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The U.S. Forest Inventory and Analysis Program (FIA) collects inventory data on and

computes estimates for many forest attributes to monitor the status and trends of the

nation’s forests. Increasingly, FIA needs to produce estimates in small geographic and

temporal regions. In this application, we implement area level hierarchical Bayesian (HB)

small area estimators of several forest attributes for ecosubsections in the Interior West

of the US. We use a remotely-sensed auxiliary variable, percent tree canopy cover,

to predict response variables derived from ground-collected data such as basal area,

biomass, tree count, and volume. We implement four area level HB estimators that

borrow strength across ecological provinces and sections and consider prior information

on the between-area variation of the response variables. We compare the performance

of these HB estimators to the area level empirical best linear unbiased prediction (EBLUP)

estimator and to the industry-standard post-stratified (PS) direct estimator. Results

suggest that when borrowing strength to areas which are believed to be homogeneous

(such as the ecosection level) and a weakly informative prior distribution is placed on

the between-area variation parameter, we can reduce variance substantially compared

the analogous EBLUP estimator and the PS estimator. Explorations of bias introduced

with the HB estimators through comparison with the PS estimator indicates little to no

addition of bias. These results illustrate the applicability and benefit of performing small

area estimation of forest attributes in a HB framework, as they allow for more precise

inference at the ecosubsection level.

Keywords: forest inventory, empirical best linear unbiased prediction, remote sensing, post-stratification, indirect

estimation, probabilistic graphical model, weakly informative priors, ecoregion

1. INTRODUCTION

The USDA Forest Service Forest Inventory and Analysis Program (FIA) collects a sample of
inventory data nationwide to monitor status and trends in forested ecosystems at scales relevant for
strategic-level planning. Increasingly, this network of valuable inventory plots is being called upon
to answer questions relevant to forest land management which is below the spatial and temporal
scales for which the sample was originally designed. Information is needed on resources lost and
recovery rates within disturbance boundaries, on significant change in carbon sources and sinks, as
well as on the state of the forests within individual counties, districts, or other small management
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units. There is strong interest in exploring methods to integrate
extant inventory data with remotely sensed data through models
that expand the capacity to estimate forest attributes over smaller
domains in space and time.

A standard estimator that combines inventory data with
remotely sensed data is the generalized regression estimator
(Cassel et al., 1976) in which the inventory data are modeled
and predicted over the domain of interest and then the observed
data and predictions are aggregated to construct an estimator.
Post-stratification (PS), a common estimation technique for
national forest inventories (NFI) such as FIA, is a special
case of the generalized regression estimator that incorporates a
single, categorical auxiliary variable into the estimator (Särndal
et al., 1992). Since the generalized regression estimator only
makes use of data within the domain of interest, it is called a
direct estimator. And, although leveraging auxiliary data typically
improves the precision of a direct estimator, it tends to still
not achieve adequate levels of precision when the sample size
of the inventory data in the domain is small (Rao and Molina,
2015). Therefore, we consider here indirect estimators with their
defining characteristic of borrowing strength from data outside
the domain of interest. These domains are often classified as
small areas and we will use the terms domain and small area
interchangeably. When the indirect estimator explicitly relies on
a model to link the data in the desired small area with data
in other related small areas it is called a small area estimator.
These linking models can be built either at the area level or unit
(i.e., plot) level, depending on data availability and the strength of
the relationships between the inventory data and remote sensing
data at these two resolutions. We study area level models here
because the inventory and remotely-sensed data we consider
have strong linear trends at the area level and violate normality
assumptions at the unit level. These estimators are constructed
under either a frequentist framework where the quantities of
interest are fixed, unknown values or a Bayesian framework
where they are considered random variables. Key advantages
of the Bayesian approach are that it allows the modeler to
directly consider uncertainty between the small areas and to
obtain distributions, not just point estimates and standard error
estimates, for the parameters of interest.

A frequently utilized, and frequentist-based, indirect
estimator is the empirical best linear unbiased prediction
(EBLUP) estimator, which uses a linking model with random
area-specific effects to borrow strength from related areas (Rao
and Molina, 2015). The suitability of area and unit level EBLUP
estimators to the small area applications found in NFIs have
been studied extensively (Goerndt et al., 2011; Breidenbach
and Astrup, 2012; Magnussen et al., 2017; Mauro et al., 2017;
Coulston et al., 2021). This paper considers the Bayesian analog
to the EBLUP, a hierarchical Bayesian (HB) estimator. These
HB estimators are not commonly used in forest inventory
research; however, they have been applied in a variety of other
application areas ranging from poverty mapping to agriculture
to transportation to employment (You et al., 2003; Vaish et al.,
2010; Wang et al., 2012; Molina et al., 2014) to name a few.
Within the NFI literature, Ver Planck et al. (2018) explored an
area level HB estimator for estimating forest attributes and did

find improvements in precision over the Horvitz-Thompson
(HT) direct estimator.

