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Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the
state of photosynthesis and offers the prospect of defining remote sensing-based
estimation of Gross Primary Production (GPP). There is strong theoretical support for the
link between SIF and GPP and this relationship has been empirically demonstrated using
ground-based, airborne, and satellite-based SIF observations, as well as modeling.
However, most evaluations have been based on monthly and annual scales, yet
the GPP:SIF relations can be strongly influenced by both vegetation structure and
physiology. At the monthly timescales, the structural response often dominates but
short-term physiological variations can strongly impact the GPP:SIF relations. Here,
we test how well SIF can predict the inter-daily variation of GPP during the growing
season and under stress conditions, while taking into account the local effect of sites
and abiotic conditions. We compare the accuracy of GPP predictions from SIF at
different timescales (half-hourly, daily, and weekly), while evaluating effect of adding
environmental variables to the relationship. We utilize observations for years 2018–
2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America
and Europe and use TROPOMI satellite data for SIF. Our results show that SIF
is a good predictor of GPP, when accounting for inter-site variation, probably due
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to differences in canopy structure. Seasonally averaged leaf area index, fraction of
absorbed photosynthetically active radiation (fPAR) and canopy conductance provide
a predictor to the site-level effect. We show that fPAR is the main factor driving
errors in the linear model at high temporal resolution. Adding water stress indicators,
namely canopy conductance, to a multi-linear SIF-based GPP model provides the best
improvement in the model precision at the three considered timescales, showing the
importance of accounting for water stress in GPP predictions, independent of the SIF
signal. SIF is a promising predictor for GPP among other remote sensing variables,
but more focus should be placed on including canopy structure, and water stress
effects in the relationship, especially when considering intra-seasonal, and inter- and
intra-daily resolutions.

Keywords: Gross Primary Production, Solar-Induced Chlorophyll Fluorescence, canopy conductance, canopy
structure, photosynthesis

INTRODUCTION

Gross Primary Production (GPP), which is a measure of the flux
of carbon taken up by vegetation through photosynthesis, is the
largest components (along with ecosystem respiration) of CO2
exchange between terrestrial ecosystems and the atmosphere.
Solar-Induced Chlorophyll Fluorescence (SIF) has been gaining
popularity as a tool to estimate GPP indirectly. SIF data can be
obtained through either tower- or airborne-based measurements
(Chang et al., 2020) and satellite remote sensing instruments
(Frankenberg et al., 2011), where the latter presents a promising
alternative for accurate global GPP modeling.

Solar-Induced Chlorophyll Fluorescence represents a small
fraction of the Photosynthetically Active Radiation (PAR) that
is absorbed by chlorophyll pigments and re-emitted as a faint
glow mainly in the range of 650–800 nm (Papageorgiou,
1975; Baker, 2008). Since both light reaction of photosynthesis
and SIF compete for the same excitation energy, SIF can
be an indicator of the functioning of the photosynthetic
mechanism (Porcar-Castell et al., 2014). Conceptually, both
GPP and SIF are considered to be proportional to Absorbed
PAR (APAR; Monteith, 1972; Guanter et al., 2014). Non-
Photochemical Quenching (NPQ), a process for excess energy
dissipation (Jonard et al., 2020), is a third pathway for light
use, potentially playing a major role in the GPP:SIF relations
(Wohlfahrt et al., 2018).

Based on the information provided by SIF on the actual
electron transport from Photosystem II to Photosystem I, Gu
et al. (2019) derived fundamental equations linking SIF to C3
and C4 photosynthesis at the canopy level using a big leaf
approach, thus bridging leaf scale and canopy scales for GPP:SIF.
However, many canopy-level quantities used in the derivation
could not be estimated through remote sensing approaches or
flux measurements, which limits the wide use of this formulation.
Nevertheless, it is a benchmark for investigating GPP:SIF at larger
spatial timescales.

Solar-Induced Chlorophyll Fluorescence is reported to be
linearly related to GPP at the diurnal and seasonal scales in
various studies across a variety of sites (Joiner et al., 2014; Yang
et al., 2015; Zhang et al., 2016b; Yang H. et al., 2017; Du et al.,

2019; Magney et al., 2019; He et al., 2020b; Qiu et al., 2020).
However, the slopes of these linear GPP:SIF relations differ across
sites, biomes, and vegetation types (Smith et al., 2018; Sun et al.,
2018; Zhang et al., 2018b). SIF is shown to be a relevant indicator
of crop productivity (Guanter et al., 2014; Guan et al., 2016, 2017;
Zhang et al., 2018a; He et al., 2020a) and seasonal phenology
(Joiner et al., 2014; Jeong et al., 2017; Yang H. et al., 2017).
However, at instantaneous to hourly temporal scales, the GPP:SIF
correlation is not as strong as at longer timescales, i.e., from
days to seasons and years (Zhang et al., 2018c; Marrs et al.,
2020). Observations and models at short timescales are needed to
characterize the environmental effects that cause rapid variations
(i.e., intra-daily, and inter-daily within season) of GPP, such as
light saturation and water stress.

