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Pyrogenic carbon (PyC) is a chemically stable form of carbon (C) generated during fire

events and is one of the few legacies of fire recorded in soil; however, the significance

of this material as a form of C storage in forest ecosystems has received only limited

scientific attention, and currently relatively little is known regarding the quantity of PyC

generated during forest restoration efforts that include prescribed (Rx) fire. Quantifying

the rate of PyC production during fire events is essential to estimating the potential for

ecosystem C storage in forest systems where wildfire is a common natural disturbance

and Rx fire is used as a fuel management practice. In this paper, we report on the average

mass of PyC formation during wildfire and Rx fire events in forest ecosystems through

synthesizing data across 12 published studies; and we report empirical data on the mass

of PyC generated in a replicated Rx fire study in a ponderosa pine (Pinus ponderosa)

forest ecosystem of the Rocky Mountain West. Our data synthesis showed that PyC

(consisting of PyC from downed wood, O horizon, and mineral soil) was, on average,

produced at a rate of 5.2 ± 2.5% of biomass exposed to fire in forest ecosystems, and a

single wildfire or Rx fire event generated about 2.2± 1.7Mg C ha−1 in the form of PyC. In

our empirical study, we collected O horizon and surface mineral soil (0–10 cm) samples

from the Fire and Fire Surrogates study plots in western Montana (treatments: control,

thin, burn, thin&burn) that was burned in 2002 and analyzed for PyC content using a wet

digestion method. The two Rx fire treatments had significantly higher PyC contents in

the O horizon compared to the control. In the thin&burn treatment, PyC was formed at

a rate of about 12% of total biomass consumed yielding ∼2.24Mg PyC C ha−1 in the

O horizon. Mineral soil PyC contents were not affected by Rx fire. Wildfire and Rx fires

generate a substantial amount of PyC which initially resides in the O horizon and serves

as a stable form of ecosystem C.

Keywords: black carbon, carbon storage, fire, forest restoration, PyC, pyrogenic carbon

INTRODUCTION

Charcoal and pyrogenic carbon (PyC) are general terms given to organic materials that have been
subject to partial combustion during biomass burning events (Forbes et al., 2006; Zimmerman and
Mitra, 2017). There is increasing interest in the role that PyC plays in long term carbon (C) storage
in terrestrial and aquatic ecosystems, yet there is only limited understanding of the rate at which
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PyC accumulates in forest ecosystems during natural and
prescribed (Rx) fire events. Of the PyC formed during forest fire
events, much remains onsite as stored C (Lynch et al., 2004),
eventually lost to depositional areas due via surface erosion
(Abney et al., 2019) and if incorporated into mineral surface
soils, the PyC may remain in surface soils an indefinite length
of time (Abiven and Santín, 2019). Given this longevity in soil
ecosystems, PyC has been identified as being an important C
storage medium (Lehmann et al., 2006; DeLuca and Aplet, 2008;
Santín et al., 2015) and receives a great deal of attention across
a variety of research fields (Carcaillet, 2001; Gavin, 2004; Gavin
et al., 2006; Power et al., 2006).

The role of PyC in the soil ecosystem extends beyond its
capacity to serve as stored C, PyC can directly and indirectly
influence soil microbial processes (Thies et al., 2015), increase
rates of organic matter decomposition (Wardle et al., 2008;
Pluchon et al., 2015) alter soil nutrient availability (Lehmann
et al., 2011; Gul and Whalen, 2016; Gao and DeLuca, 2019;
Gao et al., 2019), modify soil nutrient cycling (DeLuca and
Sala, 2006; DeLuca et al., 2006, 2015; Gao et al., 2017; Gao
and DeLuca, 2018), and adsorb organic compounds in plant
root exudates, litter decomposition products, and microbial
byproducts (Keech et al., 2005; Gundale and DeLuca, 2006;
Quilliam et al., 2013). These facets of PyC have led to
a significant increase in the number of studies devoted to
the role of naturally formed PyC in terrestrial ecosystems
(Pingree and DeLuca, 2017).

