii.

TABLE 2 | Descriptive data of species occurring in all four treatments and all five strata for the burned and unburned plots in southern Amazonia, Brazil.

Strata Sites Abundance Sample

coverage (%)

Richness (Obs.) Estimated

richness

± Stand. error

Shannon (H’) H’ estimate ±

Stand. error

Seedlings (SE) NB 294 97.3 35 39.6 ± 4.2 15.4 16.5 ± 1.3

B1-1999 301 98.3 30 32.5 ± 2.9 14.9 15.8 ± 1.0

B1-2010 43 90.8 10 15.9 ± 7.0 6.9 8.3 ± 1.4

B-3x 103 95.2 15 21.2 ± 7.5 6.5 7.3 ± 0.9

Saplings (SP) NB 19 26.9 16 108.8 ± 105.7 14.8 82.7 ± 45.2

B1-1999 13 66.1 9 11.9 ± 3.4 8.5 14.1 ± 3.6

B1-2010 8 100 3 3.0 ± 0.5 2.6 3.0 ± 0.6

B-3x 17 83.7 8 10.1 ± 3.2 7.1 9.7 ± 1.8

Small trees and

lianas (SML)

NB 88 81.9 29 92.3 ± 55.4 19.2 29.2 ± 5.5

B1-1999 91 95.7 17 19.6 ± 3.4 10.3 11.6 ± 1.2

B1-2010 22 82.2 7 14.6 ± 11.1 4.3 5.9 ± 1.8

B-3x 17 100 3 3.0 ± 0.5 2.4 2.6 ± 0.3

Medium trees (MT) NB 139 80.0 56 91.4 ± 18.1 39.1 56.0 ± 5.6

B1-1999 143 84.0 49 101.5 ± 32.9 34.5 48.7 ± 5.4

B1-2010 17 49.8 13 22.5 ± 8.5 12.3 25.6 ± 12.0

Large trees (LT) NB 117 84.6 30 110.3 ± 68.8 14.5 20.7 ± 3.7

B1-1999 104 86.6 29 61.3 ± 26.1 18.3 24.2 ± 3.5

B1-2010 22 50.8 15 43.9 ± 27.4 13.0 32.1 ± 13.7

B-3x 4 62.5 3 4.5 ± 2.9 2.8 4.9 ± 2.8

All strata NB 657 94.7 114 138.5 ± 10.8 52.4 58.9 ± 2.9

B1-1999 652 95.2 100 148.0 ± 24.0 51.0 57.5 ± 2.9

B1-2010 112 81.4 38 69.2 ± 18.9 22.6 31.3 ± 3.9

B-3x 141 93.6 21 61.2 ± 48.7 9.9 11.8 ± 1.5

Diversity refers to effective diversity derived from Shannon index (exp (H’), following Jost, 2006). LT stands for adult trees, MT for all trees, SML for small trees and woody lianas, SP for

saplings and SE for seedlings.
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FIGURE 3 | Diversity estimates for all vegetation strata for different fire frequency and time since burned [NB, B1-1999, B1-2010, and B-3x (2006, 2010, and 2013)].

Analyses were conducted separately for each vegetation strata (A) SE, (B) SP, (C) SML, (D) MT, and (E) LT, and (F) for all strata together. LT stands for adult trees, MT

to medium trees, SML for small trees and woody lianas, SP for saplings and SE for seedlings. Continuous and dashed lines refer to observed and extrapolated sample

coverage, and the area around the curve represents a 95% confidence interval.

Species composition values (abundance, richness and number
of families) and diversity were highest for the Not-Burned
treatment and lowest for the B-3x (except for species richness)
(Table 2). The SP stratum had, in general, the lowest species
composition values (except for the number of families) and
diversity (Figure 3). The SE had a high abundance of individuals
and MT had high diversity. Values of richness and abundance
were highest in the seedling stratum and lowest for saplings. No
plant species was found in all five strata, and only Endlicheria
ruforamula was sampled in four of them (SE, SP, MT, and LT).
Species richness was similar inNot-Burned and B1-1999, whereas
B1-2010 and B-3x showed low richness and were different from
the other treatments (Figure 3).With the exception of the sapling
size-class, species richness of all strata increased with time since
last fire (Figure 4 and Table 1S).

