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HEALTHY FORESTS FOR A HEALTHY PLANET

Forests provide key ecosystem services globally, with economic values ranging from $125 to $145
trillion per year (Costanza et al., 2014). Forests are important not only for carbon sequestration
goals and global biodiversity (Bonello et al., 2020a; Di Sacco et al., 2021; Palmer, 2021), but also for
the economic (e.g., timber), environmental (e.g., water purification), and social (e.g., recreational
activities) benefits (Trumbore et al., 2015) they provide (Bastin et al., 2019, 2020). Increasingly,
forests are viewed as directly important to human health (Donovan et al., 2013); indeed, urban
green environments are now considered essential in city planning (Nowak et al., 2006; Donovan
and Butry, 2009; Donovan et al., 2013; Ideno et al., 2017).

The health of forests impacts their value and ability to deliver these ecosystem services. However,
the definition of a healthy forest is actually quite complex and has long been debated (Raffa et al.,
2009). In the absence of significant exogenous disturbances, forest ecosystems are ecologically
dynamic, yet holistically stable and resilient. A healthy forest is not disease-free, but rather one
that can self-perpetuate in a state of dynamic equilibrium, equivalent to a forest on its way
to, or at, the climax state. A healthy forest, therefore, “encompasses a mosaic of successional
patches representing all stages of the natural range of disturbance and recovery” (Trumbore
et al., 2015). Indeed, a healthy forest supports pathogens and other disturbance agents that are
essential for natural forest regeneration and nutrient cycling and, ultimately, increased resilience.
Unfortunately, in the Anthropocene, forests have become increasingly threatened by human-
mediated intensification of natural stressors, e.g., higher temperatures and lower water availability
due to global warming, which make trees maladapted to their current habitats and thus more
susceptible to insect pest and/or pathogen attacks (Sherwood et al., 2015).

THE ANTHROPOCENE IS DISRUPTING THE NATURAL BALANCE

Land-use changes and tree domestication aimed at large-scale plantations, often in monocultures,
exacerbate susceptibility to insect pests and pathogens (Sturrock et al., 2011; Pautasso et al., 2015;
Desprez-Loustau et al., 2016). With globalization proceeding unabated, natural, and planted forests
are increasingly attacked by invasive alien insect pests and pathogens (Eriksson et al., 2019).
Natural resources in Canada and the U.S. are becoming endangered at alarming rates because hosts
that have not evolved resistance (i.e., naïve hosts) to such non-native insect pests and pathogens
are inherently at risk of functional, if not actual, extinction (Pautasso et al., 2012, 2015; Santini
et al., 2013; Trumbore et al., 2015; Albrich et al., 2020; Bonello et al., 2020a). While recently
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accelerating, this process has been ongoing since the onset of
global commerce five centuries ago. In North America, some of
the past non-native introductions, for example, Cryphonectria
parasitica (chestnut blight) (Anagnostakis, 1987), Cronartium
ribicola (white pine blister rust—WPBR) (Kinloch, 2003; Geils
et al., 2010), and Ophiostoma ulmi and novo-ulmi (Dutch elm
disease) (Gibbs, 1978), have caused irreversible changes to
natural forest ecosystems. Examples of tree insect pests and
pathogens that have changed forest ecosystems are not limited
to the distant past: the last few decades have seen the appearance
of damaging tree diseases such as sudden oak death (Rizzo and
Garbelotto, 2003) and laurel wilt (Ploetz et al., 2017).