Despite the fact that PyC has widely been recognized as a
highly chemically stable form of ecosystem C that is formed in
all biomass burning events and is of great importance to global
C cycle, to date there has been limited effort to quantify forest
fire generated PyC and in particular that affiliated with Rx fire
events in forest ecosystems (Alexis et al., 2012; Pingree et al.,
2012; Wiechmann et al., 2015). In addition to wildfire events that
commonly occur as a result of local climatic conditions at the
seasonally dry forest ecosystems of the Rocky Mountain West
(Agee, 1996), Rx fires are applied widely as a forest management
practice throughout the region to reduce surface fuel loading and
restore the historical fire regime (Ryan et al., 2013). Quantifying
the rate of PyC production during fire events in this region is
essential to estimating the potential of ecosystem C storage in
other forest systems with similar climatic conditions and fire
management practices. The objectives of the work reported here
were to: (1) Evaluate the PyC generation rate and the percent
fuel conversion to PyC during wildfire or Rx fire events of
forest ecosystems through synthesizing existing literature; (2)
Determine the amount of PyC present in soil following forest
restoration treatments that include Rx fire in an empirical study
in western Montana, and evaluate the relationship between PyC
generation and fuel consumption using data collected on the
same study sites. By combining a synthesis and an empirical
study that both focus on the evaluation of PyC generation in
forest fire events, our goal was to advance the understanding of
total ecosystem C budgets and the C storage potential of post-fire
forest systems. We believe the findings from this research could
help inform more rational strategies toward assessment of the
influence of fire and fuel treatments on ecosystem C storage.

MATERIALS AND METHODS

Data Synthesis
A search for peer-reviewed papers (published between January
2000 and December 2018) on PyC generation rate was
conducted using the “Web of Science” database with a variety
of keywords (“charcoal,” “PyC,” “pyrogenic carbon,” “black
carbon”; “generation,” “production,” “formation”; and “forest
fire,” “fire,” “wildfire,” “prescribed fire,” “Rx fire,” “fuel reduction,”
“forest management practices”). The title and abstract were
first evaluated to determine if the publication was relevant
to our inquiry and contained original data. Papers that met

these criteria were then examined in detail for information
and data “extraction” prior to analysis. We excluded studies
that report PyC production data at the continental to global
scale (either existing synthesis data or modeling data). We also
excluded studies associated with landscape scale grassland or

peatland fires, and we specifically focused on PyC generated
in forest systems at a local to sub-regional scale. If a study
was conducted at an ecotone transitioning from grassland to
woodland, we only included PyC data collected at sites with
dominant species being woody plants to match the common
scenarios of Rx fire in most fuel treatment practices. A total

of 12 published papers were identified, which presented PyC
data for a total of 22 individual fire events, and a total of 31
sampling sites (N = 31) were selected and finalized for our

further analysis. It is important to note that for studies that report
PyC data by comparing pre- and post-fire treatments, we did
not separate data by time-since-fire given the small sample size
in this synthesis; similarly, studies that report PyC formation
by using data collected at paired burned and unburned sites
were also included in our synthesis regardless of time-since-

fire. For studies that only provided a PyC production range,
both minimum and maximum numbers were included in our
analysis, but treated as two observations for one single fire
event site.

All PyC production data were converted to the same unit (Mg
PyC C ha−1) according to the C content of PyC reported in
individual studies. We also recorded the “percent fuel conversion
to PyC (PyC mass: fuel mass)” data when it was provided by
the study. Mean value and 1× standard deviation (SD) were
calculated for both PyC production data (Mg C ha−1) and fuel
conversion rate (%) data across all observations associated with
wildfire or Rx fire events of the forest ecosystems. Given that the
sample size in this synthesis is rather small, we limited the focus
of our examination to only these two response variables (i.e.,
PyC production, fuel conversion%) and eliminated any analysis
examining their relationships with potential covariates (e.g., fire
characteristics, site and soil conditions, time-since-fire, etc.).
However, detailed descriptive statistics for all observations across
studies are provided in Supplementary Information (Figure S1,
Table S1). Data homogeneity and normality were tested before
conducting any analysis. We used ANOVA and Tukey’s post-
hoc test to identify differences between PyC generation rate
under wildfires and prescribed fires at a significant level
of P = 0.05. All statistical analyses were performed in R
(R Core Team, 2016).
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TABLE 1 | Soil physical and chemical characteristics (mean) on plots at the Fire

and Fire Surrogates study site at Lubrecht Experimental Forest (see Gundale

et al., 2005).