At sub-diurnal or half-hourly timescales, GPP:SIF was
reported to follow an asymptotic trend (Li et al., 2018a; Chen
et al., 2020). Indeed, GPP saturates at high APAR, while SIF keeps
increasing as APAR increases, leading to a hyperbolic relationship
between SIF and GPP at the instantaneous timescale (Damm
et al., 2015; Gu et al., 2019). This hyperbolic-shaped relationship
is less apparent over longer timescales, when variability in SIF
and GPP is dominated seasonal variations in canopy structure,
as estimated with the Leaf Area Index (LAI), whose effects
are present in both SIF and GPP signals (Lu et al., 2018;
Balzarolo et al., 2019; Dechant et al., 2020). Thus, the GPP:SIF
correlation becomes more linear and relatively less sensitive
to faster variations in the environmental drivers and plant
physiological stress. Beyond physiological effects that govern
GPP:SIF at the leaf level, non-linear relationships of GPP:SIF at
the flux-footprint scale can therefore also be attributed to canopy
structure. In addition, SIF is function of the view geometry. SIF
is emitted from leaves exposed to sunlight, thus all conditions
involved in the interaction between leaves, incident radiation,
and view angle are important drivers of SIF observed signal.
Therefore, canopy structure, and specifically gap fraction, leaf
angle, and clumping index, and their interactions with the
incident radiation angle, and the satellite viewing angle are
important factors influencing GPP:SIF (Dechant et al., 2020).

The ambiguity in the GPP:SIF relations across timescales
opens the door for further investigations of the effects of
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short-term environmental variables on this correlation, notably
water stress. Beside variations in vegetation structure, GPP can
be modulated by both non-stomatal and stomatal regulation.
In periods of water shortage or stress, indicated by high vapor
pressure deficit (VPD) and low soil moisture (Zhou et al.,
2019), stomata tend to close in order to reduce water loss
through transpiration, simultaneously resulting in a decrease in
photosynthetic rate. However, the extent of stomatal response
to water stress is species specific (Matheny et al., 2015; Konings
and Gentine, 2017). Furthermore, reductions in stomatal
conductance under high VPD do not necessarily translate into
a reduction in photosynthesis of the same magnitude due
to variations in intrinsic water use efficiency (Zhang et al.,
2019; Green et al., 2020; Grossiord et al., 2020). Non-stomatal
limitation of photosynthesis can be induced by water-stress
through xylem cavitation, decrease in mesophyll conductance for
CO2 (Flexas et al., 2016), and reduction in metabolic efficiency of
the enzyme Rubisco (Grassi and Magnani, 2005).

The partitioning of APAR between GPP, NPQ, and SIF
is sensitive to environmental conditions, such as incoming
PAR, canopy structure (as represented by the fraction of the
absorbed PAR, which depends mainly on LAI, but also other
structural characteristics of the canopy, such as gap fraction, leaf
clustering, and leaf angles), and soil water availability. At low
light, most of the absorbed PAR is utilized for photosynthesis,
thus increasing its efficiency. However, at high light, energy-
consuming biochemical reactions of CO2 assimilation and
electron transport chain saturate, leading to a re-allocation of
excess energy into SIF and NPQ (Porcar-Castell et al., 2014),
thus modifying the partitioning between SIF and GPP. Such light
saturation or water stress scenarios should lead to deviation from
a linear relationship between GPP and SIF.

Differences in SIF responses can also stem from SIF
measurement methods, which can be either active, i.e., ground-
based through pulse amplitude-modulated measurements
(Goulas et al., 2017), or passive (remote sensing) methods. Active
measurements can directly estimate the yield as they emit an
active signal, but this can only be done at a local level (Moya et al.,
2019). Passive measurements, such as from satellites, have a wider
spatial coverage but they are available at a much lower temporal
frequency (depending on satellite pass time) and cannot directly
control the incoming PAR. Furthermore, differences in the time
of signal acquisition by the satellite play an important role. For
example, morning-time acquisitions (such as with the MetOp-A
satellite using GOME-2) are conducted with limited APAR
(Lin et al., 2019) and are less affected by water stress, because
morning-time VPD is low, and the vegetation tends to recover
from stress overnight. However, morning-time acquisitions
represent a very low GPP, whereas noontime acquisitions (such
as with TROPOMI) will have much larger APAR thus GPP would
be stronger, but could be more easily affected by light saturation
and water stress.

This study focuses on investigating the GPP:SIF relations at
three short timescales: half-hourly, daily, and weekly, testing the
predictability of inter-daily GPP variations within the growing
season. We further study the effects of water stress, light
saturation, and site/ecosystem characteristics on the GPP:SIF

relations. We use data from 31 eddy covariance (EC) sites in
the northern hemisphere. SIF data are taken from the recent
TROPOMI measurements, taking advantage of its high spatial
and temporal resolution, and measuring SIF near noontime,
which leads to a better assessment of water stress and light
saturation. Data are restricted to the 2018–2019 growing seasons
of each site, as we focus on evaluating the intra-seasonal effects of
physiological connections between SIF and GPP, and aim to avoid
the longer timescales, where GPP variation is driven primarily by
seasonal phenology.

MATERIALS AND METHODS

The following section goes through the details of data acquisition,
processing, and analysis. Table 1 comprises the definitions for all
variables used throughout the manuscript, including their names,
acronyms, and units.

Study Sites
Eddy covariance data were obtained through the AmeriFlux
database1, and the European Fluxes Database Cluster (EFDC)2.
This study was focused on temperate forest ecosystems located
between 35◦N and 65◦N and considers the following IGBP
land cover classifications: Evergreen Needleleaf Forests (ENF),
Evergreen Broadleaf Forests (EBF), Deciduous Needleleaf Forests
(DNF), Deciduous Broadleaf Forests (DBF), Mixed Forests (MF),
and Woody Savannas (WSA). The study period comprised of
growing seasons 2018 and 2019, depending on data availability
from each site. We selected all sites that reported carbon dioxide
fluxes for at least 50% of the year in 2018 and/or 2019. After
filtering, 31 sites with 47 site-year growing seasons’ data were
available for analysis: BE-Vie, CH-Lae, CZ-BK1, CZ-Lnz, CZ-
RAJ, CZ-Stn, DE-Hai, DE-HoH, DE-Hzd, DE-Obe, DE-Tha,
FR-Fon, IT-SR2, RU-Fyo, SE-Nor, US-Me2, US-Me6, US-MMS,
US-NC3, US-NR1, US-PFa, US-Rpf, US-SRM, US-Syv, US-UMB,
US-UMd, US-Vcm, US-WCr, YS-xBR, US-xDL, and US-xRM.
Sites’ details (location on map, number of data points, DOI,
coordinates, IGBP) were listed in Supplementary Material. Two
sites provided hourly data instead of half-hourly (US-MMS and
US-PFa), and in these sites data were interpolated to half-hourly
for consistency.