Changes in Forest Structure and Fire
Total basal area (m2 ha−1) varied significantly among the
treatments (B-3x, B1-2010, B1-1999, and NB) (Figure 5). For
the SE and SP classes, the basal area did not show significant
differences among treatments (Figure 5A). For the SML, LT and
all strata combined classes, the basal area was lower for the B-
3x compared to the B1-1999 and NB classes (Figures 5C,E,F).
For the MT size-class, basal area was lower in the B1-2010
compared to the other classes and there were no individuals in

the B-3x treatment (Figures 5D). The basal area of the plants in
the control area was not consistently larger compared to other
treatments for many size classes. The basal area increased with
time since the last fire for the SML and larger size classes and for
all combined size classes, but there was no significant relationship
between the predictors and the response variable for SE and SP
(Figure 6 and Table 2S).

Interaction Between Changes in Forest
Structure and Composition
Richness, diversity (Shannon index), number of families and
number of plants were all affected by basal area. Richness and
diversity were also affected by treatment (Table 3). Considering
all treatments and all trees combined, species richness increased
with total plot basal area in non-burned and 1999-burned sites
(Figure 7F). For the LT size-class, variation in species richness
was positively and significantly related to the basal area for all
treatments (Figure 7E). Richness of all size classes increased with
basal area in Not-Burned and B1-1999 sites (Figures 7A–E).
However, for sites burned recently one-time and burned
three times only some of the size classes showed significant
relationships between richness and basal area (Figures 7B,C,E).
Qualea paraensis and Tetragastris altissima were species that
contributed the most for total basal area of sites (Table 4).
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FIGURE 4 | Relationship in each stratum between richness and time since the last fire (years). In non-linear models fitted using (nls procedure in R) with asymptotic

models, the equation was conducted separately for each stratum of vegetation (A) SE, (B) SP, (C) SML, (D) MT, and (E) LT, and (F) for all strata together. LT stands for

large trees, MT for medium trees, SML for small trees and woody lianas, SP for seedlings, and SE for seedlings. Only curves that showed significant differences were

plotted.

DISCUSSION

This study represents one of the first results to show determinants
of changes in forest understory species composition and structure
following regeneration from single and recurring wildfires in
southern Amazonia. Our main finding is that three-times burned
forests underwent major reductions in species richness, changes
in species compositions, and degradation of forest structure by
basal area loss, which have major implications for the future
of rainforest regeneration. Changes in tree basal area due to
fire was a strong predictor of changes in species richness, i.e.,
the loss by fire of large trees which contribute most to basal
area also affects composition of understory species. Our results
suggest that basal area change due to wildfire degradation could
be a useful proxy to gauge changes in species composition after
frequent burnings. An experimental burn study in southeastern
Amazon showed fire susceptibility of large trees (Brando et al.,
2012, 2014; Balch et al., 2015). Therefore, protecting forests
from wildfires is essential to preserve both carbon storage and
diversity, especially given the sensitivity of these forests to
ongoing drought-fire interactions (Nogueira et al., 2019). Our
results highlight the ecological implications of repeated fire in
the forest-savanna transition which is exposed to the greatest
seasonal water deficits of Amazonian and to recurrent drought

(Feldpausch et al., 2016), fragmentation (Vedovato et al., 2016),
and wildfire (Aragão et al., 2018).

Changes in Community Composition Due
to Fire
Overall, species composition (abundance, richness, and number
of families) and diversity were highest for the unburned forests
and lowest for the frequently burned areas, showing that fire
frequency is associated with changes in floristic composition and
biodiversity in Amazon forests. Amazonian forest species are not
well-adapted to tolerate water stress and to resist fires, especially
small individuals, and forest tree species are less tolerant of fire
than savanna species (Hoffmann et al., 2012). Fire in tropical
forests (gallery forest) causes extensive top-kill to small trees
(Hoffmann et al., 2009), reducing the abundance, and richness
of regenerating plants by killing young individuals (Oliveira
et al., 2014). When forests are subjected to fire, community
composition may change, allowing species with traits for fire
resistance such as thick bark to dominate (Balch et al., 2015).
Repeated fire return, such as in the three times burned areas,
might even affect the composition of more fire-adapted systems
(for example tropical savannas: Brando and Durigan, 2005).