O Horizon Mineral soil

Variable Depth Total C Total N Acidity Bulk density Total C Total N

Unit (cm) (g kg−1) (pH) (g cm−3) (g kg−1)

Control 4.4 351 9.0 5.2 0.91 23.1 1.0

Thin 5.0 392 9.0 5.3 0.95 18.9 0.9

Burn 2.6 363 10 5.3 0.90 18.6 0.8

Thin&burn 2.5 353 10 5.4 0.90 24.0 1.1

Empirical Study
The empirical study was conducted using soil samples collected
from the Montana installment of the Fire and Fire Surrogates
(FFS) national study network (Table 1). The FFS study is a
multiyear interdisciplinary study investigating the effectiveness
of thinning and Rx fire treatments aimed at reducing wildfire
hazard and restoring more natural stand structure which has
been described in detail elsewhere (Gundale et al., 2005; Metlen
and Fiedler, 2006). Briefly, this study was implemented on
an ∼100-years-old second-growth ponderosa pine/Douglas-fir
forest (100 years since last fire except one experimental block
which is 60 years old) at the University of Montana’s Lubrecht
Experimental Forest in western Montana (46◦ 53′N 113◦ 27′W).
Elevation ranges from 1,230 to 1,388m, mean annual air
temperature is 7◦C and mean annual precipitation is 50 cm, with
44% falling as snow (Nimlos, 1986; Gundale et al., 2005). Soils at
the study site are Eutric Haplocryalfs and Typic Dystrocryepts.
The study was established as a semi-randomized block design
(n = 3), with each block quartered into square 9 ha units, and
assigned one of four treatments (control, burn-only, thin-only,
and thin&burn). Selection harvest treatments reduced stand
basal area from ∼22–11 m2 ha−1 (trees >10 cm diameter), with
harvest taking place in the winter of 2000/2001. Prescribed fires
were conducted in May to June 25, 2002 and resulted in an
average of 1–3.5Mg ha−1 O horizon consumption and 12–27Mg
ha−1 woody fuel consumption. More detailed description of the
study system can be found in Gundale et al. (2005).

Soil samples were collected from 10 stratified sub-sampling
points within each of the 9 ha plots during July 2003.We collected
mineral soil samples from a depth of 0–10 cm, using a standard
2.5 cm stainless steel soil probe with seven subsamples creating
an individual sample. Complete organic horizon (Oi, Oe, andOa)
samples were collected within a 15.2 cm diameter PVC ring. Two
mineral soil samples and two O horizon samples were collected
from opposing corners of each plot and composited. The 10
composite samples were then independently analyzed for total
PyC and averaged, yielding a single datum from each treatment
replicate. All samples were dried at 60◦C and stored until used
for analysis.

We measured mineral soil and O horizon bulk density and
organic horizon thickness to allow reporting of results on an
area basis. Mineral soil bulk density was measured using a 5 cm
diameter by 5 cm depth bulk density core with the dry weight of
the sample divided by the volume of the core to estimate bulk
density (Blake and Hartge, 1986). Organic horizon depth was

measured from the top of the Oi horizon to the bottom of the
Oa horizon (as above). Samples were then returned to lab and
oven-dried (65◦C) and weighed. Bulk density was calculated by
dividing the dry mass of the material by the sample volume.