Solar-Induced Chlorophyll Fluorescence
Data
Solar-Induced Chlorophyll Fluorescence data were calculated
from spectral observations by the TROPOspheric Monitoring
Instrument (TROPOMI) satellite, launched on October 13th,
2017. TROPOMI spectral range met the 743–758 nm range
for detecting SIF (Köhler et al., 2018), and was provided at
a spatial resolution of 7 × 3.5 km2 with global coverage. SIF
emissions were detected daily at approximately same solar time
(∼13:30 pm) at the equator. Swath time correction was applied
at all sites in order to determine the local solar time for each

1https://ameriflux.lbl.gov/
2http://www.europe-fluxdata.eu/
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TABLE 1 | Variable names, acronym definitions, and units.

Acronym Full name Unit

APAR Absorbed Photosynthetically Active
Radiation

[µmolPhoton m−2 s−1 ]

b Fitted coefficient for Hyperbolic
GPP:SIF Model

[mW m−2 sr−1 nm−1 ]

CCO2 Carbon Dioxide Molar Fraction [µmol mol−1 ]

Cp Specific Heat of Dry Air [J g−1 K−1 ]

EF Evaporative Fraction –

FC Carbon Dioxide Flux [µmolCO2 m−2 s−1 ]

fPAR Fraction of Absorbed
Photosynthetically Active Radiation

–

gc Stomatal Conductance [m s−1 ]

GPP Gross Primary Production [µmolCO2 m−2 s−1 ]

GPPgap-filled Gap-filled Gross Primary Production [µmolCO2 m−2 s−1 ]

GPPmax Fitted coefficient for Hyperbolic
GPP:SIF Model

[µmolCO2 m−2 s−1 ]

H Sensible Heat Flux [W m−2 ]

H0 Step Function to zero negative cos(θ) –

LAI Leaf Area Index –

LE Latent Heat Flux [W m−2 ]

NEE Net Ecosystem Exchange [µmolCO2 m−2 s−1 ]

NIR Near-Infrared Reflectance –

NPQ Non-Photochemical Quenching –

PAR Photosynthetically Photosynthetic
Active Radiation

[µmolPhoton m−2 s−1 ]

PRI Photochemical Reflectance Index –

R11 Reflectance at band 11 (526–536 nm) –

R12 Reflectance at band 12 (546–556 nm) –

rah Aerodynamic Resistance [s m−1 ]

Reco Ecosystem Respiration [µmolCO2 m−2 s−1 ]

RH Relative Humidity –

Rn Net Radiation [W m−2 ]

SC Storage Term of Carbon Dioxide Flux [µmolCO2 m−2 s−1 ]

SIF Solar Induced Fluorescence [mW m−2 sr−1 nm−1 ]

SIFDaily Upscaled Daily SIF Average [mW m−2 sr−1 nm−1 ]

SIFInst SIF Value at Time of Measurement [mW m−2 sr−1 nm−1 ]

SM Soil Moisture –

SWC Soil Water Content –

TA Air Temperature [K]

tm SIF Time of Measurement –

u* Friction Velocity [m s−1 ]

VPD Vapor Pressure Deficit [Pa]

WS Wind Speed [m s−1 ]

α Linear Mixed Effect (LME) Model
Slope

[µmolCO2 s−1 mW−1 sr nm]

βSite Site Level Intercept of LME Model
(Random Intercept)

[µmolCO2 m−2 s−1 ]

γ Psychometric Constant [Pa K−1 ]

γi Response slope of additional variable
in LME

Depends on the units of variablei

in LME

1 Slope of the saturated vapor
pressure curve

[Pa K−1 ]

θ Solar Zenith Angle Degree

ρ Air density [kg m−3 ]

ρa Molar Density of Air [mol m−3 ]

observation. Overall SIF satellite measurements fell between 10
am and 2 pm local time. Observations obstructed by cloud-
cover conditions were filtered out. SIF data were reported in
milliwatt per meter squared, per steradian, per nanometer [mW
m−2 sr−1 nm−1].

In order to get equivalent SIF values at the daily timescale, we
used the scaling approach proposed by Frankenberg et al. (2011)
to convert instantaneous SIF to daily average SIF. This method
accounts for the variations in overpass time (including due to
swath), length of day, and solar zenith angle:

SIFDaily = SIFInst ×
1

cos(θ (tm))
∫

t=tm+12hours
t=tm−12hourscos (θ (t))

×H0 (cos (θ (t))) dt (1)

where SIFDaily is the upscaled daily SIF average, SIFInst is the
SIF value at time of measurement tm, θ(tm) is the corresponding
solar zenith angle, and H0 is a step function where H0 (cos (θ (t)))
equals zero when cos (θ (t)) is negative and equals one when
cos (θ (t)) is positive (Köhler et al., 2018). The integral is
calculated using a time interval, dt, of 10 min.