We found that Non-Burned areas (NB) and the 1999 burned
sites (B1-1999) were similar in richness and diversity and
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FIGURE 5 | Basal area (m² ha−1) in each stratum and according to fire regimes. Analyses were conducted separately for each vegetation strata (A) SE, (B) SP, (C)

SML, (D) MT, (E) LT, and (F) for all strata together. LT stands for large trees, MT for medium trees, SML for small trees and woody lianas, SP for saplings, and SE for

seedlings. The p-values indicate whether comparisons were statistically significant according to Kruskal–Wallis tests, and the lowercase letters above bars show

differences among treatments. The line crossing bars indicate the median, the solid square denotes the mean, the boxes account for the 25th and 75th percentiles

and vertical lines are the minimum and maximum values.

that the 2010 burned sites (B1-2010) had intermediate plant
richness and diversity (between NB and B-3x). The largest
differences in richness and diversity occurred between the tree
(high richness and diversity) and sapling strata. Our results from
southern Amazonia corroborate those from eastern Amazonia
showing that the more a forest burns, the more it differentiates
from the original composition and structure (Barlow and
Peres, 2008). Degradation of tropical forests results in more
open formations dominated by a few large remnant forest
trees, short-lived pioneers, exotic grasses, and low diversity of
native herbaceous species (Veldman and Putz, 2011). Degraded
forests are prone to exotic invasion (D’Antonio and Vitousek,
1992; Cochrane, 1999) because they provide space for rapid
colonization of invasive species (Hobbs et al., 2006). We
did find invasive grasses (Brachiaria sp.) in the three times
burned forests.

Few studies have shown what happens in tropical forests after
understory fire, especially understory regeneration (Barlow et al.,
2007). There is little tendency for convergence in community
composition of Amazon rainforest, as succession does not follow
a single, largely deterministic trajectory over time (Longworth
et al., 2014). Our results confirm a lack of convergence, by

showing that no plant species was found in all five strata.
Furthermore, only seven species were common among the three
fire frequencies; and, species that contributed more to basal area
per area were different in each fire treatment.

For the few floristic studies following understory fire in
the Amazon Basin, the main focus has been monitoring fire
frequency and the immediate consequences of fire on plant
species (Nepstad et al., 1999, 2002; Cochrane and Laurance, 2002;
Balch et al., 2008, 2013, 2015; Staver et al., 2011). Longer-term
studies have focused on regrowth following deforestation and
pasture abandonment, e.g., in a 25-year study, Amazon rainforest
regenerated stem density and biomass following clear cut and
pasture land-use (using fire); however, species accumulation and
ecosystem services were limited (Mesquita et al., 2015). Chazdon
et al. (2016) showed that young secondary forests (< 20 years)
store more carbon than older forests, but only after 100 years
did the forests develop high species richness. Thus, our study
is one of few to evaluate fire effects as interactions between
changes in composition and vegetation structure, especially for
smaller plants.

The hypotheses of disturbance-mediated coexistence, such as
herbivory or a small physical disturbance, that generally leads
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FIGURE 6 | Relationship in each stratum between basal area (m² ha−1) and time since last fire. Non-linear models adjusted using the procedure (nls in R) with

asymptotic models, the equation was performed separately for each stratum of vegetation (A) SE, (B) SP, (C) SML, (D) MT, (E) LT, and (F) for all strata together. LT

stands for large trees, MT for medium trees, SML for small trees and woody lianas, SP for seedlings and SE for seedlings. Only curves that showed significant

differences were plotted.

to high diversity (Sousa, 1984) may not apply to fire in tropical
forests, especially recurrent burnings. In southern Amazonian
forests, species richness of all strata (except saplings) significantly
declined with fire frequency increase. Similar results were found
for seasonally dry tropical forest landscape evaluating plant
species diversity in Central America (Gillespie et al., 2000) and
woody plant diversity in India (Dattaraja et al., 2018) subjected
to frequent fires. The decline in species richness may be related to
the elimination of fire-intolerant species.