Both mineral soil samples and O horizon materials were
ground using a shatterbox and passed through a 0.76µm sieve.
The PyC content of mineral soil samples and O horizon samples
were determined by using a peroxide, weak nitric acid digestion
procedure (the “KMD” method) as described by Kurth et al.
(2006). The high organicmatter content of the O horizon samples
necessitated the modification of this digestion procedure wherein
0.5 g samples were pretreated with 30% H2O2 and allowed to
stand for 24 h prior to starting the actual digestion. Samples of
1.0 g sample of mineral soil or 0.5 g of pre-treated O horizon
material were placed into a 250ml Erlenmeyer flask and amended
with 20ml of 30% H2O2 and 10ml of 1.0M HNO3. The mouth
of the flasks were fitted with a 5 cm diameter glass sphere which
allowed for gentle reflux, and the flasks were occasionally swirled
at room temperature over a 30min period, then heated to 100◦C
on a heating plate for 16 h. Samples were swirled occasionally and
returned to the heating plate until the digestion was complete (no
further effervescence). Samples were filtered through Whatman
#2 filter paper, and then dried. Samples were scraped from
the filter, homogenized with a mortar and pestle for total C
determination by dry combustion (Elemental Analyzer 1500,
Fissions Instruments, Milano, Italy). The total C measured after
the digestion is reported as total PyC following the assumption
that all non-PyC is consumed in the digestion process. In many
of the O horizon samples, there was clearly some quantity of
non-PyC organic matter remaining at the end of the digestion, in
which case the PyC appeared black and non-PyC organicmaterial
appeared white. This incomplete digestion precluded analysis for
total C on the digests as this approach would have overestimated
total PyC content of the O horizon. The total mass was weighed
and adjusted to a PyC content based on an ocular (at 20 ×

magnification) assessment of PyC as a percent of the total mass
remaining. PyC samples from this study site averaged 750 g C
kg−1 PyC, thus PyC mass in O horizon digests was converted to
PyC as C by multiplying the mass by 0.75.

A generalized linear model was initially performed at a
significant level of P = 0.05 where treatment was entered as a
fixed factor and block was entered as a random factor. Because
block was not a significant factor (P > 0.05), the comparison
was repeated using a one-factor ANOVA followed by Tukey’s
post-hoc tests to identify differences among treatments at P
= 0.05. A Pearson’s correlation analysis was conducted to
determine the relationship between total fuel consumption and
PyC generation, where the goodness-of-fit R2 and associated P-
value are presented. Data were checked for homogeneity and
normality and were log-transformed when necessary to meet
model assumptions. All analyses were conducted using SPSS
(version 17.0, SPSS Inc., Chicago, IL, USA).

RESULTS

Data Synthesis
Our analysis involving 22 independent fire event sites that were
previously published on PyC generation rates (N = 31) showed
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FIGURE 1 | (A) Pyrogenic carbon (PyC) production (Mg C ha−1) and (B) fuel conversion to PyC (%) during wildfire and/or prescribed fire events as recorded at 22

individual fire event sites from 12 published studies associated with forest ecosystems (N = 31). Solid line indicates median and dashed line indicates mean, ns

indicates no significant differences at P = 0.05. Detailed information on specific observation of PyC production rate can be found in Supplementary Material.

that PyC was generated at an average rate of 2.17 (± SD 1.72) Mg
C ha−1 in a single fire event that ranging from 0.05 to 6.4Mg
C ha−1, regardless of wildfire or prescribed (Rx) fire, with or
without fuel reduction treatments (Figure 1A). There was no
difference in the amount of PyC produced by wildfire or Rx
fire; however, the amount of PyC produced by wildfire seemed
to exhibit a higher degree of variation than Rx fire (Figure 1A).
Thinning + Rx fire appeared to generate more PyC (1.95 ± SD
1.84Mg C ha−1, Figure S1) than Rx fire only, but there was only
one data point for this condition (1.40Mg C ha−1, Figure S1). Of
the 12 studies included in this synthesis, only nine (14 sites; N =

14) provided the % fuel conversion to PyC data (Figure 1B). On
average, a single fire event converted 5.2 (± SD 2.5) % of biomass
to PyC (Figure 1B).