In this paper, we explore the performance of the PS, the area
level EBLUP, and the area level HB estimators at estimating
the mean value of four response variables: basal area (m2 per
hectare), count of trees per hectare, above-ground biomass (kg
per hectare), and net volume of trees (m3 per hectare), excluding
rotten or form defects, across the Interior West (IW) of the
US. We generate estimates within the subregion (ecosubsection)
of a hierarchical system of ecological divisions. For both the
EBLUP andHB approaches, we consider the impact of borrowing
strength from two resolutions from upper hierarchical levels:
ecosection and ecoprovince, at scales of thousands of acres and
millions of acres, respectively. Leveraging the flexibility of the
HB, we study the impacts of varying how prior information
on the homogeneity of the modeled small areas is incorporated
into the estimator. We find that when borrowing strength to
the ecosection level and including weakly informative prior
information about small area homogeneity with the area level
HB estimator we can reduce variance substantially compared to
other common estimators. Explorations of potential bias through
comparison with the post-stratified estimator display almost no
introduction of bias with this estimator. However, since we do not
know the true mean of the response variable of interest, caution
is warranted when making strong conclusions about bias.

2. METHODS

2.1. Region of Study and FIA Data
This manuscript focuses on estimating the mean of several key
forest attributes for the ecosubsections in the IW region of
the United States (Figure 1), which encompasses the states of
Arizona, Colorado, Idaho, Montana, Nevada, NewMexico, Utah,
and Wyoming. The inventory data were collected by FIA using
a geographically-based systematic sampling design, where each
plot represents about 2,500 ha of land (Bechtold and Patterson,
2005) and cover a 10 year measurement cycle from 2007 to
2017. This sample of 86,065 inventory plots were downloaded on
February 6, 2019 from the FIA database, version FIADB_1.8.9.99
(last updated Dec 3, 2018). Our analyses include the use of
four variables from the FIA database as response variables: basal
area (m2 per hectare), count of trees per hectare, above-ground
biomass (kg per hectare), and net volume (m3 per hectare). For
remotely-sensed auxiliary variables, we consider a forest/non-
forest classification used for post-stratifying in the IW (Blackard
et al., 2008) and the 2016 National Land Cover Database percent
tree canopy cover map (Yang et al., 2018), which has a spatial
resolution of 30m. Although each FIA plot consists of 4 subplots,
response variables represent the aggregation of information at
the plot level, and just the FIA plot center was intersected with
the two auxiliary data layers. As input to the area-level estimators
described below, both the percent canopy cover and proportions
of forest and non-forest classes are averaged to the small area level
for the IW. FIA data retrievals and processing of auxiliary data
were done through the R package FIESTA (Frescino et al., 2015).

Borrowing strength in small area applications often occurs
using political boundaries, such as counties within a state. But in
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FIGURE 1 | To illustrate borrowing strategies, assume our target areas of

interest are the ecosubsections within the IW-RMRS. Additional ecosections

can be borrowed for those ecosubsections at the ecosectional level (shaded

with the same color and denoted by the same letter) or borrowed at the

ecoprovincial level (shaded with the same color). In the case of ecosectional

borrowing, separate models are fit for the targeted ecosubsections. In the

case of ecoprovincial borrowing, only one model is fit for these same

ecosubsections.

order to borrow from “similar” domains, there is an opportunity
to use any one of many classification systems that exist in the US
to help guide borrowing in a more ecologically sensible fashion.
As one prominent example, Cleland et al. (2007) delineated
ecological units across the conterminous US using biological
and physical information such as potential natural vegetation,
geology, soils, climate, and hydrology. These ecological units
were developed in a nested hierarchical structure. Ecoprovinces
identifymajor vegetation cover types and land forms. Ecosections
delineate more homogeneous areas within the ecoprovinces
based on more detailed physical and biological components of
the environment. Ecosubsections provide another step toward
homogeneity at an even finer scale, with the number of FIA plots
in each ecosubsection ranging from 1 to 2,200 in the Interior
West. Figure 1 illustrates how the nested hierarchical structure
of this ecological classification system facilitates borrowing
at different ecological scales. We investigate how borrowing
strategies affect the performance of the indirect estimators by
comparing estimates and standard errors of the area level
estimators applied to ecosubsections when borrowing occurs at
the ecoprovincial vs. ecosectional levels.

2.2. Estimators
We consider the PS estimator, which is a direct estimator, and
two indirect estimation approaches, the EBLUP and HB, based
on an area level, linear mixed model. For the HB method, we

explore four different estimators, which vary based on how prior
knowledge is incorporated to see how that impacts the estimator’s
precision and bias. All data analysis is conducted using the
statistical software package R (R Core Team, 2020). In particular,
the PS estimator is fit with the mase package (McConville et al.,
2018), the EBLUP estimators are fit with sae (Molina and
Marhuenda, 2015), and the HB estimators are fit with mcmcsae
(Boonstra, 2021).