Gross Primary Production Data
All sites reported turbulent net carbon dioxide fluxes (column
FC, in the EC data), but Net Ecosystem Exchange (NEE) and GPP
were not provided by all sites. For consistency, a unified modeling
approach for estimating GPP was followed across all sites. NEE
was calculated as the sum of the turbulent Flux of CO2 (FC) and
Storage of CO2 (SC):

NEE = FC + SC (2)

Some of the sites did not provide SC, thus SC was approximated
using the following equation:

SC = ρa ×
h
∫
0

dCCO2

dt
dz (3)

where ρa is the molar density of the air [mol m−3],
and CCO2 is Carbon Dioxide molar fraction [µmolmol−1].
Integration includes all available measurements for carbon
dioxide concentration from the ground to the CO2 flux
measurement height, h.

Growing Season
The growing season was defined using the carbon uptake period
(i.e., carbon flux phenology, Garrity et al., 2011). A 7-day moving
average of NEE was calculated and then, the peak seasonal NEE,
i.e., the most negative 7-day average NEE for CO2 uptake. The
start and end of each site-year’s growing season were considered
as the first and last day, respectively, where carbon uptake rates
were above (more negative then) a threshold of 5% of the peak
seasonal NEE. Growing season start and end dates of each
site are provided in Supplementary Table 1.3. Following the
identification of the time period of the growing season, a seasonal
friction velocity (u∗) filter threshold value was defined following
the approach by Reichstein et al. (2005) and filtered flux data
during times of low turbulence, below the u∗ threshold value.

Artificial Neural Network
An Artificial Neural Network (ANN) algorithm (Moffat et al.,
2007), with parametric choices as described in Morin et al. (2014),
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was used to model fluxes during each growing season at each site.
For each EC flux variable, 50% of valid observations were used
to train the network, 25% of the remaining valid data to evaluate
the network goodness of fit, and 25% to validate the final model.
100 networks were run per site-season, and the final model was
the ensemble average of the top-fitting 10% of these. Separate
ANN models were trained for daytime and nighttime data for
each site-season.

During the process of modeling GPP, we first used an ANN
to gap fill sensible heat (H) and latent heat (LE) fluxes. Then,
an ANN was used to model ecosystem respiration (Reco). It
was assumed that during the night there was no photosynthetic
activity, therefore, nighttime NEE was equal to Reco. Thus, the
ANN was trained with nighttime data. The resulting model
was used to gap fill nighttime Reco and NEE, and to simulate
daytime Reco. We assumed no nighttime GPP. The daytime was
determined based on the Greenwich Mean Time (GMT) offset
of each site and its latitude (Tramontana et al., 2020). During
daytime, GPP was:

GPP = NEE− Reco (4)

Where, during the daytime period of observations, GPP was
a negative quantity and Reco positive. This approach resulted
in an observation gap whenever NEE observations were not
available. We used these GPP data (corresponding with time
when observed NEE values were available from EC and not gap-
filled) for the half-hourly analysis. We used an ANN to gap fill
NEE and used the complete time series of NEE and Reco to
calculate a gap-filled time series for GPP (GPPgap-filled). Daily D
and weekly GPP were calculated from GPPgap-filled. The drivers
of each of the ANN models for LE, H, Reco, and GPPgap-filled are
listed in Table 2. It should be noted that PAR or net radiation,
and soil moisture are usually used as GPP drivers, however, many
sites did not report them and thus, requiring them as ANN input
will lead to losing many sites for missing the corresponding data.

Ecosystem State Variables
Several environmental variables were used in the analysis along
with SIF and GPP: canopy conductance (gc), evaporative fraction
(EF), APAR, photochemical reflectance index (PRI), PAR, soil
moisture (SM), VPD, RH, TA, LE, fPAR, LAI, and NIR. All
these variable data were provided using EC and remote sensing
measurements or derived from data from EC measurements.

Full descriptions for the source and calculation of each variable
are listed below.

MODIS data product (MCD15A2H v006) was used for leaf
area index (LAI) and fraction of absorbed PAR (fPAR), at 8-
day time resolution and 500 m pixel size for each site using
the Earthdata open-source repository3. APAR [µmolPhoton m−2

s−1] was calculated using the following equation:

APAR = fPAR× PAR (5)

where PAR [µmolPhoton m−2 s−1] observations were measured
at the EC flux sites.

Surface conductance was determined by inverting the
Penman-Monteith model (Monteith, 1972) with measured
evapotranspiration and meteorological data. The Penman-
Monteith model separates the effects of aerodynamic and surface
conductances. In forest ecosystems, where soil evaporation is
small relative to leaf transpiration, the surface conductance is
a good proxy for canopy conductance, gc [m s−1] (Novick
et al., 2016), which, when the leaf surfaces do not hold standing
water (as is the case most of the time, except immediately
after precipitation), represents a volume-weighted integral of the
leaf-level stomatal conductance. Noting that observation times
around rain events are excluded from the analysis because no SIF
measurements are available for thick cloud conditions, thus:

gc =

[
rah ×1× Rn + ρ× Cp × VPD

LE× γ
−

rah × (γ+1)

γ

]−1

(6)
where, rah is the water vapor aerodynamic resistance [s m−1], 1 is
the slope of the saturated vapor pressure curve [Pa K−1], Rn is the
net radiation [W m−2], ρ is the air density [kg m−3], Cp is specific
heat of dry air [J g−1 K−1], VPD is the vapor pressure deficit [Pa],
γ is the Psychometric constant [Pa K−1], and LE is the latent heat
flux [W m−2] measured at the site. rah was approximated using
site observations of u∗ and wind speed (ū) based on the empirical
approach by Monteith and Unsworth (1990):

rah =
ū

u∗2 +
6.2

u∗2/3 (7)

Evaporative Fraction was also used as an indicator for water
stress conditions, where it is the ratio of latent heat flux to the
3https://search.earthdata.nasa.gov/

TABLE 2 | Variables used as drivers in the ANN models used to gap fill different fluxes.