Changes in Structural Complexity Due
to Fire
Fire frequency also affected forest structure (Figure 5). Plants
from the most frequently burned areas showed the lowest basal
areas. The structure of plant communities in many natural
ecosystems is largely determined by disturbances, which occur
frequently, but on small scales (White, 1979). Our finding of
a right-skewed basal area data distribution corroborates the
reverse J-shaped curves reported for other disturbed forests in
the Amazon Basin (Oliveira-Filho et al., 1997; Oliveira et al.,

2016). Additionally, the low basal area values for the forest
burned in 2010 may have been caused by a severe fire that
happened in that year, worsened by a severe drought (Gatti
et al., 2014; Feldpausch et al., 2016), with forest recuperation
subsequently hindered.

Within the B-3x treatment, basal area was lower for the
small to larger size strata but not for the SE and SP strata.
Recurring fires (as B-3x) change forest microclimate, facilitating
colonization and establishment of invasive grasses, favoring new,
more intense, fires to re-enter the area (Miranda et al., 2013)
and killing small and medium size native woody individuals
(Hoffmann et al., 2004; Brando et al., 2014). As a consequence
of regeneration, seedlings density of a few generalist species may
increase, and competition for light, water, and minerals may
suppress their increment.

Ecological studies have found that increased plant species
diversity results in increased productivity (Tilman et al., 1996;
Waide et al., 1999) and increased carbon storage (Strassburg
et al., 2010), especially in small scale observations (Sullivan
et al., 2017). Our results corroborate these findings for
carbon storage for all strata and treatments, except for three

Frontiers in Forests and Global Change | www.frontiersin.org 9 February 2020 | Volume 3 | Article 10

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Prestes et al. Fire Effect on Understory Regeneration

TABLE 3 | Analysis of covariance relating plant richness, diversity (Shannon

index), number of families and number of individual plants with basal area and

treatments (regime of fire).

Variables Df Sum Sq Mean Sq F-value P-value

RICHNESS

Basal area 1 3230.14 3230.14 333.52 < 0.0001

Treatment 3 122.33 40.78 4.21 < 0.01

Interaction 3 19.57 6.52 0.67 0.58

Residuals 28 271.18 9.68

DIVERSITY (SHANNON)

Basal area 1 14.02 14.02 111.09 < 0.0001

Treatment 3 2.41 0.80 6.37 < 0.001

Interaction 3 0.16 0.05 0.43 0.73

Residuals 28 3.53 0.13

NUMBER OF FAMILIES

Basal area 1 841.41 841.41 139.85 < 0.0001

Treatment 3 48.39 16.13 2.68 0.07

Interaction 3 6.05 2.01 0.33 0.80

Residuals 28 168.46 6.02

NUMBER OF PLANTS

Basal area 1 83.73 83.73 170.39 < 0.0001

Treatment 3 0.02 0.01 0.02 0.99

Interaction 3 6.10 2.03 4.14 < 0.01

Residuals 28 13.76 0.49

Interaction effects are also shown. Values in bold indicate statistical significant differences.

The data of number of plants was square root transformed.

times burned forests. Elaborate mechanisms such as niche
complementarity or reduced interspecific competition compared
with intraspecific competition (Tilman et al., 2014) may explain
such positive relations between diversity (expressed here by
plant richness, Shannon Index and number of families) and
basal area (a proxy for C storage). Field observations showed
that in highly disturbed sites, one or two opportunistic plant
species were able to grow and cover the area, but richer sites
(regarding species richness) were found in better conservation
status areas.

Basal area of small, medium, and large trees significantly
declined (by more than 50%) with fire frequency increase; but
the frequent fires had little effect on seedlings and saplings.
Reductions in basal area were also observed for stems < 30 cm
D of stands burned once in central Amazonia (increase of
63.2% in loss of basal area compared to non-burned: Andrade
et al., 2019) and on trees > 50 cm D of three times burned
sites in northern Amazonia (reduction of about 54% basal area:
Martins et al., 2012). In seasonally dry tropical forest in India,
woody plants were apparently unaffected by fire frequency,
which may be related to dominance by larger individuals
(Dattaraja et al., 2018).