In order to explore these estimators in depth, we now
introduce relevant notation. First, suppose we have m small
areas we wish to estimate. Next, the indices are as follows: i
indexes over units sampled; j indexes over small areas (in our
case, ecosubsections); and k indexes over post-strata. Now, recall
the goal of producing estimates of the mean of some response
variable y, such as trees per hectare, in a small area. So, let µyj

be the population mean of the study variable in ecosubsection
j in the IW. To denote the estimator produced for µyj we use
µ̂yj with a superscript denoting which estimator is being used.

We also use V̂(µ̂yj ) to denote the estimator of the variance
of µ̂yj . The set sj of size nj includes all units sampled within
ecosubsection j. We use the shorthand “iid” when referring to
independent and identically distributed random variables and
“ind” for independent random variables.

2.2.1. Direct Estimation via Post-stratification

We implement the PS estimator, which is commonly used by FIA
and other NFIs, and is considered a direct estimator ofµyj since it
only uses the inventory and auxiliary data within ecosubsection j.
With the set of weights, {wjk}

K
k=1

, representing the proportion of
pixels in each post-stratum for ecosubsection j, the PS estimator
of µyj is represented as follows:

µ̂PS
yj

=

K
∑

k=1

wjkµ̂
HT
yjk

(1)

and is a weighted average of the post-strata HT estimators, given
by µ̂HT

yjk
= n−1

jk

∑

i∈sjk
yi where sjk is the subset of the sample

in ecosubsection j that falls in post-stratum k and njk is the
corresponding sample size (Särndal et al., 1992). Since we have
equal probability sampling, the post-strata HT estimators equal
the post-strata sample means. For the IW, ignoring adjustments
for non-response, the post-strata classes are forest and non-forest
so K = 2. Post-stratification can certainly be conducted using
more than 2 classes (e.g., Rintoul et al., 2020) but here we applied
post-strata consistent with that used in the IW production
inventory processes.

The variance estimator for µ̂PS
yj

is given by:

V̂
(

µ̂PS
yj

)

=
1

nj

(

K
∑

k=1

wjknjkV̂
(

µ̂HT
yjk

)

+

K
∑

k=1

(1− wjk)
njk

nj
V̂
(

µ̂HT
yjk

)

)

(2)

(Equation 7.6.6 in Särndal et al., 1992 without the finite
population correction) where the HT variance estimator of µ̂HT

yjk

is given by
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V̂
(

µ̂HT
yjk

)

=
1

njk(njk − 1)

∑

i∈sjk

(

yi − µ̂HT
yjk

)2
. (3)

Since the number of pixels for the post-strata map is significantly
larger than the sample size, the finite population correction
would be negligible and is therefore omitted from the variance
estimator calculation. For the IW, the PS estimator is typically
more efficient than the HT estimator since many of the desired
response variables are more homogeneous within the forest/non-
forest post-strata. [For the forest/non-forest used here, Blackard
et al. (2008) report an accuracy of 91% correctly classified
based on an independent test set, with errors of omission and
commission for forest at 17 and 18%, respectively, and for non-
forest at 7 and 6%, respectively]. Therefore, we use the PS
estimator in the subsequent indirect estimators when a direct
estimator is needed.

2.2.2. Indirect Estimation via Small Area Models

When the sample sizes in the domains of interest are small, direct
estimation techniques often do not provide sufficiently small
variances, evenwith the use of auxiliary data, tomake informative
inferences. Indirect estimators increase the effective sample size
by borrowing strength from data outside, with greater gainsmade
when the larger area has the same characteristics, in terms of the
response variables and their relationships with the auxiliary data,
as the small areas of interest.

One common technique for borrowing strength is to explicitly
use a linkingmodel with a random-area specific effect, in addition
to the sampling model which describes the data generation.
Combining the linking model and the sampling model results in
a mixed model approach to estimating the parameters of interest
in the small areas. We consider a linear mixed model, which
can be estimated using the EBLUP or using HB when additional
assumptions are made on model parameters.

2.2.2.1. The Area Level EBLUP Estimator
For our parameters of interest, µyj , we assume the following
linking model:

µyj = βo + β1X̄j + νj (4)

where X̄j is the average percent tree canopy cover for
ecosubsection j and the area-specific random effects satisfy the
following conditions:

νj
iid
∼ N(0, σ 2

ν ).

And, we assume the PS estimators were generated from the
following data generation model:

µ̂PS
yj

= µyj + ǫj (5)

where ǫj
ind
∼ N(0, σ 2

j ). Inserting Equation (4) into Equation (5)

gives the following area level mixed model, also known as the
Fay-Herriot model (Fay and Herriot, 1979):

µ̂PS
yj

= βo + β1X̄j + νj + ej (6)

where

νj
iid
∼ N(0, σ 2

ν ), ej
ind
∼ N(0, σ 2

j ), and νj ⊥⊥ ej.

