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Carbon sequestration through tropical reforestation and natural regeneration could
make an important contribution to climate change mitigation, given that forest cover
in many tropical regions increased during the early part of the 21st century. The size
of this carbon sink will depend on the degree to which second-growth forests are
permanent and protected from re-clearing. Yet few studies have assessed permanence
of reforestation, especially not at a large spatial scale. Here, we analyzed a 14-year
time series (2001–2014) of remotely sensed land-cover data, covering all tropical
Latin America and the Caribbean, to quantify the extent of second-growth forest
permanence. Our results show that in many cases, reforestation in Latin America
and the Caribbean during the early 21st century reversed by 2014, limiting carbon
sequestration. In fact, reversals of reforestation, in which some or all gains in forest
cover in the early 2000s were subsequently lost, were ten times more common than
sustained increases in forest cover. Had reversals of reforestation been avoided, forests
could have sequestered 0.58 Pg C, over four times more carbon than we estimate was
sequestered after accounting for impermanence (0.14 Pg), representing a loss of 75%
of carbon sequestration potential. Differences in the prevalence of reforestation reversals
across countries suggest an important role for socio-economic, political, and ecological
context, with political transitions and instability increasing the likelihood of reversals.
These findings suggest that national commitments to reforestation may fall short of
their carbon sequestration goals without provisions to ensure long-term permanence
of new forests.

Keywords: deforestation, reforestation, second growth forests, forest persistence, carbon sequestration and
storage, tropical forest, land-use change
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INTRODUCTION

Limiting climate warming to two degrees Celsius or less will
almost certainly require negative emissions – the removal of CO2
from the atmosphere through deliberate actions by humans (van
Vuuren et al., 2013; Fuss et al., 2014). Reforestation through
natural regeneration is an attractive option for achieving negative
emissions, as it is relatively inexpensive, bears low environmental
risks, and can have additional benefits, such as biodiversity
conservation (Kindermann et al., 2008; van Vuuren et al.,
2013; Lewis et al., 2019; Strassburg et al., 2019) and livelihood
opportunities (Locatelli et al., 2015). The potential for natural
forest regeneration to contribute to climate change mitigation is
especially high in tropical regions, where second-growth forests
gain 90% of the biomass of old-growth forest after an average of
66 years of regrowth (Chazdon et al., 2016; Poorter et al., 2016).
Forest restoration and natural regeneration accordingly play a
large role in global climate change mitigation and sustainable
development commitments.

While deforestation continues in some tropical regions, forest
cover has increased in others (Rudel et al., 2005; Sloan, 2008;
Asner et al., 2009; Redo et al., 2012; Aide et al., 2013). Globally,
tree cover has increased by over 2.24 million km2 since 1984
(Song et al., 2018). Although many tropical regions are still
experiencing net deforestation, between 2000 and 2010, woody
vegetation cover increased on over 360,000 km2 in Latin America
and the Caribbean (Aide et al., 2013). These changes give cause
for optimism about the contribution of tropical second-growth
forests to climate change mitigation.

Though these reforestation trends are encouraging, the
extent to which short-term (5–10 year) increases in forest
cover persist over longer time scales, a prerequisite for carbon
sequestration, remains uncertain. Increases in forest cover occur
when socioeconomic and biophysical conditions are favorable
(Chazdon et al., 2020). For example, industrialization, rural-
to-urban migration, and agricultural intensification can lead to
cessation of cultivation and forest regeneration on marginal
agricultural lands (Rudel et al., 2000; DeFries and Pandey, 2010;
Aide et al., 2013). Factors such as globalization, policy changes,
and armed conflict also play important roles in driving forest
cover change (Rudel et al., 2000; Hecht et al., 2006; Grau and
Aide, 2008; Meyfroidt and Lambin, 2011; Sánchez-Cuervo and
Aide, 2013). However, changing socioeconomic or biophysical
conditions can inhibit or even reverse increases in forest cover
(Suding et al., 2004; Aide et al., 2019).

Recent research has suggested that regenerating and restored
forests have a high probability of being cleared. If second-
growth forests lack permanence, their contributions to negative
emissions will be limited (Schwartz et al., 2017b). For example,
a study in the Peruvian Amazon found that re-growing forests
had a high probability of being cleared within 5 years (Schwartz
et al., 2017b), while in the Brazilian Amazon, 50% of all secondary
forests were recleared within 8 years (Nunes et al., 2020). In Costa
Rica, 50% of second growth forests were cleared within 20 years
of regrowth (Algeet-Abarquero et al., 2015; Reid et al., 2018).
However, the degree to which these findings extend to broader
geographic scales has not been tested.