Empirical Study
Total PyC mass in the O horizon was directly influenced by
restoration treatments that included Rx fire. The thin&burn
treatment had the greatest PyC quantities present in the O
horizon (Figure 2A). PyC mass in the forest floor was ∼2.24 ±

0.72Mg PyC ha−1 in the thin&burn treatment, these levels were
significantly greater than the burn alone, thin alone, or control
treatments (Figure 2A).

PyC in the mineral soil was significantly higher when
comparing the burn and thin&burn plots to the thin alone plots,
but there was no significant difference in PyC concentrations
between the control and the burn or thinning plots (Figure 2B).
Total PyC in the O horizon was found to generally follow fuel
consumption rates with about 44% of the variation in PyC
production being accounted for by fuel consumption (Figure 3).
Fuel consumption was nearly 14Mg ha−1 (fuel and forest floor)
in the burn only treatments, where the total mass of fine fuel
and forest floor consumed in the thin&burn plots was over 30
Mg ha−1.

DISCUSSION

In this study, we combined an assessment of previously published
data on PyC production in forest wildfires or prescribed (Rx)
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FIGURE 2 | Pyrogenic carbon (PyC) (Mg C ha−1) in the (A) O horizon and (B) mineral soil as influenced by thinning with or without prescribed fire in the Fire and Fire

Surrogates study in Western Montana, USA. Data were compared using Tukey’s postdoc test following ANOVA. Error bar indicates 1 × standard error. Columns with

the same letter are not significantly different at P = 0.05.

fires with an empirical study from a Rx fire study in western
Montana. The data synthesis from existing literature provides a
range for biomass conversion to PyC during Rx fire and wildfire
events with Rx fire events producing similar amounts of PyC, but
a far lower degree of variation than wildfire events (Figure 1).
This is somewhat expected given the relative low severity of most
Rx fires. Previous studies have estimated PyC generation per
unit fuel consumption in coniferous forest ecosystems to range
from <1% to nearly 20% (Tinker and Knight, 2000; Lynch et al.,

2004; Forbes et al., 2006) and more commonly reported as being
between 1 and 5% (Preston and Schmidt, 2006). In a more recent
detailed analysis of PyC generation in a boreal forest wildfire with
pre and post-fire sampling canopy, understory, and surface soils,
Santín et al. (2015) reported an average ecosystem conversion
rate of 27% of forest biomass with a conversion rate of 50% for
downed woody debris. These estimates are far higher than the
average value of 5.2% of fuel consumption observed in our data
synthesis, but may reflect the fact that most studies have not had
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FIGURE 3 | Correlation (R2 and P-value) between PyC in the O horizon (Mg

ha−1) and the amount of fuel consumed (Mg ha−1) in “burn” and “thin&burn”

treatments in the Fire and Fire Surrogates study in Western Montana, USA.

the benefit of pre-and post-fire sampling (Miesel et al., 2018).
Further, visual estimates can overestimate PyC generation rates
compared to wet chemical digestion methods.

Importantly, there is little consistency between individual
studies and the method employed to estimate PyC content
generated during fire events, therefore the PyC production rate
across studies was highly variable which creates challenges,
particularly when modeling at larger spatial scale (Wei et al.,
2018). By compiling published data of soil PyC content in the
whole soil profile to estimate global PyC stock across a variety of
environmental constraints (e.g., climate, soil pH, site net primary
production), Reisser et al. (2016) found that soil properties, rather
than fire characteristics best explained PyC content at global
scales where high clay soils (clay content over 50%) and alkaline
soils had more PyC content than low clay soils and acidic soils.
The relatively small sample size of this data synthesis limits our
ability to extrapolate the results; however, we report an average
value of 2.2Mg PyC ha−1 for a single fire event. From these
data it was hard for us to further generalize correlations between
environmental variables and PyC production per single fire
event. It is possible that the differences in soil and site properties
across geographically distinct sites contributed to the variation
in PyC persistence; however, it is more likely that fire and fuel
characteristics including burn temperature, fuel composition and
loading, and fuel moisture were the strongest drivers of variation
in PyC production across different studies (Huang et al., 2018).
This is supported by our data synthesis which showed that the
higher amount of PyC production was observed under “wildfire”
compared with “Rx fire” (Figure 1A), and under “thinning +

Rx fire” when compared with “Rx fire only” (Figure S1). The
average value of 2.2 ± 1.7Mg C ha−1 generated per fire event
in the form of PyC is a close fit with the Rx fire data in our
empirical study and suggests that PyC generation during Rx

events is a significant contributor to the stable C pool in western
forest ecosystems.