To obtain an estimator of µyj from this model, we use an EBLUP
approach. This requires estimating the within-area and between
area variances and the model coefficients. For j = 1, 2, . . . ,m,

the within-area variations, σ 2
j are set to V̂

(

µ̂PS
yj

)

, the estimated

variances of the PS estimates. The between-area variation, σ 2
ν , is

estimated using a method of moments estimator (Ch 6.1.2 in Rao
and Molina, 2015) and the estimated model coefficients β̂o and
β̂1 are the EBLUPs of βo and β1, respectively. The equation for
the variance estimator of the EBLUP estimator of µyj is given in
the Appendix.

The EBLUP estimator of µyj can be expressed as a weighted
average of the direct estimator and an area level regression-
synthetic estimator:

µ̂EBLUP
yj

= γ̂jµ̂
PS
yj

+ (1− γ̂j)(β̂o + β̂1X̄j) (7)

where

γ̂j =
σ̂ 2

ν

V̂
(

µ̂PS
yj

)

+ σ̂ 2
ν

. (8)

Notice that the EBLUP estimator is a composite of an indirect
and a direct estimator where the weighting term accounts for
local variation. In particular, γ̂ is the ratio of between-area
variation and total variation. When the small areas are fairly
heterogeneous, the EBLUP will rely more heavily on the direct,
PS estimator, which only relies on data within the small area of
interest. The estimator leans more on outside information when
the variance estimator of the PS estimator is large compared to
the variability between the small areas. In this case, it relies on the
fixed effect component of the estimated regression line, which is
called a regression-synthetic estimator.

2.2.2.2. The Area Level Hierarchical Bayesian Estimator
So far, we have explored common frequentist approaches to small
area estimation. However, the primary focus of this paper is
to study the performance of the HB for small area estimation.
Under the Bayesian paradigm, the parameter of interest, µyj ,
and other model parameters, are treated as random variables
instead of fixed, unknown values. Leveraging Bayes’ Theorem,
this technique synthesizes information gained from the data via a
likelihood function with prior knowledge about the parameter of
interest and model parameters to obtain a posterior distribution
for the parameters:

P(µyj ,βo,β1, σ
2
ν | data) ∝ P(data | µyj ,βo,β1, σ

2
ν ) · P(µyj ,βo,β1, σ

2
ν )

(9)

A marginal posterior distribution for µyj is found by integrating
out the model parameters or by Markov chain Monte
Carlo (MCMC) methods. Typically the posterior mean of
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the distribution, E
[

µyj | data
]

, serves as the estimator of the
parameter, with precision provided by the posterior variance,
Var

[

µyj | data
]

.
For the area level HB estimator, we start with Equation (6),

as was done for the area level frequentist EBLUP, and apply a
HB approach. This transformation involves rewriting the data
generation model, also referred to as the likelihood function, as
a conditional normal distribution where we condition on the
parameter of interest and model parameters:

µ̂PS
yj

| µyj , βo, β1, σ 2
ν ∼ N

(

µyj , V̂
(

µ̂PS
yj

))

and the distribution of µyj as a conditional normal distribution
where we condition on the model parameters:

µyj | βo, β1, σ 2
ν ∼ N(βo + X̄jβ1, σ 2

ν ).

The HB approach also requires specifying prior distributions for
βo, β1, and σ 2

ν . For the model coefficients, we assume a flat prior:

f (βo,β1) ∝ 1.

For the between-area variation parameter, we consider two prior
distributions, an uninformative improper uniform distribution:

f (σ 2
ν ) ∝ 1

and a unit-scale half-Cauchy distribution:

σν ∼ half-Cauchy(scale = 1).

Note that the half-Cauchy distribution is applied to the between-
area standard deviation, not the between-area variance. Lastly,
we assume the model parameters are independent, namely,
f (βo,β1, σ

2
ν ) = f (βo)f (β1)f (σ

2
ν ).

Now that the HB model has been specified, we can attain the
small area estimator and variance estimator. For the estimator in
ecosubsection j, the Bayes estimator for µyj is:

µ̂HB
yj

= E[µyj | µ̂
PS
yj
]. (10)

For the variance in ecosubsection j, the variance of the posterior
distribution is used:

V̂(µ̂HB
yj

) = V(µyj | µ̂
PS
yj
). (11)

The estimator and variance estimator are obtained through
MCMCmethods with the mcmcsae R package (Boonstra, 2021).
Using MCMC methods allow for posterior distributions to be
well-approximated by sampling from a probability distribution.
We use 1,000 sampling iterations (the length of each Markov
Chain), 3 Markov Chains, and a burn-in period length of 250 to
obtain the results of each HB model we fit.