ANN Model Drivers Goodness of fit (R2) RMSE

Day Night Day Night

H [W m−2] VPD 0.61 ± 0.08 0.10 ± 0.10 50.4 ± 9.3 8.6 ± 3.9

LE [W m−2] VPD, U* 0.63 ± 0.10 0.25 ± 0.14 42.2 ± 13.0 6.3 ± 3.4

Reco [µmolCO2 m−2 s−1] LE, H, VPD, WS, U*, TA N/A 0.36 ± 0.2 N/A 1.0 ± 0.36

NEE [µmolCO2 m−2 s−1] LE, H, VPD, WS, U*, RH, TA 0.62 ± 0.08 N/A 3.0 ± 0.96 1.1 ± 0.4

GPPgap-filled [µmolCO2 m−2 s−1] NEE- Reco N/A N/A N/A N/A

The table includes goodness-of-fit statistics for ANN models used to gap fill fluxes. Values represent averages ± standard deviation of R2 and root mean square error
(RMSE) across all sites and years.
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sum of latent heat flux and sensible heat flux, H [W m−2]:

EF =
LE

H + LE
(8)

Surface soil water content (SWC) observations were provided by
ground-based measurements (half hourly) at the EC sites, and
from the spaceborne SMAP dataset4 at 6 am and 6 pm local time
at daily basis. Both data sets were used separately in the analysis.

Photochemical Reflectance Index (PRI) is sensitive to changes
in carotenoid pigments and used as an inverse proxy for NPQ
at short timescales. MODIS data product (MYDOCGA, v006)
is used to get reflectance at bands 11 and 12 at daily resolution
and calculate a proxy of PRI at each site as described in
Wang et al. (2020):

PRI =
R11 − R12

R11 + R12
(9)

where R11 and R12 are the reflectance at bands 11 (526–
536 nm) and 12 (546–556 nm), respectively. MODIS data product
(MOD13Q1 v006) was used for getting NIR. Table 1 above
includes all the acronyms used in this study.

Data Analysis
Data analysis involves three timescales: half-hourly, daily, and
weekly. Instantaneous SIF measurements are used for half-hourly
timescale, upscaled daily average SIF values (Eq. 1) are used for
the daily timescale, while weekly averages of SIF measurements
are used for the weekly timescale. As for GPP, the half-hourly
window during which a SIF observation was available is used
for the half-hourly timescale, while daily and weekly averaged
GPPgap-filled values are used for the daily and weekly timescales,
respectively. For all statistical inferences, a 0.05 significance
level is considered.

The GPP:SIF relations was evaluated at multiple spatial scales
and at the three temporal scales: half-hourly, daily, and weekly for
each spatial scale. First, it was tested at the site level, where both a
linear and a hyperbolic fit models were tested at each site.

Second, data were pooled across all sites and fitted using a
linear regression model. Fourth, data were fitted using a Linear
Mixed Effect (LME) model, where sites is considered as a random
effect, SIF as a fixed effect, and GPP as the response variable:

GPP ≈ α× SIF + βSite + γSite × SIF (10)

where α is the SIF-driven slope (fixed slope), βSite is the site-level
intercept (random intercept), and γSite × SIF is the interaction
between SIF and site. Third, we used similarly structured LME
models, but added additional environmental variables as fixed
effects using a forward stepwise regression for the LME model:

GPP ≈ α× SIF +
∑

i

(
γi × Variablei

)
+ βSite (11)

where γi is the effect (response slope) of the ith environmental
variable. Variables considered in the forward stepwise regression

4https://nsidc.org/data/smap

are: gc, TA, SM, VPD, LAI, PRI, APAR, EF, LE, fPAR, and
NIR. Variables were added to the model based on their pairwise
R2 with the residuals of the current model, and only if their
addition decreased the Akaike Information Criterion (AIC;
Hosmer et al., 2013).

To develop a more reliable estimate of GPP using solely
remote sensing data sources, a simple decision tree model was
developed where SIF was considered as a predictor of GPP
along with other remote-sensing variables. These predictors
included top-surface soil moisture estimates, LAI, PRI, fPAR,
NIR, LE, and APAR calculated using MODIS products, which
was calculated following Eq. 5, but with PAR retrieved from
MODIS instead of PAR observations at the EC-tower location.
Table 3 shows the source of each of the remote sensing product, in
addition to their spatial resolution. For each variable, grids were
aggregate consistent with a typical Eddy-Covariance footprint
(1.5 × 1.5 km2). For variables with larger spatial resolution,
spatial interpolation was used. Site and IGBP were included
as categorical predictors in this selection-tree model in order
to account for site characteristics. The contribution portion of
each variable explaining GPP was used to indicate the relative
importance of each variable in predicting GPP. The decision
tree includes 50 layers, and 3 splits per tree. Twenty percent
of the data was used for validation. It should be noted that
this model was different from the LME or linear regression, as
the decision tree did not assume the effects of the drivers to
be linearly continuous. An important feature of decision tree
models was allowing predictors’ classification by determining the
contribution portion of each variable in predicting GPP.

Throughout the processing of the results, MATLAB (2018)
was used for data processing, ANN modeling, plotting, and
pairwise and multiple linear regressions. JMP Pro 14 was
used for statistical inference using a general mixed-effect linear
models (LME), and for the decision-tree model (JMP, 2018;
MATLAB, 2018).