In our empirical study, the Rx fire treatments generated PyC
in the O horizon at a rate of about 12% of fuel consumed
in the thin plus burn treatments which is slightly higher than
the average of our synthesis findings and midway between the
estimate of Preston and Schmidt (2006) and that of Santín
et al. (2015). Alexis et al. (2007) reported relatively lower PyC
generation rates (3.2% of stem, leaf and litter converted to PyC
post fire) in a sub-tropical scrub oak ecosystem and indicated
that PyC accumulates at lower rates than conservative estimates
of stable organic matter formation (7% of stem, leaf and litter).
Insights from that ecosystem led the authors to suggest that
fire and PyC generation lead to a long-term decline in soil
C. However, this argument does not account for differences
in the longevity of stable organic matter and PyC, which may
be over 10 times greater for PyC compared to soil organic
matter (DeLuca and Aplet, 2008). Further evidence for longevity
of PyC in soils and an indication of the limited impact of a
single burn event on soil PyC stocks is captured in the recent
study by Santos et al. (2017) which investigated PyC stocks
in litter layers (significantly different from a 100-years post-
burn site to an unburned site) and dissolved PyC leaching
from soil horizons (not significantly different from burned
to unburned). At our FFS sites, the lack of differences in
mineral soil PyC content across treatments is likely a product
of historical fires, including a fire in the 1930’s that covered
portions of Block 1 and 3 (Gundale et al., 2005), whereas recent
fire activity resulted in measurable changes in the O horizon
PyC content.

Recent studies have pointed to PyC generation as offsetting
C emissions during wildfire (Wei et al., 2018; Jones et al.,
2019) requiring us to further assess the influence of fire on
the global C balance. Importantly, these studies demonstrate
that PyC accumulation in ecosystems is most directly related to
fire severity and frequency (Sawyer et al., 2018; Adkins et al.,
2019). So, although PyC generation in individual fire events in
Savanah ecosystems is low, the net accumulation can be high.
The same thinking must go into how we approach Rx fire
in western forest ecosystems of the Inland Northwest, where
multiple Rx fires over a 100 years period will store more PyC
than a single high severity fire over the same time period
(DeLuca and Aplet, 2008).

CONCLUSION

This study provides a combination of original empirical data on
PyC generation as well as a data synthesis from prior studies
that address PyC generation in forest wildfire and Rx fire events.
The results presented here support previous studies showing that
fires generate a significant quantity of PyC, a relatively passive
form of organic C. Our empirical results further demonstrate
that the majority of PyC mass resides in the mineral soil, even
though PyC storage from recent fires resides in the O horizon
(Brimmer, 2006; DeLuca and Sala, 2006; Kurth et al., 2006).
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Charcoal left on site likely disintegrates into smaller particles
over time further affording incorporation into the mineral soil
as a result of physical and biological pedoturbation (DeLuca and
Aplet, 2008). This fine particulate C may also leach into deeper
soil horizons over time (Santos et al., 2017). The reintroduction
of fire using these restoration treatments in the region represents
the first potential addition of PyC to these ecosystems over a 100-
years period. Although the primary reasons for implementing
restoration or fuel reduction treatments are for reducing wildfire
risk and restoring historical ecosystem structure and function,
there is clearly an additional benefit in that Rx fire generates
a surprisingly large pool of highly stable C, particularly when
it is applied in combination with forest thinning. And while
the immediate effect of Rx fire is to release C, in the long
term this approach may promote C sequestration. Future efforts
to restore forest ecosystems in the Inland Northwest should
incorporate Rx fire to further reduce surface fuel loading,
reestablish more natural fire regimes, and support long-term
ecosystem C storage.
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