Figure 2 represents the area level HB estimator as a
probabilistic graphical model (PGM). This diagrammatic view
can be helpful in understanding the relationships between the
parameter of interest, the data, model parameters, and other key

FIGURE 2 | The area level HB estimator depicted as a PGM, which helps us

understand the relationships between the data, model parameters, parameter

of interest, and other key random variables. Quantities in yellow circles

represent observed (known) variables. The quantity in red represents the

quantity we would like to estimate. In this diagram, the quantity we would like

to estimate is the mean of the response variable in the first ecosubsection. The

seafoam dotted line represents the division between ecosubsection 1 and

ecosubsection 2. Quantities on this dotted line represent random variables

that effect both ecosubsections. The arrows represent marginal and

conditional distributions of random variables.

random variables included in the model. For example, the arrows
in Figure 2 can give us the distribution for µ̂PS

yj
and show us

that it depends on the parameter of interest (µyj ) and model

parameters (βo, β1, and σ 2
ν ). Not only can we quickly see how

distributions are conditioned through the use of a PGM, we can
also less formally view how variables are related to each other
and gain a deeper understanding of how strength is borrowed
for this area level HB estimator. If we remove the formality of
some parameters representing random variables, we can even use
Figure 2 to visualize how strength is borrowed with the area level
EBLUP. Recall that the area level EBLUP is specified with the
same linking model and thus strength is borrowed from the same
places. Thus, Figure 2 not only depicts the components of the
area level HBmodel, but also the area level EBLUP, albeit in a less
formal way.

2.3. Methods Summary
We use seven estimators–the PS estimator, two area level
EBLUPs, and four area level HB estimators–to produce estimates
for the average of basal area (m2 per hectare), tree count per
hectare, above-ground biomass (kg per hectare), and net volume
(m3 per hectare). The EBLUPs and HB estimators use one
explanatory variable, the average percent tree canopy cover of
the ecosubsection, to produce estimates. Estimation occurs at
the ecosubsection level, and thus we have produced 11,928
estimates (seven estimators, four response variables, and 426
ecosubsections). The model-based estimators are fit either within
an ecoprovince or an ecosection, and hence each ecosubsection
only borrows strength out to either the ecoprovince or ecosection
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level, not the entire IW region. In order to assess the quality of
these estimators, we summarize the findings over the entire study
region and for particular regions.

The data span the entire IW; however, we are forced to exclude
a small portion of ecosubsections from our analyses. These
ecosubsections contain either no or very close to no sampled
areas with non-zero values for the variables of interest: that is,
areas which are in extremely non-forested areas. These areas have
to be excluded due to their within-area variance being zero or so
close to zero that the software does not recognize that the number
was positive.

3. RESULTS

3.1. Estimator Performance
The indirect estimators that we implement perform similarly,
on average, to the PS estimator. Figure 3 displays each indirect
estimator’s estimate on the y-axis and the PS estimate on the x-
axis for the basal area response variable and Figure 4 does so
for the count per hectare response variable. Notably, Figure 3
shows a strong linear relationship between the indirect and
direct estimates (which is also observed for volume and biomass)
whereas in Figure 4 this linear relationship begins to deteriorate
for larger values of average canopy cover. This is due to the
relationship between the explanatory variable (average canopy
cover) and the PS estimator of the average tree count per hectare
exhibiting more variability for those larger values, violating
the model assumption of homoskedasticity. Figure 5 displays
this larger variability for the tree count per hectare variable

and showcases that the PS estimates consistently fall below the
regression line for the largest average canopy cover values. This
violation of the homoskedasticity assumption seems to have
introduced bias into our indirect estimates. This represents a
good cautionary tale that while indirect estimators can provide
significant reductions in variance, they can be biased when the
model is incorrectly specified. For the remainder of the paper, we
focus on basal area, where the linear model specification seems
most appropriate.

Figures 3, 4 also display that the flat prior HB estimator
produces very similar estimates to the EBLUP for both the
estimators that borrow strength out to the ecosection level and
to the ecoprovince level. Figure 6 displays this relationship in
further detail. Notably, the flat prior HB estimates and standard
errors are very similar to the EBLUP. This is expected as we add
no prior information to the flat prior HB estimators. By adding
no information and specifying the same model we should and do
see extremely similar results.

