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In the last decades tropical forests have experienced increased fragmentation

due to a global growing demand for agricultural and forest commodities.

Satellite remote sensing o�ers a valuable tool for monitoring forest loss, thanks

to the global coverage and the temporal consistency of the acquisitions.

In tropical regions, C-band Synthetic Aperture Radar (SAR) data from the

Sentinel-1 mission provides cloud-free and open imagery on a 6- or 12-day

repeat cycle, o�ering the unique opportunity to monitor forest disturbances

in a timely and continuous manner. Despite recent advances, mapping subtle

forest losses, such as those due to small-scale and irregular selective logging,

remains problematic. A Cumulative Sum (CuSum) approach has been recently

proposed for forest monitoring applications, with preliminary studies showing

promising results. Unfortunately, the lack of accurate in-situmeasurements of

tropical forest loss has prevented a full validation of this approach, especially

in the case of low-intensity logging. In this study, we used high-quality field

measurements from the tropical Forest Degradation Experiment (FODEX),

combining unoccupied aerial vehicle (UAV) LiDAR, Terrestrial Laser Scanning

(TLS), and field-inventoried data of forest structural change collected in two

logging concessions in Gabon and Peru. The CuSum algorithm was applied to

VV-polarized Sentinel-1 ground range detected (GRD) time series to monitor

a range of canopy loss events, from individual tree extraction to forest clear

cuts. We developed a single change metric using the maximum of the CuSum

distribution, retrieving location, time, andmagnitude of the disturbance events.

A comparison of the CuSum algorithm with the LiDAR reference map resulted

in a 78% success rate for the test site in Gabon and 65% success rate for the

test site in Peru, for disturbances as small as 0.01 ha in size and for canopy

height losses as fine as 10 m. A correlation between the change metric and

above ground biomass (AGB) change was found with R2 = 0.95, and R2 =

0.83 for canopy height loss. From the regression model we directly estimated
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local AGB loss maps for the year 2020, at 1 ha scale and in percentages of

AGB loss. Comparison with the Global Forest Watch (GFW) Tree Cover Loss

(TCL) product showed a 61% overlap between the twomaps when considering

only deforested pixels, with 504 ha of deforestation detected by CuSum vs.

348 ha detected by GFW. Low intensity disturbances captured by the CuSum

method were largely undetected by GFW and by the SAR-based Radar for

Detecting Deforestation (RADD) Alert System. The results of this study confirm

this approach as a simple and reproducible change detection method for

monitoring and quantifying fine-scale to high intensity forest disturbances,

even in the case of multi-storied and high biomass forests.

KEYWORDS

forest degradation, deforestation, change detection, Sentinel-1, biomass mapping,

Synthetic Aperture Radar, radar, logging

1. Introduction

Forests are the major component of the terrestrial ecosystem

(Pan et al., 2013), covering 31% of Earth’s total land area

(FAO, 2020). They play a key role in modulating the climate

system (Mitchard, 2018; Nunes et al., 2020) and provide

an essential source of livelihood and socio-cultural identity

to local communities. The tropical biome has the largest

proportion of the world’s forests and the richest biodiversity,

hosting 50–90% of all terrestrial species (Hoang and Kanemoto,

2021). Unfortunately, tropical forest cover has been declining

annually over the last 30 years (Hansen et al., 2013; FAO,

2020), contributing to anthropogenic greenhouse gas emissions

(Federici et al., 2015), biodiversity losses (Giam, 2017),

disturbances in the terrestrial water cycle (D’Almeida et al.,

2007), and a potential increase of infectious diseases (Castro

et al., 2019; Beuchle et al., 2021). Tropical deforestation is largely

driven by the expansion of agriculture and tree plantations to

meet the increasing demands of global supply chains, mainly

in beef and oilseeds (Henders et al., 2015; Pendrill et al.,

2019a,b). Knowledge of the spatiotemporal patterns of forest

disturbance can greatly contribute toward the conservation

efforts; however, forest-based interventions will ultimately be

effective only if framed within a critical political ecology

perspective, and when the current economic model—the main

driver of global deforestation—is challenged (McAfee, 2012;

Nielsen, 2014; Poudel et al., 2015; Bayrak and Marafa, 2016;

Asiyanbi et al., 2017).

Satellite remote sensing is the most suitable tool for estimating

rates and areas of forest canopy loss at large spatial scales

and in remote regions (Achard et al., 2010). In the last

decade, thanks to technical advancements in remote sensing

technology and the availability of satellite imagery at high

spatial and temporal resolutions, yearly maps of forest loss,

and alert systems tracking forest disturbances in near real-time

(NRT) have become operational at the national and global

scale (Shimabukuro et al., 2006; Hansen et al., 2013, 2016;

Vargas et al., 2019; Reiche et al., 2021). However, the extension

and magnitude of finer disturbances, such as those caused

by selective logging, is still largely uncertain (Bullock et al.,

2020). Recent analyses of long-term disturbances in the Brazilian

Amazon have found that forest degradation affects a larger area

of land than deforestation (Matricardi et al., 2020). Qin et al.