Impermanence of reforestation trends might have been
overlooked in earlier studies of forest cover change because
of the analytical methods used. These analyses typically detect
trends by comparing snapshots of forest cover at two dates or by
fitting linear models to time-series data, allowing for only three
possibilities – deforestation, reforestation, or no change (Asner
et al., 2009; Redo et al., 2012; Aide et al., 2013; Nanni et al.,
2019). Restricting possible trajectories of land cover change to this
narrow set of options may mask non-linear dynamics occurring
at time scales shorter than study durations.

Here, we consider a broader set of possible trajectories of
forest cover change to assess permanence of reforestation in Latin
American and the Caribbean (LAC) between 2001 and 2014. To
do so, we use a land cover time series to identify reforestation
reversals – areas where forest cover initially increased but later
decreased during the study period. We compare the prevalence
of reforestation reversals relative to areas where reforestation
was sustained or where other trends predominated. We also
use these time series to estimate carbon sequestration due to
reforestation from 2001 to 2014 and compare the magnitude of
observed sequestration with a scenario in which no reforestation
reversal occurred.

MATERIALS AND METHODS

Remote Sensing of Forest Cover
We used annual land cover maps for Latin America and the
Caribbean (LAC) for the period 2001–2014 (detailed descriptions
of the dataset can be found in Clark et al., 2012; Aide
et al., 2013; Graesser et al., 2015; Nanni et al., 2019). The
annual maps were created by classifying 250 m Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite data
using Random Forest land-cover classification models defined
for each biome. The models included the following land
cover categories: woody vegetation (including natural tree
and shrub cover), tree plantations, cropland, pastureland, and
other (i.e., bare soil, ice, snow, rock, sand dunes, built-up
structures, and water).

Training data for each classifier were collected by overlaying
a grid of MODIS pixels (250 × 250 m) onto multi-temporal
high-resolution imagery in Google Earth and registering the
land cover class and date. More than 60,000 MODIS pixels
from labeled polygons were used to create the classification
models in this study. For training data, woody vegetation pixels
were defined as pixels with >80% cover of trees or shrubs,
based on visual interpretation of high-resolution Google Earth
imagery. Plantations were distinguished from woody vegetation
by obvious rows and homogenous color and height. Crop and
pasture were frequently confused and these two classes were
combined. Because of the relatively large size of MODIS pixels,
many pixels are mixed. In training data, the use of mixed pixels
was limited: only pixels with > 80% cover were included as
training data. In the classification, the class that received the most
votes in the Random Forest was assigned. Validation pixels were
assigned a class based on the majority land cover class present in
that pixel from visual inspection. More details on in the collection
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and interpretation of the training and validation data can be
found in Clark and Aide (2011).

These data were associated with the pixel statistics to create
a Random Forest classification model for each mapping zone,
defined by ecoregions and biomes (Olson et al., 2001). To
train a zone-specific Random Forest model, land cover samples
within the mapping zone of interest and the samples’ Google
Earth high-resolution image acquisition date were paired with
MODIS time series variables. Then, all samples within the
biome (for all years) were aggregated and used to fit a model
for the biome. The zone-specific Random Forest models were
then applied annually to produce 14 land cover maps for
each mapping region.

Previous assessments of this dataset have indicated that at
the pixel level, overall accuracy of the classification is 80%
(Clark et al., 2012) and that the classification distinguishes
woody vegetation from other land cover types with 87% accuracy
(Nanni et al., 2019), with accuracy as high as 93% in the
tropical humid forest biome (Aide et al., 2013). A comparison
of woody vegetation change in our dataset and annual land
cover maps from the Brazilian government’s PRODES program1

yielded an R2 of 0.88 (Clark et al., 2012). For this study,
to further assess the agreement between our dataset estimate
of pixel-level changes and that of other global forest cover
datasets, we compared pixel-level changes in our dataset to
the Hansen et al. Global Forest Cover dataset (Hansen et al.,
2013). We found that pixel-level changes in our dataset
showed 79% overall agreement with the Global Forest Cover
dataset (Supplementary Table S1, see Supplementary Material
for more details).