In some cases, invasive pathogens affect historically and
culturally significant species, such as the ‘ohi‘a tree in Hawaii that
is threatened by the fungal disease known as rapid ‘ohi‘a death
[causal agents: Ceratocystis lukuohia and Ceratocystis huliohia
(Mortenson et al., 2016; Barnes et al., 2018)]. These diseases can
also have very broad ecosystem repercussions and affect species
that are not directly attacked by the pathogens, but depend on
the services provided by trees for their survival. For example,
landscape-level mortality caused by the oak wilt agent: [causal
agent: Bretziella fagacearum (Juzwik et al., 2011)], in both rural
and urban forests in the U.S., negatively impacts endangered
species that depend on oaks, such as the golden-cheeked warbler
in Texas (Appel and Camilli, 2010). Similarly, WPBR threatens
high-elevation pines such as whitebark pine (Pinus albicaulis),
a keystone species that provides ecosystem services such as
food for grizzly bears, erosion prevention, and microhabitat
provisioning for plants and animals (Keane and Arno, 1993;
Tomback and Achuff, 2010). By severely damaging the self-
perpetuating properties of healthy forests, newly introduced
insect pests and pathogens reduce the ecological resilience of our
forest landscapes (Pautasso et al., 2015; Abrams et al., 2021).

CLIMATE CHANGE IS THE CHALLENGE OF

THE FUTURE

Climate change is having a compounding impact on forest health
(Kolb et al., 2016; Ramsfield et al., 2016) because it makes trees
maladapted to their current environments. Yet, little is known
of the potential outcomes of a changing climate on forest health
(Seidl et al., 2017). More prolonged and extreme periods of
drought, or increasing rainfall, will likely increase the frequency
of abiotic stress events making tree hosts more vulnerable to
both insect pest and pathogen attack. Some of the new and
future climatic conditions will also provide novel niches for non-
native invasive insect pests and pathogens as well as expanding
the niches of native ones. For example, Dothistroma pini
(Dothistroma needle blight), Nothophaeocryptopus gaeumannii
(Swiss needle cast), and Diplodia sapinea (Diplodia tip blight
and canker) have increased in frequency and intensity, creating
large-scale defoliation and mortality that is driven by new
climatic conditions, whether caused by more rainfall or drought
conditions depending on areas where each of these occur
(Woods et al., 2005; Stone et al., 2008; Brodde et al., 2019).
Moreover, climate change also causes shifts in forest tree species

composition. Well-known examples include changes from large
trees in conifer-dominated European mountain landscapes to
those dominated by smaller, mainly broadleaved trees (Albrich
et al., 2020), which fundamentally alters the underlying forest
health framework. Climate shifts are also expected to result in
novel ecosystems, driven by migration and species distribution
expansion of both hosts and pathogens (Pautasso et al., 2015).
Ultimately, this will likely lead to further unforeseen forest health
issues, spanning across wider geographical regions and affecting
ecosystem services across continents.

FOREST PATHOLOGISTS ARE NEEDED TO

FIND SOLUTIONS

The combined impact of invasive alien insect pests and
pathogens and climate change can create enormous economic
and environmental costs to our society, in the range of $4.3–20.2
trillion per year in ecosystem service losses (Costanza et al., 2014).
Mitigating those losses is one of the most pressing challenges to
ensure future healthy forests and continued provision of services.
Forest health research can lead to innovative solutions and is
central to both short- and long-term approaches. Predicting
the outcome of host–pathogen–pest interactions in a changing
climate will be a very important research avenue for future
forest health (Desprez-Loustau et al., 2016). Highly trained
forest pathologists are needed to mitigate this crisis. Forest tree
pathogens attack long-lived organisms with highly differentiated
woody tissue types, which requires a specialized understanding
of tree–microbe–environment interactions. This skill set differs
greatly from that required for agricultural crop plants, which are
primarily annual, herbaceous, and confined to highly simplified
agroecosystems. Forest pathology thus represents the necessary
fusion of forest ecology and plant pathology required to
understand the complexities of forest community structure and
composition, pathogen-based biology, biogeography, forestry,
genetics, and genomics within the context of host defense and
resistance. By necessity, all of these diverse scientific domains
pose challenges for the non-specialist, who is not adequately
armed with the integrated knowledge necessary to formulate
cogent management strategies.

