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Global climate change-induced droughts are provoking events of forest mortality
worldwide, with loss of tree biomass and consequent ecosystem services. Ameliorating
the effects of drought requires understanding the causes of forest mortality, with failure
of the hydraulic system being an important contributor. Comparative anatomical data
strongly suggest that, all else being equal, wider conduits are more vulnerable to
drought-induced embolism than narrow ones. However, physiology experiments do not
provide consistent support for such a link. If a vulnerability-diameter link exists, though,
it would contribute not only to explaining and predicting forest mortality but also to
interventions to render individual trees more drought resistant. Given that xylem conduits
scale with plant height, taller plants have wider conduits. If there is a vulnerability-
diameter link, then this would help explain why taller plants are often more vulnerable
to climate change-induced drought. Links between conduit diameter, plant height,
and vulnerability would also provide guidance for standardizing sampling of hydraulic
variables across individuals and suggest that selecting for relatively narrow conduits at
given height from the tree top could produce more drought resistant varieties. As a
result, given current ambiguities, together with the potential importance of a link, it is
important to maintain the vulnerability-diameter link as a research priority.

Keywords: hydraulic architecture, tree height, tip-to-base xylem conduit widening, comparative anatomical data,
climate change

INTRODUCTION

A major effort is underway to understand the causes of death of millions of trees worldwide under
climate change-induced drought (Breshears et al., 2013, 2018; Allen et al., 2015; Anderegg et al.,
2015, 2016; Adams et al., 2017; Choat et al., 2018; Trugman et al., 2018, 2021; Brodribb et al.,
2020). These studies reveal a multitude of factors involved in forest mortality, from the failure of
water transport in the wood, to insect or fungal attack and fire. Identifying the ways mechanisms
at the individual level result in the death of trees across the landscape requires integration factors
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across multiple scales. We wish to highlight that robust
integration between experimental data on plant hydraulic
function-- xylem physiology-- with comparative anatomical
data-- morphological variation across species-- would provide
better direction for research and more robust explanations
than for comparative and experimental workers to continue
research largely independently. The key point we focus on here
is the possible link between vulnerability to drought-induced
hydraulic failure and xylem water-transporting conduit diameter.
If such a link exists, then it has a potentially very important
role to play in explaining forest mortality events on large
scales. Testing this possibility requires squaring comparative
anatomical, across-species, data with the experimental results of
xylem physiology studies.

EXPERIMENTAL DATA ARE
INCONSISTENT WITH REGARD TO THE
LINK

Physiology experiments have so far failed to find a consistent link
between vulnerability to drought-induced embolism and conduit
diameter, and likely as a result, recent reviews of the causes of
forest mortality do not mention a possible vulnerability-conduit
diameter link at all, suggesting that the link is not regarded as a
significant potential player (Anderegg et al., 2015, 2016; Adams
et al., 2017; Breshears et al., 2018; Stovall et al., 2019; Liang et al.,
2020; Trugman et al., 2021). Some physiology experiments show a
strong correlation, with the widest vessels in a given stem segment
clearly being the first to embolize (Hargrave et al., 1994; Cai and
Tyree, 2010). Others suggest that the link is sheer experimental
error, known as the “open vessel artifact” (Martin-StPaul et al.,
2014; Rockwell et al., 2014; Torres-Ruiz et al., 2015). Other
studies examine situations in which the open vessel artifact would
seem impossible and even so still fail to recover a vulnerability-
diameter link (Cochard et al., 2015; Choat et al., 2016; Brodersen
et al., 2018; Bouda et al., 2019; Jacobsen et al., 2019). These include
minimally invasive techniques such as micro-computed x-ray
tomography, which unlike traditional techniques do not require
cutting stems into segments and deranging water columns under
tension. Most such studies do not provide striking evidence that
wider conduits are more vulnerable than narrow ones (Cochard
et al., 2015; Choat et al., 2016; Brodersen et al., 2018; Bouda et al.,
2019). At least one micro-ct study, though, suggests that vessels
with larger volumes are indeed more susceptible to embolism
(Jacobsen et al., 2019). Since conduits widen predictably from the
tips of plant twigs to the trunk base and into the roots (Lechthaler
et al., 2020; Olson et al., 2021), all else being equal (including
xylem tension), roots should be more vulnerable than stems but
this result is not always reported (Rodriguez-Dominguez et al.,
2018; Wu et al., 2020). Thus, experimental evidence for the link is
currently contradictory.