RESULTS

Gross Primary Production vs.
Solar-Induced Chlorophyll Fluorescence
at Each Site
At the half-hourly timescale, only 19% of the sites showed
significant pairwise linear correlations between GPP and SIF. At

TABLE 3 | Remote sensing products used in the decision tree model and their
corresponding spatial resolution.

Variable Satellite product Spatial resolution

SM SMAP 9000 m × 9000 m

LAI MCD15A2H v006 500 m × 500 m

PRI MYDOCGA v006 1000 m × 1000 m

fPAR MCD15A2H v006 500 m × 500 m

NIR MOD09GQ v006 250 m × 250 m

LE MOD16A2 v006 500 m × 500 m

PAR MCD18A2 v006 5600 m × 5600 m
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the daily timescale, 52% of the sites showed significant correlation
between GPP and SIF, and at the weekly timescale, 42% of the sites
showed a significant correlation (Supplementary Table 1.2). The
highest goodness of fit at all timescales was reached at the site
SE-Nor, where weekly data had the highest R2 of 0.66 (Figure 1).
The number of data points for each fit ranged between 10 and 60,
depending on the data availability at each site. The detailed results
and statistics for each site are shown in Supplementary Material.

Alternatively, we tested the regression between GPP and SIF
at half-hourly resolution assuming a hyperbolic relationship,
following Damm et al. (2015):

GPP = GPPmax ×
SIF

SIF + b
(12)

where GPPmax and b were fitting coefficients. This resulted
in only two sites showing a significant but very weak
relationship (Figure 2).

Gross Primary Production vs.
Solar-Induced Chlorophyll Fluorescence
Over All Sites
We tested the linear relationship between GPP and SIF, pooled
across all sites of the same IGBP classification. No significant
relationship was found for all sites, while a very weak correlation
was found for ENF and DBF (Figure 3). As for MF a weak
(R2 = 0.09) but significant negative linear regression between
GPP and SIF was found. However, this was due to the fact that
data were clustered by site within the MF biome (Figure 3D),
where some sites, such as CZ-Lnz and BE-Vie, had high GPP
but low SIF relative to other sites, leading to an overall apparent
negative GPP:SIF relations in this biome. Similar results were
found for daily and weekly timescales.

When we included the variation between sites as a random
effect (Site) in a LME, the resulting GPP:SIF correlation was
highly significant, whereas the interaction term between SIF and
site (i.e., assuming there was a different GPP:SIF slope at each
site in addition to different intercepts) was found not to have
a significant effect, and therefore was not included in the final
model (Figure 4).

The effect of adding other environmental variables, in addition
to SIF, as predictors for GPP was significant, but with different
results among timescales (Table 3). It was found that water-status

related variables, gc, LE, and EF had the strongest impact on the
goodness of fit (evaluated in terms of improvement in correlation
R2) of the GPP at all three timescales. Daily and weekly timescales
were characterized by having a set of environmental variables that
improved the relationship between GPP and SIF, namely variables
related to phenology and canopy structure (gc, LAI, fPAR, NIR,
and APAR), which was not the case for the half-hourly model.

It should be noted that many of the different environmental
variables involved in the analysis are inter-correlated, particularly
those related to leaf color that vary with a similar seasonal
phenological pattern, i.e., LAI, fPAR, and NIR. Nevertheless, each
of these might have an independent component in its information
content regarding GPP:SIF. In the forward stepwise regression,
we sorted the variables in order of their pairwise regression with
the residuals of GPP:SIF. We then added each element in order to
the multivariate regression model. A variable that was perfectly
correlated to another variable already included in the model
would not have any information content remaining to improve
the model. Our model showed that LAI, fPAR, and NIR all
added a significant information components to the model at both
daily and weekly timescales. These three variables were therefore,
further considered in the more complex decision tree model.

In order to further test the influence of gc and canopy on
the empirical relationship between GPP and SIF, the distribution
of the LME model errors of GPP vs. SIF (expressed as model
residuals = observations – model predictions) is studied under
low (the lowest 33% at each site), intermediate (33th to 67th
percentile per site), and high (highest 33% at each site) gc and
fPAR separately (Figure 5).

The decision-tree model shows that sites has the highest
contribution to predicting GPP among other remote sensing
predictors, while SIF has a minimal contribution, along with
IGBP, PRI, SM, and fPAR. APAR, LAI, LE, and NIR showed
a relatively high contribution with divergence in contribution
portions across timescale (Figure 6). Model precision (estimated
through R2) increased with decreasing temporal resolution.

DISCUSSION

Other studies of GPP:SIF using EC method and remote sensing
(e.g., Li et al., 2018b) showed stronger and more consistent
GPP:SIF correlations than the ones we found. We hypothesize

FIGURE 1 | Example for GPP:SIF relations, using data from SE-Nor, where GPP:SIF had the best goodness of fit at the site level. (A) Half-Hourly, (B) Daily, and (C)
Weekly timescales. The red line represents the linear regression fit.
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FIGURE 2 | Results of the sites with a significant hyperbolic correlation at half-hourly resolution. Significant correlation happened at (A) SE-Nor and (B) US-Me2. The
red line represents the hyperbolic fit.