The field of forest pathology is not new: it has developed
over 130 years, stimulated by the severe impact of non-
native, pathogen-caused epidemics during the first half of
the twentieth century and with the purpose of preventing or
controlling such events in the future (Boyce, 1961). Since the
early 1980s, forest pathology positions in academia and the
federal government in North America have undergone a steep
decline, despite the significant increase in emerging pest issues
(Martyn, 2009; Santini et al., 2013; Bonello et al., 2020b). Lack
of trained personnel has occurred in tandem with reductions
in organizationally visible forest pathology programs across
forestry and plant pathology departments throughout the U.S.
and Canada. The latter is a result of smaller departments being
combined into larger units/divisions or simply being dissolved.
This has resulted in the further erosion of forest pathology
training (including faculty positions) in higher education, often
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with forest pathology as a subject being relegated to a singular
course or being combined into a forest protection/forest health
course focused on diseases, insect pests, and/or fire.

The number of classically trained forest pathology faculty
positions at U.S. universities has declined from over 40 positions
in the 1980s to 22 positions in 2021. This includes 14 universities
in which a forest pathologist faculty position was not replaced
following retirement. In the federal government sector, there
has also been a steep reduction in the total number of USDA-
FS-Research and Development research scientist positions since
1985. Between 1985 and 2007, the number of all research
scientists decreased by 44% (from 985 to 547) (USDA FS, 2007).
The proportional change in position numbers, however, did
vary by research series classification. Currently, the series with
larger numbers of FS researchers include Research Ecologist,
Research Forester, and Research Social Scientist. In comparison,
there are currently nine Research Plant Pathologists employed
(estimated 2.2% of the research scientist cadre) (NFC Insight
data, USDA OCIO Enterprise Analytics Team). Between 1985
and 2007, the proportion of scientists in this series per total
research scientists decreased from 5.1 to 2.9% (USDA FS, 2007).
The USDA FS also employs Plant Pathologists (non-research
positions) with responsibilities for detection and monitoring,
oversight of federally funded disease suppression programs, and
technical assistance. These plant pathologists (39 in 2021 per
NFC Insight data, USDA OCIO Enterprise Analytics Team)
may be considered the “first responders” while research plant
pathologists are often the initial investigators of new and
emerging tree disease.

SUCCESS STORIES IN FOREST

PATHOLOGY

Forest-pathology-based research has generated some
considerable successes in tree disease management. One
important case is represented by Heterobasidion root disease
(HRD), caused by the Heterobasidion annosum species complex.
HRD is found throughout coniferous forests of the Northern
Hemisphere (Garbelotto and Gonthier, 2013). Heterobasidion
irregulare, one of the species in this complex, is considered a
native species in North America and it has a very low impact
in unmanaged or extensively managed forests but causes high
mortality in intensively managed pine plantations (Otrosina and
Garbelotto, 2010). An innovative solution was developed, based
on the pathogen infection cycle (which occurs via freshly cut
stumps with additional spread through root contacts) by treating
stumps with borate compounds (e.g., disodium octaborate
tetrahydrate or DOT) or by inoculating the stumps with saprobic
wood decay fungi such as Phlebiopsis gigantea that outcompete
the pathogen. These strategies are considered “among the most
effective and sustainable in forestry” and are commercially
available around the world, preventing the death of millions of
trees (Garbelotto and Gonthier, 2013).

Tree breeding for disease resistance is another successful
avenue for controlling tree diseases. Fusiform rust (Cronartium
quercuum f. sp. fusiforme) is a very damaging pathogen that

attacks the stems and branches of pines, causing high levels
of mortality. Breeding for disease resistance has made it
possible to control fusiform rust to maintain low disease levels
in loblolly and slash pine plantations in the southern U.S.
(Schmidt, 2003). Breeding for disease resistance can also help
protect endangered tree species. Several white pine species,
including high elevation white pines, have now been bred
for resistance to WPBR, making it possible to restore white
pines in areas where these pines were previously endangered
(Sniezko et al., 2014). Breeding and developing resistant Port-
Orford-cedar (POC) for resistance to the exotic root pathogen
Phytophthora lateralis (Zobel et al., 1985) is another success story
(Sniezko et al., 2012). Planting resistant POC and developing
operational use of multiple disease management practices have
been credited with the recent downgrade of POC status from
“vulnerable” to “near threatened” by the IUNC (Pike et al.,
2021).