Moreover, there is not even a clear theoretical reason to
expect a vulnerability-diameter link. This is in contrast to
freezing-induced embolism, which has a consistent and well-
understood relationship with conduit diameter (Cavender-Bares
and Holbrook, 2001; Pittermann and Sperry, 2003, 2006;

Cavender-Bares, 2005; Sevanto et al., 2012; Savage and Cavender-
Bares, 2013). Failure of water transport under drought is
certain to involve multiple factors, from wood density and pit
membrane characteristics to internal conduit sculpture, the types
of conductive cells present in the xylem and where gas exists in
the xylem (Dalla-Salda et al., 2011; Sano et al., 2011; Li et al.,
2016; Guan et al., 2021; Kaack et al., 2021). But all else being
equal, wider conduits tend to be longer than narrow conduits,
with a higher number of pits, which are often wider and with
wider membrane pores (Martínez-Vilalta et al., 2002; Jacobsen
et al., 2012, 2019). These traits should facilitate the spread of
embolism in wider conduits. If wider conduits are also longer,
then embolism propagation will occupy a greater volume in wider
conduits (Comstock and Sperry, 2000; Jacobsen et al., 2012). If
pit area is uniform across conduits, then conduits with larger
volumes will have greater pit area. Greater pit area would offer
more opportunity for air-seeding to adjacent conduits. So, even
in the absence of a direct link between vulnerability and diameter,
there are plausible reasons to suspect that natural selection could
favor narrower conduits in situations of drought vulnerability.
Yet studies fail to recover the predicted pit area-vulnerability
relationships (Lens et al., 2011). Presumably it is on the basis of
such inconsistent results regarding a link between vulnerability
to drought-induced embolism and xylem conduit diameter that
recent treatments of the causes of drought-induced mortality do
not mention conduit diameter. And yet, if there were a link, it
would contribute to explaining so much about forest mortality
and plant adaptation in general.

WHAT IS AT STAKE: WHAT THE
VULNERABILITY-DIAMETER LINK
WOULD EXPLAIN IF THERE WERE ONE

Testing the link between drought-induced embolism
vulnerability and conduit diameter remains a priority because of
the explanatory reach it would have if such a link existed, and
that it is consistent with comparative anatomical evidence often
spanning hundreds or thousands of species (Olson, 2020). We
now briefly turn to some examples relevant to studies of forest
mortality and drought adaptation.

Why Taller Individuals Are More
Vulnerable to Drought
Taller trees are often more vulnerable to drought than their
smaller conspecifics (Lindenmayer and Laurance, 2016, 2017;
Olson et al., 2018; Stovall et al., 2019; McGregor et al.,
2020; Swemmer, 2020). Because death of large trees has
disproportionate ecological consequences, explaining the higher
vulnerability of large individuals is a focus of plant scientists
(Bennett et al., 2015; Stovall et al., 2019; Bartholomew et al.,
2020; McGregor et al., 2020). For example, within a community
the tallest trees make up a disproportionate part of total
aboveground biomass (Lutz et al., 2018; Enquist et al., 2019),
making protecting old-growth forests key for forest carbon
storage (Körner, 2017). Scientists have suggested that tall trees are
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more vulnerable because of the effects of gravity and resistance
on their long hydraulic pathlengths, the higher vapor pressure
deficit of the canopy, higher xylem demands for leaf-produced
photosynthates, or that larger trees are simply more at risk of

being pushed over by wind (Niklas, 1998; Koch et al., 2004;
Givnish et al., 2014; McDowell and Allen, 2015; Trugman
et al., 2018). The vulnerability-diameter link could be added to
this list.