While it is reassuring for the flat prior HB estimator to
reinforce the results of the EBLUP, the full benefits of the HB
estimators are not gained without careful thought into how
prior information is incorporated. In our case, we specify a half-
Cauchy prior with scale of one, which is considered a weakly
informative prior, on the between-area variation parameter.
This distribution places more probability mass over smaller
values for our between-area variation, signifying that we expect
the between-area variation to be low. This prior is commonly
used for the between-area standard deviation parameter in
hierarchical models, especially when the number of small areas

FIGURE 3 | The six indirect estimators compared to the PS direct estimator. Each point represents two estimates of basal area for an ecosubsection, its y-coordinate

representing the indirect estimate of basal area for that ecosubsection and its x-coordinate representing the PS direct estimate of basal area. The blue line is the

identity line.
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FIGURE 4 | The six indirect estimators compared to the PS direct estimator. Each point represents two estimates of tree count per hectare for an ecosubsection, its

y-coordinate representing the indirect estimate of tree count per hectare for that ecosubsection and its x-coordinate representing the PS direct estimate of tree count

per hectare. The blue line is the identity line.

FIGURE 5 | The relationship between the response variables and the explanatory variable (average canopy cover) for each response variable at the ecosubsection

level across the IW. The x-coordinate represents the population value of average canopy cover based on remotely sensed data in a given ecosubsection, and the

y-coordinate represents the post-stratified estimate of a response variable in a given ecosubsection. The blue line is the ordinary least squares regression line.

is small and so the data provide little information about the
group-level variance (Gelman, 2006). Further, we know that
ecosections should be more homogeneous than ecoprovinces

and this prior information should reinforce the homogeneity
we see in the data. We still chose to place a half-Cauchy
prior on the between-area variation when borrowing out to the
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FIGURE 6 | The flat prior HB estimators compared with the EBLUP estimators at each level of strength. The top left plot displays the estimates for each estimator at

the ecoprovince level, the top right plot displays the estimates for each estimator at the ecosection level, the bottom left plot displays the standard errors for each

estimator at the ecoprovince level, and the bottom right plot displays the standard errors for each estimator at the ecosection level. Each plot contains either estimates

or standard errors for the basal area response variable. The blue line in each plot is the identity line.

ecoprovince level, as these regions are defined by ecologists as
more homogeneous than the rest of the study region (McNab
et al., 2007).

Figure 7 displays the reduction in variance when we change
the prior on the between-area variation from flat to half-Cauchy
in both the ecosection and ecoprovince approaches. The variance
is reduced much more significantly when we use a half-Cauchy
prior for estimators that borrow strength to the ecosection level
because the number of small areas is smaller. In particular, one
can observe that most areas where variance is reduced a large
amount have less ecosubsections that they borrow strength from
(light purple dots).

Outside of this graphical representation, we can look
numerically at the mean and median percent reduction in
variance when moving from a flat prior HB estimator to one
with the half-Cauchy prior. Table 1 displays both the mean
and median percent reduction in variance of basal area for
the ecosection and ecoprovince level HB estimators. Borrowing
to the more homogeneous ecosection level with the half-
Cauchy prior on the between-area variation leads to the greater
reductions in variance. While this reduction in variance is
compelling, it is possible that the weakly informative prior
introduced bias to the estimator.

To understand where bias may be introduced in our estimates,
Figure 8 displays the estimates made by the HB estimators with a
half-Cauchy prior compared to those made by the PS estimator,

an estimator that is unbiased under resampling regardless of
model accuracy. Here, we see a high level of agreement between
the two estimators, which suggests the HB estimators are not
systematically biased. However, it is important to note that it
is the PS estimator, under resampling, that is unbiased, not a
given PS estimate. We also saw strong agreement between the
estimators from the half-Cauchy prior and those from the flat
prior, signifying a robustness to the choice of prior distribution
for the between-area variation.

We can also investigate indications of bias numerically, with
the percent relative difference (PRD) metric. The PRD between
two estimators is defined as followed:

PRD(µ̂1, µ̂2) =
µ̂1 − µ̂2

µ̂2
· 100%.

When we examine the PRD between the PS estimator and the
half-Cauchy prior HB estimator for the basal area response
variable we see that the average PRDs are −0.007% and 0.756%
at the ecoprovince and ecosection level, respectively. The median
PRDs between for these estimators are −0.12% and −0.225% at
the ecoprovince and ecosection level, respectively. The low PRD
values provide additional evidence that we are not introducing
much systematic bias with the use of the auxiliary data and prior
on the between-area variation parameter.
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FIGURE 7 | Basal area standard errors for each HB estimator. The x-coordinate of each dot represents the standard error when a half-Cauchy prior is placed on

between-area variation, and the y-coordinate represents the standard error when a flat prior is placed on between-area variation. The color of the dot represents the

number of ecosubsections that strength was borrowed out to for the given dot. The black line is the identity line. The plot on the right shows the estimators that

borrow strength to the ecosection level, while the plot on the left shows the ecoprovince level estimators.

TABLE 1 | Percent reduction in variance of basal area estimates from flat prior to

half-cauchy.