For further analysis, we summed land cover classes within
40 km wide hexagonal grid cells (∼1200 km2). This hexagon
size is approximately equal to the average municipality in LAC
(Graesser et al., 2015). By summing land cover within these
hexagons, we capture dynamics on relatively fine scales, while
limiting per pixel geo-registration and misclassification errors.
For all analyses, we considered only hexagons that overlapped at
least 80% with tropical forest biomes (Tropical and Subtropical
Moist Broadleaf Forest, Tropical and Subtropical Dry Broadleaf
Forest, and Tropical and Subtropical Coniferous Forest biomes)
according to (Olson et al., 2001).

Identification of Trends in Forest Cover
To describe trends in forest cover in individual hexagons, we used
a shape selection algorithm designed for time series of Landsat
data (Moisen et al., 2016). The algorithm uses non-parametric
statistical methods to fit several candidate shapes to a time series
of data. These candidate shapes include flat, increasing (hereafter
reforestation), decreasing (hereafter deforestation), vee (hereafter
deforestation reversal), and inverse vee (hereafter reforestation
reversal, Figure 1). For each time series the algorithm fits all
five candidate shapes to the data. It then uses the Bayesian
information criterion (BIC) to select the shape with the best fit
for each cell’s time series.

1www.obt.inpe.br/prodes

We applied this algorithm to the 14-year time series of woody
vegetation cover (tree and shrub cover, not including plantations)
for each hexagon. To reduce the influence of outliers and inter-
annual noise in the time series, we developed a bootstrapping
procedure to determine the best-fit shape for each cell. For
each time series, we removed three observations at random
and used the shape selection algorithm to determine the best-
fit shape for the subset of the time series. We repeated this
procedure 300 times and identified the shape that was identified
as the best fit in the largest number of iterations. We restricted
subsequent analyses to hexagons whose shapes were selected with
high confidence, which we defined as being selected in ≥90% of
iterations. Hexagons in which the majority shape was selected in
less than 90% of iterations were designated as “low confidence”
and excluded from subsequent analyses (30.3% of hexagons).
Furthermore, because the shape selection algorithm will assign
a shape to a time-series regardless of the magnitude of change,
we classified trajectories where the total change in forest cover
was less than 1% of the grid cell (∼20 km2) as “flat” (28%
of hexagons). This was done to avoid including locations with
only very slight changes in our analysis so as not to inflate the
frequency of change.

To understand the trajectories in more detail, for each grid
cell, we calculated the total magnitude of reforestation in each
grid cell as the difference between the initial and maximum forest
cover. We calculated the net change during the study period as
forest cover in 2014 minus forest cover in 2001. To investigate
the geographic patterns of reforestation reversals, we compared
the relative frequency of trajectory shapes across the seven LAC
countries with over 100 hexagons that fall within forest biomes
(Supplementary Table S2).

Carbon Potential Calculation
We quantified the implications of reversals of reforestation for
carbon sequestration with a bookkeeping approach in which
we estimated carbon accumulation in each hexagon given the
observed trajectory and a region-specific rate of carbon uptake
in young second-growth forests. We compared two quantities:
(1) the carbon potential, i.e., the amount of carbon that would
have been sequestered by new forests had no re-clearing occurred
and (2) carbon sequestration observed in new forests when
accounting for reversals of reforestation. We considered only
reforestation relative to forest cover in 2001 and clearing of these
new forests. We ignored deforestation relative to 2001, as our
goal was not to quantify emissions due to deforestation, but
rather, foregone carbon sequestration potential due to reversals
of reforestation.

To quantify carbon potential and observed carbon
sequestration, we analyzed the time series of yearly observations
of woody vegetation cover for each grid cell (w0, w1, w2, . . .,
w13), in a process analogous to a stage structured population
model. For each year (t), starting in 2002, change in forest cover
(r) is calculated as:

rt = wt − wt−1 if wt > w0

rt = 0 if wt < w0
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FIGURE 1 | Trajectories of forest change in tropical Latin America and the Caribbean. Light gray areas indicate biomes other than tropical forest. Dark gray areas
indicate forested regions where noisy trajectories prevented classification. Arrows in the legend illustrate the shape of the forest cover trajectory change over time.

where w is woody vegetation cover (in hectares) and w0 is
initial forest cover in 2001, such that we are only considering
reforestation and reversal of reforestation, and do not account
for deforestation of forests established prior to 2001. When rt
is positive, the corresponding number of hectares are added to
the youngest stage class. In subsequent time steps, those forests
will advance to the next stage class, i.e., age 1 year. Negative
rt is analogous to death, and is subtracted from the existing
“population,” i.e., previous years’ reforestation, removing the
youngest forests first until the corresponding number of hectares
have been removed from the total or there are no remaining
forests. At the end of each time step, forests in the “population”
advance to the next stage, i.e., age 1 year.