FIGURE 1 | Conduit diameter scales predictably with plant height. The figure shows trees of differing heights, with schematic xylem cross-sections in boxes. The
ellipses in the schematics represent vessels. The arcs represent successive layers of xylem produced concentrically by the vascular cambium. (A) Natural selection
favors widening of conduits as trees grow taller, thus maintaining conductance to the leaves even though conductive pathlength becomes longer and therefore
resistance potentially higher. This predictable widening means that when an individual is small, it has narrower conduits in the outermost wood than when it is tall.
(B) Similar-sized plants have, on average, similar mean conduit diameters, regardless of climate. Similar-sized plants in dry sites have similar mean conduit diameters
as similar-sized plants in moist areas. Because maximum and therefore mean height is taller in moist as compared to dry areas, community mean conduit diameter is
wider in areas with higher moisture availability.

FIGURE 2 | Conduit diameter scaling with plant height, the putative vulnerability-diameter link, and forest mortality. Symbology as for Figure 1; “X”s represent
embolized vessels. (A) Large trees tend to be more vulnerable to drought induced mortality. Because taller trees have wider conduits, if wider conduits are more
vulnerable to drought-induced embolism than narrow ones, then this would help explain why larger individuals are more susceptible to mortality than smaller
conspecifics at the same locality. (B) If wider conduits are more vulnerable to drought induced embolism, it could help explain treetop dieback as an adaptation. If
climates become drier, then trees find themselves at heights that are too tall, and therefore conduits too wide, for current drier conditions. Sacrificing terminal
branches and resprouting at a lower height would lead to narrower, more embolism-resistant conduits better suited to current conditions. (C) Maximum plant height
is taller in moister communities. If climate change-induced drought tends to kill the tallest individuals of a species because of their wide, embolism-vulnerable
conduits, then mean forest height will become lower.
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Taller plants have predictably wider conduits (Figure 1), and
if wider conduits are more vulnerable to embolism (Figure 2A),
then this pervasive scaling of conduit diameter with plant height
would contribute to explaining the greater vulnerability of taller
plants. In all terrestrial vascular plants studied to date, xylem
conduits are very narrow in the terminal leaf veins, widening
toward the petiole base (Sack et al., 2012; Gleason et al., 2018;
Lechthaler et al., 2019, 2020). In the shoot-root system, conduits
are narrowest at the twig tips, widening predictably toward the
base (Anfodillo et al., 2006; Petit et al., 2009; Koçillari et al., 2021;
Olson et al., 2021). Poiseuille’s Law shows that if conduits remain
the same diameter but become longer, then flow to the leaves will
decline in direct proportion to length, that is, the decrease in flow
as a linear function of conductive path length.

However, Poiseuille’s Law also shows that conductance
depends on conduit diameter to the fourth power. This means
that small increases in conduit diameter are sufficient to
counteract the increase in resistance that increasing conductive
path length creates. Given heritable within-species variation, all
else being equal, individuals with conduits that widen slowly from
the base and so are “too narrow” for a given stem length will
have high resistance, low photosynthetic productivity, and low
fitness. Those with conduits that widen quickly and so are “too
wide” for a given stem length will, if wider conduits are more
vulnerable to embolism, have a greater incidence of embolism,
higher leaf dehydration and stomatal closure, and low fitness. The
“just right” pattern is a hydraulic system made up of conduits
that widen enough to overcome the resistance that arises as
stems grow longer and conductive pathlength increases, but not
so wide as to expose the individual to excessive embolism risk.
Accordingly, across species, by far stem length is the variable
that best predicts conduit diameter (r2

≈0.6–0.9) (Anfodillo et al.,
2006; Rosell and Olson, 2014; Olson et al., 2018, 2020b), as
well as tip-to-base within individuals (r2

≈0.8–0.9) (Anfodillo
et al., 2006; Koçillari et al., 2021). As a result of this process of
natural selection, taller trees [Figure 1; and longer lianas (Rosell
and Olson, 2014)] have wider conduits. If wider conduits are
more vulnerable to embolism, then this would help explain the
greater vulnerability of taller individuals relative to others of
the same species subject to the same conditions (Figure 2A)
(Olson et al., 2018).