Composition, Structure, and Regeneration
Changes in composition were associated with changes in forest
structure (Figure 7). In general, we found LT (Large Trees) with
higher diversity and species richness in non-burned and 16 years

old burned forests, while the other four strata (SE, SP, SML, and
LT) had lower and similar values for these parameters. Burning
kills seedlings and saplings (Oliveira et al., 2014) and small trees
(Hoffmann et al., 2009), reducing their density (Balch et al.,
2011) and consequently, diversity. Small plants are fire sensitive,
because of reduced diameter, canopy base height, thin bark, and
less dense wood (Brando et al., 2012; Balch et al., 2013). Many
studies in savanna ecosystems have shown that it is advantageous
growing a thicker stem (escape diameter: Lawes et al., 2011),
protecting buds, and the vascular cambium and being buffered
against fire heat (Uhl and Kauffman, 1990; Lawes et al., 2011).
We are not aware of studies investigating the minimum diameter
needed for Amazon forest species to survive burnings, but large
trees ≥ 35 cm D in this study were the only to escape the effects
of fire on reducing diversity.

No plant species was found in all five strata, and only
Endlicheria ruforamula was sampled in four strata (SE, SP,
MT, and LT) indicating that burning may be causing floristic
changes by premature succession (Xaud et al., 2013), where
humid-environment specialist species are lost and generalists
with high dispersal efficiency dominate the smallest size
classes (Solar et al., 2015). That may be observed in the
highly abundant seedlings stratum (SE) where we found
Cheiloclinium cognatum, Doliocarpus dentatus, Passiflora sp.,
Protium sagotianum, Tachigali cf. glauca as the most abundant
species. Additionally, the great importance of Passiflora sp.,
Mabea fistulifera (a pioneer species) and Trattinnickia glaziovii
(found in forest-savanna transition zones) in the B-3x forests
indicates that these forests are following a new regenerating
pathway, possibly with some specialist species in terms of fire
adaptations. In fact, none of the hyperdominant species of the
Amazon tree flora (Ter Steege et al., 2013) were species that
contributed most to basal area in each burned-frequency site,
indicating that the hyperdominance found across Amazonia is
not related to fire.

During the first decades following natural disturbances,
succession proceeds under high rates of increasing species
richness, density of stems, and basal area of trees (Finegan,
1996). Our results of positive relations between richness and basal
area for most strata in B1-1999 sites and non-burned forests
corroborate that and indicate that these forests are going through
their natural succession pathways rather than succession stalling
(e.g., Tymen et al., 2016). Although, as fire frequency increases,
succession may deviate from this general pattern (Barlow and
Peres, 2008). With no fundamental changes in climate and/or
soil nutrient pools, most burned forests recover biomass within
decades; but, with fire frequency becoming higher as our results
suggest, the potential trajectory of burned tropical forests might
be a transition to a new state (Brando et al., 2019).

Broader Implications
One of the important questions for forest management and
conservation in Amazonia is the degree to which forests can
regenerate and conserve biodiversity following disturbance by
selective logging and fire. We found that 16 years of regeneration
allowed burned forests to develop forest structure, richness,
and diversity similar to unburned forests. However, richness
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FIGURE 7 | Relationship between richness and basal area. Analyses were conducted separately for each vegetation strata (A) SE, (B) SP, (C) SML, (D) MT, (E) LT,

and (F) for all strata together.

similarity was not expressed in all the five strata (especially
saplings), showing that these forests might be vulnerable to
future environmental changes. Our results support findings from
other regions of Amazonia that recovery after forest degradation
may take decades (Barlow and Peres, 2008), but only if forests
remain protected against recurrent fires. Additionally, El Niño
and other drought events observed in the Amazon Basin (and
in the studied sites) in 1997/1998, 2005, and 2007 (while not
a major drought year for all of the Amazon, it seemed to
be important for the study region based on the number of
fires there: Morton et al., 2013), 2010 and 2015/2016 (Chen
et al., 2017; Liu et al., 2017; Silva Junior et al., 2019) can
reduce tree growth (Vlam et al., 2014), carbon assimilation
and storage, biomass and productivity (Duffy et al., 2015;
Feldpausch et al., 2016), promoting tree mortality (Phillips
et al., 2009; Balch et al., 2015) and ultimately, making fire
probability higher.