Pathogen identification and detection have revolutionized
how we diagnose tree diseases (Stewart et al., 2018). Plant
health clinics now routinely use DNA-based methods (Martin
et al., 2009; Wu et al., 2011; Lamarche et al., 2015; Yang
and Juzwik, 2017; Oren et al., 2018; Parra et al., 2020; Rizzo
et al., 2021; Stackhouse et al., 2021) that provide rapid and
accurate diagnostics. Regulatory agencies have adopted the tools
developed by forest pathologists for their day-to-day testing for
invasive species. This has been instrumental in preventing the
spread and tracking sources of pathogens such as Phytophthora
ramorum (sudden oak death) (Grünwald et al., 2019). PCR
tests targeting this pathogen have now been used millions
of times around the world to provide rapid and reliable
molecular identification and help contain this pathogen to
western states and provinces of North America (Martin et al.,
2009).

Ultimately, it is the integration of multiple approaches that
offers the best long-term solutions. This is the case with
oak wilt, initially recognized as a mysterious rapid wilting of
black oaks (Quercus velutina) that was discovered in the early
1940s (Henry 1944), shortly after the discovery of chestnut
blight and Dutch elm disease in North America. The fungus
B. fagacearum spreads above-ground by insect vectors and
below-ground through naturally grafted root systems and is
known to occur only in the eastern U.S., where it is arguably
considered non-native (Juzwik et al., 2008). Control tools and
management approaches developed by forest pathologists over
the past 75 years and implemented in both urban and rural forests
have resulted in effective multi-pronged disease management.
Above-ground pathogen transmission by sap beetles (Coleoptera:
Nitidulidae) is minimized by timely removal of wilted red oaks,
avoidance of oak wounding during high-risk season(s), and
restricting movement of firewood and logs with bark from
oak wilt-affected areas. Below-ground transmission is stopped
by mechanical disruption of common or grafted root systems
between diseased and nearby healthy oaks. These selected
success stories demonstrate the need for increased research
capacity for multidisciplinary approaches that range from basic
research for knowledge acquisition to applied research to
find solutions.
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THE NEED FOR FOREST PATHOLOGISTS

IN THE FUTURE

Forest pathology researchers and practitioners are our first
line of defense, one that is constantly under pressure from
a variety of stakeholders facing new and re-emerging forest
health issues. Although there are a number of success stories
related to mitigating forest diseases, new, unknown, and
emerging pest issues are on the rise (Santini et al., 2013).
The challenge of predicting outbreaks under future climates
and the increasing global movement of invasive pathogens
will require novel skills. The need for a traditional “forest
specialist” worked well in the past because there were enough
“unknown” disease etiologies to investigate and sustain the
career of several forest pathologists to tackle a single disease
system for decades. However, future generations of forest
pathologists will require even more multidisciplinary training
and approaches. They will need to acquire multidisciplinary
knowledge to better characterize diverse pathosystems
(Martyn, 2009). Furthermore, it is critical that resource
opportunities sufficient to support the clear needs identified
here be strategic, focused, and applied across the continuum
of basic to applied research and solution implementation.
An expanding cadre of research forest pathologists with
the modern training necessary to tackle these problems is
urgently needed.

The current forest health crisis brought about by climate
change and globalization creates the need and opportunity
to train the upcoming generation of forest pathologists. For
example, multidisciplinary research consortia are increasingly
necessary to tackle the societal grand challenges that forest
decline syndromes represent. Such consortia must include

forest pathologists, forest entomologists, forest ecologists,
silviculturists, traditional forest geneticists, modelers, remote
sensing specialists, as well as experts in artificial intelligence,
microbial ecology, and novel genomics approaches such as
CRISPR-Cas9, to name a few. This will require constant inputs
and multiple resource providers and careful and intentional
strategic planning to achieve defined forest health objectives.
The past and current generations of forest pathologists have
demonstrated the value of their work by providing innovative
solutions to forest health challenges. The next generation of forest
pathologists will have access to an extraordinary toolbox ranging
from classical to cutting-edge tools to address and provide
solutions to current and future forest health crises. They should
be at the forefront of the fight against invasive tree pest and
pathogen invasions in the era of climate change.
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