Why Some Individuals Die Whereas
Others Do Not
Another aspect that a vulnerability-diameter link might help
explain is the observation that one individual can die when
apparently similar individuals in similar conditions survive
(Trugman et al., 2021). A vulnerability-diameter link could help
identify vulnerable individuals as those with relatively wide
conduits for a given height. Even if the environmental conditions
experienced by all individuals are identical, individuals with
relatively wide conduits for a given plant height would be
more vulnerable than individuals with narrower conduits. If
this were the case, it would allow for relatively straightforward
screening of populations to identify individuals with relatively
wide conduits given height as the most vulnerable. It would

allow for selection of more drought tolerant varieties by selecting
those with relatively narrow conduits for a given height (Rosner
et al., 2016). Additionally, it predicts that pruning in such a
way that conductive path length is shortened and thus conduit
diameter is narrower, would lower the drought vulnerability of a
single individual.

Individual Tree Height
If narrower conduits are more drought resistant, and shorter
plants have narrower conduits, then it seems likely that future
forests will be shorter, with massive impacts on ecosystem
services (Fajardo et al., 2019). If it were possible to select for
individuals with slightly narrower conduits in the context of the
same height, it might be possible to maintain tree biomass while
still increasing drought resistance (cf. Rosner et al., 2016).

A vulnerability-diameter link would help explain the observed
patterns of terminal branch dieback and resprouting that are
observed in long-lived trees and in trees that survive drought
(Figure 2B). Dead trunks, often hidden within taller foliage, at the
tops of very old trees suggests that their terminal trunks have died
and resprouted repeatedly over the centuries (Koch et al., 2004).
Moist conditions impose less risk of embolism, permitting wider
conduits. Wider conduits in turn permit greater conductive path
lengths and thus height. When, over the decades or centuries,
conditions become drier, trees can sacrifice their distalmost
portions, shortening their total pathlenths. Given a constant rate
of tip-to-base conduit widening, then shorter pathlengths lead
to narrower conduits. If there is a link between vulnerability
and conduit diameter, then these now-narrower conduits are
better suited to the novel drier conditions that the trees are now
subjected. The return of moister conditions again permits taller
growth and the overtopping of the sacrificed trunk, accounting
for dead snags in the tops of tall trees.

As with fluctuating heights in ancient trees, a vulnerability-
diameter link would also contribute to explaining treetop dieback
as an adaptive phenomenon (Rood et al., 2000; Olson et al.,
2021). When drought sets in, trees find themselves at heights,
and thus conduit diameters, that are excessive given current water
availability. In such cases, natural selection favors shedding of
terminal branches and re-sprouting at lower heights, allowing
narrower, more embolism-resistant conduits better suited to
current conditions (Figure 2B) (Rood et al., 2000; Olson et al.,
2018). If a vulnerability-diameter relationship were to exist, no
matter how indirect, it would help explain global patterns of
vegetation height limitation, drought vulnerability, and dieback.

Why Maximum Plant Height Is Limited
Across Sites of Differing Water
Availability
If there were a link between drought-induced embolism
vulnerability and conduit diameter, it would also help explain the
global tendency for maximum vegetation height to be taller in
areas of greater water availability. Minimum plant height tends
to be the same across communities (Figure 2C). Where variation
is most conspicuous is at the upper end of the height range.
Drought-prone communities such as frost-free deserts have very
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short maximum plant heights (Olson et al., 2020a). In contrast,
frost-free rainforests can support trees well above 60 m tall
(Adams et al., 2017; Shenkin et al., 2019). If moister conditions
permit wider, more embolism-vulnerable conduits, and wider
conduits are associated with longer pathlengths, then it helps
explain why taller ecological strategies are observed in moister
areas (Figure 2C).

If there is a link between embolism vulnerability and conduit
diameter, then given a constant rate of tip-to-base conduit
widening with plant height, a clone planted on a dry site will
require a narrow, embolism resistant mean conduit diameter.
Because narrow conduits are associated with shorter pathlengths,
then clones on a dry microsite will cease growth at a lower height,
associated with narrower conduits, than those on moist sites.
Clones on moist sites are exposed to lower embolism risk and
can produce wider conduits. Wider conduits are associated with
longer stems, so the clones planted on moist microsites should
grow taller than those on dry ones. The ability to detect embolism
risk and adjust conduit diameter and therefore height according
to microsite conditions, should be part of the adaptive phenotypic
plasticity of all woody plant species. The patterns of variation in
plant height globally across communities, as well as within species
across microsites, would at least partially seem explicable given
a link between drought-induced vulnerability to embolism and
conduit diameter (Olson et al., 2018).