Strength Metric Percent reduction

Ecosection
Mean 14.580

Median 7.313

Ecoprovince
Mean 3.384

Median 2.792

3.2. Case Study: The South Central
Highlands (M331G) and the Utah High
Plateau (M341C)
We now explore the effects of adding prior information to the HB
estimators at a micro level: by examining two ecosections. The
South Central Highlands and the Utah High Plateau ecosections
both exist in mountainous ecoprovinces in the IW. Figure 9
displays both ecosections. These two ecosections are located
relatively close to each other in the IW, yet the addition of the
half-Cauchy prior when we borrow strength to the ecosection
level has a very different effect within each ecosection. To
understand how the estimators perform differently across these
two ecosections, we explore the mean estimates for basal area,
and corresponding standard errors, within these two ecosections.

Figure 10 displays the HB estimates and illustrates that, for
both ecosections, the basal area estimate is about the same for

both priors on the between-area variation parameter. This again
showcases a robustness to how the prior information is specified
for between-area variation.

While the estimate values show high agreement, it should be
noted that the standard error estimates changed more drastically
when we changed the prior on between-area variation, as seen
in Figure 11. Interestingly, the standard errors in eocsection
M331G are reduced significantly when the half-Cauchy prior
is used compared to the flat prior, while the standard errors
in ecosection M341C hardly change. This is likely due to a
couple of factors. First of all, the estimated variance of the
PS estimates in ecosection M331G is lower than the estimated
variance of the PS estimates in M341C (32.044 and 44.384,
respectively). That is, based on the data, there is less between-
area variation in ecosection M331G. By placing a prior which
has high probability density for small values of σ 2

ν we have
reinforced the pattern seen in the data. Additionally, M331G is
borrowing from less small areas and therefore will lean more on
the weakly informative prior which preferences smaller values for
the between-area variation.

4. DISCUSSION

We consider six indirect, area level small area estimators and
one direct estimator across the IW region of the United States.
The two HB estimators with flat priors on between-area variation
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FIGURE 8 | Basal area estimates for the half-Cauchy HB estimator and post-stratified estimator. The x-coordinate of each dot represents the estimate when a

half-Cauchy prior is placed on between-area variation, and the y-coordinate represents the post-stratified estimate. The color of the dot represents the number of

ecosubsections that strength was borrowed out to for the given dot. The black line is the identity line. The dashed yellow line is the ordinary least squares regression

line. The plot on the right shows the estimators that borrow strength to the ecosection level, while the plot on the left shows the ecoprovince level estimators.

FIGURE 9 | The South Central Highlands (M331G) and the Utah High Plateau

(M341C) ecosections on a map of the three states that they collectively

occupy. The purple area represents the Utah High Plateau and the green area

represents the South Central Highlands. The black lines divide the

ecosubsection within each ecosection.

mimic the two analogous area level EBLUP estimators in both
estimates and variances. When supplying the HB estimators with
a half-Cauchy prior for the between-area variation parameter,
we see a reduction in variance when borrowing strength out to
both the ecoprovince and ecosection level, with more reduction
observed at the latter level of strength.

Table 2 displays the relative efficiency of each estimator
implemented in this article compared the standard HT direct
estimator for the basal area response variable. We define relative
efficiency of a given estimator as the variance estimator of
that estimator divided by the variance estimator of a direct
estimator. The first column of Table 2 makes it clear that
incorporating informative auxiliary data into a direct estimator,
the PS estimator in this case, does improve its efficiency. These
improvements mimic FIA’s production process with just 2 post
strata assigned at the plot level, not at the subplot level. However,
greater gains can be had by moving to an indirect estimator.
In particular, the HB estimator with a half-Cauchy prior on
between-area variation borrowing strength to the ecosection level
has the highest mean and median relative efficiency. Notably,
the ecosection-level, half-Cauchy prior, HB estimators relative
efficiency is greater than the ecoprovince-level, half-Cauchy
prior, HB estimators relative efficiency. This gain in relative
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FIGURE 10 | Estimates for each HB estimator. The x-coordinate of each dot represents the estimate when a half-Cauchy prior is placed on between-area variation,

and the y-coordinate represents the estimate when a flat prior is placed on between-area variation. The color of the dot represents the ecosection that a given

ecosubsection is in. The black line is the identity line.

FIGURE 11 | Standard errors for each HB estimator. The x-coordinate of each dot represents the estimate when a half-Cauchy prior is placed on between-area

variation, and the y-coordinate represents the estimate when a flat prior is placed on between-area variation. The color of the dot represents the ecosection that a

given ecosubsection is in. The black line is the identity line.

efficiency is likely due to the half-Cauchy prior being a reasonable
depiction of the between-area variation of ecosubsections within
a given ecosection in the IW.

Figure 12 shows the relative efficiency of basal area estimates
for both the ecosection- and ecoprovince-level half-Cauchy

prior HB estimators compared to the PS direct estimator (as
opposed to the Horvitz Thompson in Table 2). We can see
more drastic improvements in relative efficiency in the more
forested Northern parts of the IW, and the relative efficiency is
sometimes below the PS estimator in extremely unforested areas.
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TABLE 2 | Relative efficiency of each estimator compared to the Horvitz-Thompson (basal area response).