After the final time step, we calculated carbon stored in
second-growth forest. To do so, we first calculate a regional
rate of carbon sequestration in each hexagon as the zonal
average of total aboveground biomass and its uncertainty after
20 years of secondary forest growth, using the geographic data
from Poorter et al. (2016). We approximated annual rates of

biomass accumulation as 1/20th of this quantity, which assumes
linear accumulation of carbon during the first 20 years of
succession. We used this value to calculate total AGB stored
in second-growth forests in each hexagon, given the age class
structure in 2014 derived from the yearly woody vegetation cover
observations as described above. To estimate stored carbon, AGB
values were divided by two, under the assumption that carbon
makes up 50% of biomass (Chave et al., 2009).

We repeated this procedure twice. First, we conducted the
calculations exactly as described above. This calculation yielded
estimates of “observed carbon.” Second, we conducted the same
procedure, but calculated rt as follows:

rt = wt − wt−1 if wt > wt−1

rt = 0 if wt−1 ≤ wt

Under this set of rules, no deforestation occurs, and all new
forests added to the “population” continue to age until the end of
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the study period. The amount of carbon stored in second-growth
forests in this scenario is the “carbon potential.” This procedure
was done for all cells that experienced a net increase in forest
cover relative to 2001 at some point during the study period,
including all trajectory shapes.

RESULTS

Trajectories of Forest Cover Change
Most classified hexagons (59.7%) experienced no change in
forest cover during the study period. Where forest cover
changed, deforestation was the most common trajectory,
observed in 18.8% of classified hexagons. Deforestation
reversals occurred in 8.7% of hexagons. Reversals of
reforestation were nearly ten times as common as sustained
increases in forest cover, occurring in 11.7% of classified
hexagons (Figures 1, 2). Only 1.1% of hexagons experienced
sustained reforestation.

In regions where reforestation reversals occurred, forest
cover increased by a total of 5,983,781 hectares (across
hexagons mean = 9.0%, SD = 9.2%) before it began to
decline. By 2014, only 31% (1,832,394 hectares) of these new
forests remained. Although most of the reforestation reversal
regions still experienced a net increase in forest cover between
2001 and 2014 (mean = 1.8%, sd = 5.8%; Supplementary
Figure S2), these gains were significantly smaller than in regions
where reforestation was sustained (mean = 9.7%, SD = 9.5%,
Supplementary Figure S2, t = 6.9, p < 0.0001). Where
deforestation reversals occurred, 61.8% of hexagons underwent
net reforestation relative to 2001. Across deforestation reversal
hexagons, forest cover increased by a net total of 1,945,119
hectares relative to forest cover in 2001 (across hexagons
mean = 2.2%, SD = 7.6%).

We found significant differences in the distribution of
forest cover change trajectories across countries (Figure 2A,
χ2 = 673.99, p < 0.0001). Reforestation reversals were
relatively rare in Bolivia (7.5% of hexagons) and Brazil (7.3%),
where deforestation and deforestation reversals were more
common, and in Peru (5.5%), where forest cover is still
high in remote regions. Colombia and Venezuela had the
highest rates of reforestation reversals, at 29.4 and 17.6% of
hexagons, respectively.

Effects of Reforestation Reversals on
Carbon Sequestration
Without reclearing, forests that established between 2001
and 2014 would have sequestered 0.58 Pg C (95% c.i.:
[0.09, 1.15]; Figure 3A). Only 0.14 Pg C (95% ci: [0.02,
0.28]) was captured in new forests by the end of the
study period (Figure 3B). This gap represents a loss of
76% of the carbon potential of reforestation in Latin
America and the Caribbean between 2001 and 2014
(Figure 3C). The magnitude of lost carbon potential
differed across countries, ranging from 27% (Guyana) to
87% (Venezuela; Figure 2B).