This research was not conducted in prescribed fire
experiments; therefore, we do not know the conservation
status of these forests before the burnings. We also could
not control for the fire timing, a factor known to influence
savanna regeneration. While the four plot replicates per site
could be considered a form of pseudoreplication (van Mantgem
et al., 2001), plots were separated by 100m, which is sufficient
to be an independent sampling unit (Gotelli and Ellison,
2011). This necessary limitation to increase experimental
replication (Oksanen, 2001) was due to the random nature
of the wildfire sites available and being unable to obtain
permission from additional landholders in the region to
access forests.

We stress that even the non-burned forest sites were not
free from disturbance, as they may have undergone selective
logging and drought effects. Climate change-related drought
events intensified burning in the Amazon Basin, resulting in
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TABLE 4 | Species that contributed most to basal area (m2 ha−1) in each

treatment and associated abundance.

Treatment Species Basal area

(m2 ha−1)

Contribution

(> 5%)

Position

(abundance)

B-3x Qualea paraensis 0.08 24.0 12th (2)

Mabea fistulifera 0.05 14.2 2nd (14)

Trattinnickia glaziovii 0.05 14.0 3rd (13)

Anacardium

spruceanum

0.03 8.6 13th (1)

Passiflora sp. 0.03 8.2 1st (50)

B1-1999 Ormosia excelsa 0.65 9.6 12th (13)

Qualea paraensis 0.58 8.6 10th (15)

Pouteria gongrijpii 0.46 7.0 9th (15)

Tetragastris altissima 0.44 6.6 11th (14)

Dipteryx odorata 0.37 5.5 22nd (80)

B1-2010 Cordia scabrifolia 0.16 14.1 7th (4)

Tetragastris altissima 0.15 10.0 9th (4)

Aniba parviflora 0.7 6.0 11th (2)

Croton palanostigma 0.7 6.0 1st (14)

Maquira coriacea 0.6 5.0 17th (2)

NB Qualea paraensis 0.13 17.7 3rd (32)

Aspidosperma excelsum 0.59 8.5 11th (15)

Tetragastris altissima 0.55 7.6 6th (18)

Erisma uncinatum 0.46 6.6 18th (10)

vegetation degradation (Brando et al., 2014; Aragão et al., 2018).
We found that fire frequency was associated with changes in
plant structural complexity (namely basal area), that there were
differences in community composition (species richness, number
of species, and diversity) between areas (burned and not-burned)
and that those differences were associated with different strata.
Thus, recurring fires may change forest species composition and
even drive forests toward a biotic homogenization dominated
by a few habitat generalists, resulting in fewer compositional
differences among sites (Mckinney and Lockwood, 1999). More
attention to environmental policies related to fire control and
fire prevention for the Amazon region is needed to protect
forest biodiversity.

Overall, species composition (abundance, richness, and
number of families) and diversity were highest for the unburned
treatment and lowest for the recurrent burned areas. Fire
frequency negatively affected plant structure and basal area.
Richness was positively related to basal area in the three times
burned sites and in the 16 years regenerating site for all strata.
Our results demonstrate the negative influence of frequent
fires on both the composition and structure of small trees
in Amazonian forest. These changes to the cohort of small-
sized trees, especially in forests burned more than once, may
persist, and have long-term impacts on forest structure, affecting
the capacity and direction of forest recovery. To conserve
diversity and carbon storage, protecting burned forests from
subsequent burning is as important as preventing unburned

forest from burning, e.g., given at least two decades, once-burned
forests can recover, at least partially, the diversity, complexity
of floristic composition, and forest structure found in unburned
forests. Without such protection, the large-scale and increasing
frequency of fire in Amazonia is reducing tree diversity and may
affect regional carbon cycling with consequences for the global
vegetation carbon sink.
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