Growth Rings in Drought-Prone Plants
The vulnerability-diameter link would also help explain why
species with conduit diameters that vary within growth rings
in drought-prone, frost-free areas always have wider conduits
in earlywood and narrow ones in latewood (Carlquist, 2001;
Silva et al., 2019, 2021). Wider conduits are produced early
in the growing season when water is abundant and soil water
potentials are not highly negative. As the rainy season wanes and
drought begins to set it, more highly negative xylem tensions
are required to draw water from the soil. These more negative
tensions, in turn, require narrower, more embolism-resistant
conduits, thus explaining why conduit diameters in dryland
species with growth rings go from wide to narrow, and potentially
even why tangential diameter might predict dieback better than
radial (Rosner et al., 2016). The vulnerability-diameter link thus
potentially participates in explaining not only currently puzzling
patterns of global tree mortality, but also the action of natural
selection in shaping plant hydraulic systems as a function of
climate, habitat, microsite, and habit.

THE VITAL INTERDEPENDENCE
BETWEEN PHYSIOLOGICAL AND
COMPARATIVE ANATOMICAL EVIDENCE
OF XYLEM FUNCTION

For inferring xylem function, it is essential for xylem
physiologists and comparative anatomists to work together.
This is because “function” in biology implies adaptation (Garson,
2016; Olson, 2020). Because adaptation is an evolutionary process
reaching into the distant and unobservable past, it requires

adducing evidence from as many complementary sources as
possible (Olson and Arroyo-Santos, 2015). Two very important
sources are xylem physiology experiments and comparative
anatomy studies. Both have their weaknesses, which are, happily,
largely filled by the strengths of the other. Xylem physiology
gains its relevance for inference of function via the assumption
that the structure-function relations observed in an experiment
are similar even in unobserved individuals, both contemporary
and past. The comparative method tests this assumption (Olson
et al., 2021). In xylem functional biology the most abundant
comparative data are from comparative wood anatomy. For
example, experiments show that narrow conifer tracheids are
more resistant to freezing-induced embolism (Pittermann and
Sperry, 2003, 2006; Sevanto et al., 2012), but these experiments
have only covered small parts of a few species. Comparative data
spanning hundreds of species are consistent with experimental
observations, with conifers in very cold areas, as in plants at
or above the treeline, having very narrow tracheids and short
stature (e.g., Podocarpus nivalis, Phyllocladus trichomanoides var.
alpinus, Microcachrys, etc.). In this way, experiments provide
mechanistic detail but very limited generality; comparative
wood anatomy provides maximal generality but very limited
mechanistic detail. As a result, as in all of biology, there is an
essential back-and-forth between experimental and comparative
data (Mayr, 1982; Olson and Arroyo-Santos, 2015).

CONCLUSION: PERVASIVE PATTERNS
REQUIRE EXPLANATION

Optimal tests of the putative link between vulnerability to
drought-induced embolism and conduit diameter, examining
the vulnerability of a wide range of conduit diameters under
similar tensions in species adapted to frost-free, drought-prone
habitats, have never been performed. Most physiological data
come from temperate zone plants, so adaptation to cold has
shaped the conductive systems of these species. As a result,
caution is warranted before rejecting outright the possibility
of some link existing. The comparative evidence suggesting
such a link, e.g., tip-to-base conduit widening, wide-to-narrow
conduits in growth rings, wider maximum conduit diameters
in moister areas, the wide variance in vessel diameters in
lianas (Rosell and Olson, 2014), etc., include without a doubt
among the most widespread and pervasive patterns in all of
xylem structure. A vulnerability-diameter link would not only
contribute to explaining these patterns but also in predicting and
potentially mitigating drought-induced damage to forests. Given
this explanatory reach, until a plausible alternative explanation
is provided for these important comparative patterns, then the
vulnerability-diameter link, however, indirect it might be, must
remain a research priority for xylem hydraulic biology.
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