DISCUSSION

Our results show that reforestation trends in Latin America
and the Caribbean in the early 2000s reversed in many regions,
undoing some or all the previous forest cover gains. These
reversals severely limit carbon sequestration: we estimate that
in their absence, tropical second-growth forests could have
sequestered over four times more carbon between 2001 and
2014. This result further calls into question the recent claims
that “global tree restoration [is] our most effective climate
solution to date” (Bastin et al., 2019). Reversals of reforestation
also limit second-growth forests’ contribution to biodiversity
conservation, as tropical second-growth forests require a median
time of 50 years to recover species richness similar to that of
old growth forests (Rozendaal et al., 2019). Without permanence,
the contribution of reforestation to climate mitigation and
biodiversity conservation will be severely curtailed, though
clearing of second-growth forests may ultimately serve to buffer
primary forest loss (Wang et al., 2020).

Detection of reforestation reversals in this study was possible
only because our methods allowed for flexible trajectories and
because we analyzed a multi-date time series of land cover
data. Because most reforestation reversals still resulted in net
gains in forest cover from 2001 to 2014, a methodological
approach to identify binary deforestation/reforestation trends
in forest cover would have led to most of these trajectories
being classified as reforestation (e.g., Nanni et al., 2019). While
this is strictly correct, our method reveals a more complex
and dynamic reality, where short-term increases in forest cover
do not necessarily indicate persistent trends. Reforestation and
deforestation, which occurred in 19.9% of hexagons, were no
more common than the more dynamic categories of reforestation
reversals or deforestation reversals (20.4%). Together with recent
findings of cyclical “reforestation treadmills”’ in planted areas in
tropical regions (Sloan et al., 2019), our results contribute to a
growing body of evidence that suggests that fitting linear trends
or calculating net changes across two dates can mask important
dynamics at shorter time scales. Detailed land cover time series
and non-linear methods are essential for better understanding
land cover dynamics. Furthermore, our conceptual models
must move beyond classical conceptions of forest transition
theory where forest cover increases are assumed to be sustained
(Mather, 1992).

Several methodological limitations add uncertainty to our
results. First, we used land cover data derived from MODIS
imagery (6.25 hectare pixels). This relatively large pixel size
may result in omission of some second-growth forests from our
dataset, as many second-growth forest patches are quite small
(less than one hectare; Schwartz et al., 2017a). These small patches
comprising mixed pixels with other land cover types might not
be detected by the classification, especially during early stages of
growth when canopies are open and short. Overlooking these
young forests and small patches might bias our estimates of
carbon storage of second growth forest. However, our estimates
of carbon potential lost are likely conservative since smaller and
younger patches are more prone to reclearing (Schwartz et al.,
2017b; Reid et al., 2018).
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FIGURE 2 | (A) Relative proportions of hexagon forest cover change trajectories across countries and biomes. Seven countries with the largest amount of tropical
forest area are shown; see Supplementary Table S1 for data on additional countries. Hexagons that could not be assigned a trajectory with high confidence are
omitted. (B) Comparison of carbon sequestration potential without reforestation reversal and estimated actual carbon uptake in seven LAC countries with most
tropical forest area.

Second, our analysis was not able to classify all land-cover
time series as one of the candidate shapes. Specifically, about 30%
of hexagons were assigned the “low confidence” trajectory. This
class likely reflects noisiness in the underlying classification as
it was common in regions where, according to a previous study
with this dataset, our random forest classifier showed lower rates
of internal agreement (Clark et al., 2012). This class could also
occur in places that experienced frequent, cyclical disturbances
during the study period, though it is not possible to distinguish
between these scenarios with this dataset. Local-scale analyses of
forest permanence and future improvements to land cover data
products will help resolve some of these uncertainties.

Some reforestation is ephemeral by nature. Specifically,
activities such as timber harvesting and shifting cultivation
involve cyclical reforestation and deforestation dynamics (Rudel
et al., 2016). We expect these activities would lead to cycles
on local scales – e.g., on individual fields or within forest
stands. Rather than reflecting these inherently cyclical activities,
our results reflect landscape- to regional-scale trends since
we aggregated land cover pixels to 1200 km2 hexagons. This
aggregation may mask important local-scale dynamics such as
simultaneous deforestation and reforestation, which would result
in no net change in aggregated forest cover. Though beyond the
scope of this study, further research into the prevalence of these
dynamics and the drivers of reforestation and clearing at the pixel
scale (e.g., Schwartz et al., 2017b; Nunes et al., 2020) could help

better understand regional trends in forest cover and improve
estimates of carbon sequestration through reforestation.