FIGURE 3 | GPP:SIF correlation for half-hourly data for (A) all 31 sites plotted together, (B) ENF sites, (C) DBF sites, and (D) MF sites. Red line represents the linear
regression fit. A regression line is not shown where the regression is not significant.

that the main reason for this difference in the goodness of fit
of the SIF models is that our study focused on the inter-daily
and inter-weekly variation within the growing season. Therefore,
diurnal and seasonal variations of GPP and SIF, which are
stronger and more predictable than the inter-daily variations, are
not emphasized in this study. Our findings that weekly and daily
average GPP are better correlated to SIF than half-hourly GPP
are consistent with earlier studies, which have shown a stronger
linear relationship at lower temporal resolution. This trend across
timescales indicates that SIF is a good predictor for seasonal

variations of GPP (Magney et al., 2019), but not necessarily
for the instantaneous photochemical activity (Magney et al.,
2020). Site-level analysis shows limited relationship between SIF
and GPP at midday, half-hourly resolution using both linear
and asymptotic fits, while it is expected to have a hyperbolic
correlation at this time of day. This can be due to light saturation
that dominates midday photosynthesis under most conditions
(Zhang et al., 2016a). Thus, TROPOMI-sampled points at solar
noon would lie mostly on the asymptotic end of the GPP vs.
SIF hypothetical non-linear curve (Damm et al., 2015). In order
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FIGURE 4 | Linear mixed effect model fit based on SIF data for (A) Half-Hourly, (B) Daily, and (C) Weekly timescales. The x-axis show the observed GPP, i.e.,
half-hourly EC GPP for (A), mean daily GPP for (B), and mean weekly GPP for (C). The y-axis show GPP values predicted by the LME model. The black line
represents the 1:1 line.

FIGURE 5 | Probability density function of the LME model residuals (observation-model) for GPP as a function of SIF (fixed effect) and site (random effect) under low,
intermediate, and high canopy conductance (0–33th percentile, 33th–67th, and 67th–100th percentiles of gc values within each site, respectively) at (A) Half-hourly,
(B) Daily, and (C) Weekly timescales. Distribution density function of the residuals (observation-model) of the same model under low, intermediate, and high fPAR
(0–33th percentile, 33th–67th, and 67th–100th percentiles of fPAR values within each site, respectively) at (D) Half-hourly, (E) Daily, and (F) Weekly timescales.
Dashed lines at the same color represent the mean of each distribution.

to get the hypothetical non-linear correlation between GPP and
SIF, data points with minimal light saturation are needed to
complement the hyperbolic shape of the curve, i.e., morning SIF
data should be available, which is not the case with TROPOMI,
or midday data with less stress conditions.

It is possible that variability in species specific parameters that
governs GPP:SIF creates high levels of within-site variation in
species-rich and heterogeneous sites. If this hypothesis is true,
the sites with the strong GPP:SIF correlation are expected to be
the ones that have the lowest species diversity. Indeed, such is

the case in some sites, for example SE-Nor is composed of only
pine and spruce (Lindroth et al., 1998), CZ-BK1 and CZ-RAJ
are composed of monoculture Norway spruce (Sedlák et al., 2010;
McGloin et al., 2018), in BE-Vie three species represent more
than 80% of vegetation (Aubinet et al., 2001), and US-NC3 is
composed almost exclusively of loblolly pine (Yang Y. et al.,
2017). However, other sites, where GPP and SIF are significantly
and strongly correlated, are among the most diverse. For
example, US-UMB has seven different species with relatively
equal dominance among three of them (Matheny et al., 2014),
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FIGURE 6 | Decision-tree model results showing the contribution portion of
each variable in predicting GPP at the three timescales and the corresponding
sample size (n), root mean square error (RMSE), and R2 of the training and
validation data sets.

RU-Fyo has 49% of spruce, 12% of pine forests, 28% birch, 14%
aspen, and 1% alder (Sogachev et al., 2002). The site descriptions
in AmeriFlux and EFDC do not enable calculating a formal

species diversity index for each site, and we could not test
the significance of the assumed negative relationship between
species diversity and GPP:SIF goodness of fit. Nonetheless, we
investigated the community-composition complexity using the
spatial heterogeneity of LAI (similar to the approach by Chu et al.,
2021). This quantity is an indirect estimation of the variation in
vegetation structure, and could be used as an indirect proxy for
the diversity of the dominant species. The coefficient of variability
for LAI (using spatial standard deviation) was provided by the
MODIS MCD15A2H product at each site. LAI values were
calculated at a 1.5 × 1.5 km2 spatial resolution, which is close
to a typical EC footprint. We found no significant relationship
between the R2 of site-level GPP:SIF correlations and the LAI
coefficient of variability (plots and detailed results are shown
in Supplementary Material). It should be noted that the LAI
coefficient of variability is an indicator of overstory dominant
species, thus neglecting the effect of understory species, which
would significantly contribute to the total fluorescence signal
when light conditions allow.

Another hypothetical cause of the low correlation between
GPP and SIF may be the lack of representativeness of the SIF pixel

FIGURE 7 | Site-level intercept estimated by LME vs. Mean LAI for (A) Hourly, (B) Daily, and (C) Weekly timescales. Site-level intercept estimated by LME vs. Mean
gc for (D) Hourly, (E) Daily, and (F) Weekly timescales. Site-level intercept estimated by LME vs. Mean fPAR for (G) Hourly, (H) Daily, and (I) Weekly timescales. The
red line represents the linear regression fit.
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relative to the EC-flux footprint (Chu et al., 2021). While these
land cover overlap, but potentially different areas, it is possible
that species specific response within the EC-footprint captures
a somewhat different evapotranspiration dynamic than the SIF
pixel. However, the finding that the spatial variability of LAI is
not correlated with the goodness of fit of GPP:SIF is indicative
that low footprint representativeness (typical to sites with high
LAI variation) is not the lead cause of the low GPP:SIF fit.
Furthermore, TROPOMI offers a higher resolution (7× 3.5 km2)
compared than other satellites that provide SIF data, such as
GOME that has a resolution of 80 × 40 km2, and a better spatial
coverage than OCO-2 which have a higher spatial resolution of
2× 1.3 km2 (Köhler et al., 2018).