Metric Post-strat HB cauchy:

ecosection

HB cauchy:

ecoprovince

HB flat:

ecosection

HB flat:

ecoprovince

EBLUP:

ecosection

EBLUP:

ecoprovince

Mean 1.40 1.87 1.86 1.63 1.80 1.38 1.78

10% quantile 2.00 5.45 3.64 2.65 3.24 3.41 3.03

Median 1.31 1.80 1.74 1.55 1.70 1.59 1.67

90% quantile 1.01 1.10 1.17 1.07 1.15 0.99 1.13

FIGURE 12 | The relative efficiency of basal area estimates from the HB estimators with a half-Cauchy prior on between-area variation compared to the PS direct

estimator. On the left, we have the HB estimator that borrows strength out to the ecosection level, and on the right, we have the HB estimator that borrows strength

out to the ecoprovince level. Darker orange areas correspond to higher relative efficiency. The gray areas are ecosubsections where we were unable to obtain HB

estimates.

This might be due to artificially low variance estimates for the
PS estimator, which can occur when almost all sampled units
in an ecosubsection have values of 0 for the response variables.
In the case of an estimator that borrows strength, such as the
HB estimators, we will likely borrow strength to some areas that
have larger direct estimates of response variables, giving us a
larger variance.

The efficiency gains of the HB estimators with informative
priors on between-area variation over the more common EBLUP
and PS (see Table 2 and Figure 12) imply that these estimators
can attain the same level of precision but with less sampled
plots. However, the benefits of a HB approach do not stop there.
Conveniently, the Bayesian paradigm allows for more intuitive
inferential statements than provided by frequentist methods.
Since the Bayesian methods provide a distribution for our
parameter of interest, we canmake probabilistic statements about
the location of the parameter, whereas the frequentist approach
only allows us to talk about the behavior of our method under
repeated sampling.

Considering the performance and all the characteristics of
these estimators, the results of this work provide some guidance
on when to consider which of these estimators. If one only has

a small number of areas that they borrow strength out to, and
those areas are believed to have a good amount of homogeneity
between them, a HB estimator with a half-Cauchy prior on the
between-area variation might be preferred. On the other hand,
if one has the ability to borrow strength to a large number of
groups that may not be too homogeneous, keeping a flat prior
on between-area variation should be considered. This suggests
that the HB estimator that borrows to the ecosection level and
uses the half-Cauchy prior on between-area variation may be
a viable estimator for FIA applications. Further testing with
alternative responses and auxiliary data in other parts of the
country is warranted.

Further work will include investigations of the unit level HB
estimator, particularly with an eye to handling non-Gaussian
data. Researchers have explored unit level modeling of non-
Gaussian data types, such as zero-inflated data (Krieg et al., 2016)
and other non-Gaussian data (Parker et al., 2020a). In particular,
Parker et al. (2020b) discusses the benefits of unit level models,
both in terms of potential efficiency gains and incorporating
various levels of spatial aggregations. We hope to investigate the
utility of these unit level models in a forest inventory setting. At
both the area and unit level we will also explore extensions to
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the HB estimators through spatially structured variance models.
Ver Planck et al. (2018) explores area level HB estimators
with conditional autoregressive random effects and conditional
autoregressive random effects with smoothed sampling variance
and found that these spatially structured variance models can
help reduce the variance of the estimator. We hope to explore
these spatially structured variance models further and investigate
how they perform with different prior information supplied.
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A. APPENDIX

A.1. Area Level EBLUP Variance Estimator
The variance of the Area level EBLUP is expressed by the
following equation (Molina and Marhuenda, 2015; Rao and
Molina, 2015):

V̂(µ̂EBLUP
j ) = g1j + g2j + 2g3j − b (A1)

where

g1j = γ̂jV̂
(

µ̂PS
yj

)

,

g2j = σ̂ 2
ν

(

1− γ̂j
)2
z′j





∑

j

γ̂jzjz
′
j





−1

zj,

g3j = 2m
(

V̂
(

µ̂PS
yj

))2 (

σ̂ 2
ν + V̂

(

µ̂PS
yj

))−3





∑

j

(

σ̂ 2
ν + V̂

(

µ̂PS
yj

))−1





−2

,

b = 2mσ̂ 2
ν





∑

j

(

γ̂j
)2

−





∑

j

γ̂j





2







∑

j

γ̂j





−3

(

1− γ̂j
)

where

zj =

[

1

Xj

]

.

One can intuitively think about each g#j as follows: g1j accounts
for within-area variation, g2j accounts for variation in estimating
the regression parameter β , and g3j accounts for model-variance
estimation (Hidiroglou and You, 2016).
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