Variation in the prevalence of reforestation reversals across
countries highlights the strong influence of regional and
local context on land cover dynamics. For example, the high
rates of reforestation reversals observed in Colombia and
Venezuela likely reflect complex political, social, and economic
realities. Much of the reforestation reversal in Colombia
occurred in the Andes. There, during the early part of the
study period, woody vegetation cover increased, associated
with rural-to-urban migration and land abandonment driven
by violence and conflict (Sánchez-Cuervo et al., 2012). But,
as the peace process progressed (2007–2014) much of this
reforestation reversed. More recently, rates of deforestation
have accelerated, particularly in the lowlands. These trends
suggest that the post-conflict peace process, including rural
development incentives and the government’s difficulties
establishing a presence in remote regions, has initiated new
land-use dynamics (Hettler et al., 2017; Armenteras et al., 2019;
Clerici et al., 2019).

In Venezuela, deforestation has been associated with large
dam projects (Sy et al., 2015), oil exploration (Richards and
VanWey, 2015; de Cárdenas García, 2017) and gold mining
in the Orinoco basin. Reforestation reversals in Venezuela
could be linked to food shortages, though how recent political
and economic challenges have influenced land-use change
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FIGURE 3 | (A) Potential carbon sequestration in new forests, had no re-clearing of reforestation occurred, (B) observed carbon sequestration in new forests, when
accounting for re-clearing, and (C) percent of carbon potential foregone due to reversal of reforestation.

Frontiers in Forests and Global Change | www.frontiersin.org 7 July 2020 | Volume 3 | Article 85

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-03-00085 July 12, 2020 Time: 17:31 # 8

Schwartz et al. Reforestation Reversals in Tropical Forests

in Venezuela requires further research. Conventional forest
transition models assume a relatively constant transition toward
reforestation as countries develop (Mather, 1992; Mather and
Needle, 1998) but dramatic political changes may substantially
alter this pattern, in particular if considering finer temporal
scales. The cases of Colombia and Venezuela illustrate that
political instability (or transitions from instability toward
stability) may have profound effects in land cover trajectories.
More generally, the socioeconomic conditions that favor
reforestation may prove to be ephemeral in the face of economic
crises, political unrest, and other shifts.

Many LAC nations have committed to reforestation and
forest restoration under the Bonn challenge, a global effort
to restore 150 million hectares of degraded land by 20202.
Colombia has pledged 1 million hectares forest restoration
(0.09 Pg C sequestration), while Brazil has pledged 12
million hectares (1.14 Pg). Within this context, our findings
represent substantial foregone carbon sequestration, larger
than Colombia’s and nearly half Brazil’s Bonn challenge
commitments. The Bonn Challenge commitments involve
establishment of new forests either through restoration or
natural regeneration, but notably do not include strong
provisions to ensure permanence. Our results suggest that
newly established forests in LAC are often ephemeral and
at risk of clearing, especially during periods of political
transition and/or instability. For example, one of the first acts
of the newly elected Brazilian government in 2019 was to
limit enforcement of the Brazilian forest code, which would
remove protection on up to 15 million hectares of forest
(Freitas et al., 2018).

How to best improve permanence of tropical second-growth
forests is not clear, especially given land-use tradeoffs and
growing demand for agricultural land (Lambin and Meyfroidt,
2011) and the complex tradeoffs and relationships between
second-growth and primary forest clearing (e.g., Wang et al.,
2020). To date, limited research has focused on policies and
practices to enhance permanence of second-growth forests (but
see Chazdon et al., 2020). Further research into the drivers
of reforestation reversals and permanence could help guide
2 www.bonnchallenge.org

development of policies and management practices to better
protect second-growth forests. Permanence can and should be
incorporated into restoration planning from the earliest stages.
For example, a recent study identifying restoration opportunities
in tropical forest landscapes included a variable to represent
the chances that restored forests persist over time (Brancalion
et al., 2019). Explicit plans to promote permanence of restored
or naturally regenerated forests will be necessary to achieve the
Bonn Challenge goals, and for tropical second-growth forests to
make a substantial contribution to climate change mitigation.
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