Given the lack of significant effect of within-site vegetation
heterogeneity, we hypothesize that site-specific environmental
and structural conditions (water status, canopy structure, degree
of isohydricity, soil texture) are probably more important in
driving GPP:SIF than the ecosystem characteristics that classify
its IGBP type or its species richness and heterogeneity (Zhang
et al., 2018c; Dechant et al., 2020). This hypothesis is further
supported by the LME models results, which show a strong
variability in GPP:SIF relations among sites, and the decision
tree model, which shows that Site is the main contributor to
GPP prediction. Li et al. (2020) shows that the linear GPP:SIF
relations is affected by the growth stages of maize during
the growing season. Migliavacca et al. (2017) shows that the
relationship is a function of nutrient addition (Nitrogen, and
Phosphorous), which induces changes in canopy structure and
functional traits. We find that the size of the site-specific random
effect in the LME model can be predicted by the site-level
mean LAI, fPAR and canopy conductance at all timescales
(Figure 7). A multiple-linear regression of sites’ intercept with
LAI and gc together yielded an R2 of 0.56 and the interaction
between gc and LAI was not significant. This result further
substantiates the hypothesis that both canopy structure and plant
function control GPP:SIF, to a large degree, and offers hope
for effectively predicting the site-level intercept that is needed
for the global applicability of GPP:SIF (Dechant et al., 2020;
Kim et al., 2021).

Table 4 shows that water stress indicators, provide
significant improvement to the GPP:SIF correlation among
other environmental variables at all timescales. Water stress
variables, specifically stomatal conductance significantly
improved the model at all timescales. Phenology indicators
(LAI, NIR, and fPAR) and APAR improve GPP:SIF at daily
and weekly resolutions, which is in agreement with earlier
studies, notably Magney et al. (2020), but not at half hourly
resolution. Contrary to our expectations and earlier findings
(Helm et al., 2020; Marrs et al., 2020), we found that the
GPP:SIF LME model is over-estimating GPP under high and
intermediate gc (Figures 5A–C) and underestimating GPP under
low gc. Overestimation of GPP happens at low and intermediate
fPAR at the half-hourly timescale. SIF is driven by canopy
properties like chlorophyll content, LAI, and angle distribution
of leaves more than by canopy biochemistry (Frankenberg and
Berry, 2018). At high chlorophyll content, light absorption per
unit of chlorophyll decreases, thus resulting in a non-linear

TABLE 4 | Effects of environmental variables on the goodness-of-fit of LME of
GPP vs. SIF using forward stepwise regression.

Half-Hourly Daily Weekly

Variable R2 Variable R2 Variable R2

SIF + Site 0.476 SIF + Site 0.602 SIF + Site 0.672

gc 0.532 LE 0.693 gc 0.717

EF 0.567 gc 0.711 APAR 0.786

– – LAI 0.722 fPAR 0.802

– – VPD 0.724 EF 0.815

– – TA 0.732 NIR 0.818

– – fPAR 0.733 – –

– – APAR 0.746 – –

– – SWC 0.740 – –

Values that are not reported correspond to non-significant contributions to the
model (as tested by the AIC). Reported R2 are the cumulative, whole-model R2

(including all variables up to the current).

TABLE 5 | Decision tree model statistics.

Timescale Model R2 RMSE [µmolCO2 m−2 s−1] n

Half-Hourly Training 0.582 5.021 781

Validation 0.355 6.100 196

Daily Training 0.689 1.569 957

Validation 0.649 1.735 211

Weekly Training 0.793 1.180 454

Validation 0.704 1.417 128

relationship between chlorophyll content and light absorption
(Porcar-Castell et al., 2014). In such case, a high SIF signal is
expected to overestimate GPP. Since our study focuses on the
growing season, high chlorophyll content governs the state
of vegetation, resulting in GPP overestimation under low and
intermediate fPAR. This effect can also be responsible for
the overestimation of GPP under high stomata conductance.
At low fPAR, low GPP is driven by low APAR instead of
stomatal conductance.

The decision-tree model considered only remote sensing
variables as GPP predictors in addition to site. The model
results identified the strong effect of inter-site variability in
predicting GPP. It also found low contribution of SIF to
GPP predictability, compared to other variables. However,
surprisingly, the decision-tree model resulted in an overall similar
performance as the GPP:SIF LME model when comparing the
R2 of the two models at each timescale (Table 5 and Figure 4).
We hypothesize that the strong cross-correlation of many
environmental variables have limited the information content
of the overall ensemble of variables and explains the similar
goodness of fit of these two very different models. Decision-
tree model results emphasized the role of variables indicative of
canopy structure (NIR, APAR, and LAI) and water status (LE)
in supplementing SIF-based prediction of GPP, noting that fPAR
showed a lower contribution portion probably due to its high
covariance with LAI.
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CONCLUSION

Our study evaluates spaceborne SIF from TROPOMI as a
predicting variable for inter-daily variation of GPP during the
growing season in 31 EC sites. A strong inter-site variability
in the intercept of GPP:SIF regression is found. The need for
site-specific intercepts as coefficients in a model for accurately
predicting GPP from SIF limits the applicability of SIF as a
globally observable surrogate of GPP. However, our results
suggest that this intercept is driven by canopy structure and
site-level vegetation function and is predictable using site-
level, season-long, mean fPAR, LAI, and canopy conductance.
These latter showed as well to significantly improve the
LME model at all timescales. Thus, canopy structure and
water status variables at site level are important factors to
account for when using SIF as a predictor of GPP intra-
daily variations.
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