(2021) have estimated that, for the period 2010–2019, 73% of

the overall above ground biomass (AGB) losses in the Brazilian

Amazon came from forest degradation, and only 27% from

deforestation. A 30 year (1990–2019) pantropical analysis of

the JRC dataset on Tropical Moist Forest (TMF) by Vancutsem

et al. (2021) has shown that during the past 5 years annual

deforestation has declined by 5% while forest degradation has

increased by 38%, becoming the main contributing factor to

forest cover loss (+2.1 million ha/year compared with the

period 2005–2014). While the rate of deforestation is affected

by the outcome of national territorial policies, the same is

not true for the degradation rates, whose patterns are more

closely interrelated with the climatic conditions (Vancutsem

et al., 2021). Indeed, the JRC-TMF dataset shows that, in

the Brazilian Amazon, the area of forest degradation due to

selective logging and forest fires remains stable or even increases

over the years of decreasing deforestation (Beuchle et al.,

2021). These results stress the importance of enhancing the

detection accuracy of small-scale forest disturbances, shifting the

focus of national policy to monitoring and curbing this form

of environmental degradation, which often precedes outright

deforestation (Matricardi et al., 2020). In the tropics, monitoring

systems relying on optical satellite imagery, such as the Global

Forest Watch (GFW) Humid Tropical Forest Alerts (Hansen

et al., 2016) and the Brazilian Real-Time System for Detection

of Deforestation (Shimabukuro et al., 2006), are inherently

limited by cloud cover, cloud shadows, weather conditions,
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and rapid vegetation regrowth removing the transient signs

of the disturbance events (Asner et al., 2004; Shimizu et al.,

2019). For accurate monitoring of selective logging and small

clearings, frequent and temporally consistent image acquisitions

are needed (Herold et al., 2011). At present, Synthetic Aperture

Radar (SAR) systems are the most promising tools for mapping

forest disturbances in the tropics (Joshi et al., 2016; Bouvet et al.,

2018a; Ballére et al., 2021; Reiche et al., 2021), thanks to the

ability of the radar signal to penetrate through clouds and to

its sensitivity to forest structural parameters (Mitchard et al.,

2011b; Joshi et al., 2015). The European Space Agency (ESA)

Sentinel-1 mission provides free-of-charge C-band SAR images

at 10 m spatial resolution and at high temporal frequencies

(6–12 days, depending on location and data type). Sentinel-

1 operates at a frequency of 5.405 GHz, corresponding to a

wavelength of ≈5 cm. Longer wavelength L-band SAR signal

(≈23 cm) is considered more suitable for forest disturbance

monitoring and AGB estimation than the shorter wavelength

C-band SAR data (Mitchard et al., 2011b; Yu and Saatchi,

2016) because of the rapid signal saturation in high biomass

forests (Le Toan et al., 1992; Imhoff, 1995; Joshi et al., 2017).

However, recent work has demonstrated how the high spatial

resolution combined with the frequent observations of Sentinel-

1 can overcome the limitations of C-band radar, showing great

potential for mapping small-scale disturbances in an accurate

and timely manner (Bouvet et al., 2018b; Reiche et al., 2018,

2021; Hirschmugl et al., 2020; Ballére et al., 2021). Most

approaches measured changes in SAR backscatter intensity over

time, applying empirical thresholds to distinguish disturbed

areas (Verhegghen et al., 2016; Deutscher et al., 2017; Lohberger

et al., 2018). Bouvet et al. (2018a) introduced a novel method

making use of the geometric effects of SAR shadowing to

detect forest disturbances near forest edges. More recently,

the first SAR-based alert system, the Radar for Detecting

Deforestation (RADD) Forest Disturbance Alert, was developed

for monitoring pantropical forests in NRT (Reiche et al., 2021).

The RADD system makes use of a Bayesian approach and

Gaussian Mixture Models derived from historical time series

metrics to calculate the probability of change in each forest pixel

(Reiche et al., 2018).

The methods mentioned above are increasingly refining

the accuracy of forest disturbance detections in time and

space. However, they do not provide information on

changes in forest structure, for example related to biomass

values or tree canopy heights. Previous research has

related L-band backscatter signal to changes in AGB using

a regional empirical regression model and bi-temporal

ALOS PALSAR imagery (Ryan et al., 2012). Above ground

biomass was estimated at the two time points, and then the

difference in AGB was calculated by subtracting the two

estimates. This method is polluted by error propagation as

uncertainties from each map are summed up (Hirschmugl et al.,

2020).

The study presented here employs a change detection

method based on the cumulative sums (CuSums) of Sentinel-

1 time series, to retrieve information on location, time,

and magnitude of small-scale forest disturbance, including

selective logging. The method was recently proposed for

monitoring forest disturbances (Ruiz-Ramos et al., 2020) and

tested on a tropical site with promising results (Ygorra et al.,

2021). Here, we validate this novel approach on a unique,

ground-measured dataset collected by the Forest Degradation

Experiment (FODEX) in Gabon and Peru, using a combination

of unoccupied aerial vehicle (UAV) Lidar, Terrestrial Laser

Scanning (TLS), and forest inventory data of small-scale

disturbances caused by selective logging. In this paper, we

adopt the term “forest disturbance” to describe a decrease in

forest cover, which may result in the full conversion of forested

land into another land type (deforestation) or in an altered

ecosystem that still retains the definition of forest (Houghton

et al., 2012). This includes natural or anthropogenic causes,

such as forest fires, selective logging, forest fragmentation, and

edge effects. We prefer to use the term forest disturbance over

forest degradation, as the former does not contain any attempt at

classifying the fate and the nature of the change event, on which

we may not have sufficient information (Beuchle et al., 2021;

Reiche et al., 2021). As for “low-intensity disturbance,” we refer

to an event that results in the removal of less than 50% of forest

biomass per hectare (Houghton et al., 2012). In conclusion, the

novelties of the present work are: (1) The validation of a SAR-

based change detection algorithm on in-situ measurements of

tropical forest loss; (2) the design of an empirically-derived,

single change metric for retrieving information on location,

time, and magnitude of the disturbance; (3) the possibility of

scaling the algorithm on larger areas, which will be addressed

in the Discussion section.

2. Materials and methods

2.1. Study areas

To ensure the reproducibility of the change detection

algorithm, we located our study areas in two distinct tropical

forest ecosystems, located in the rainforests of the Amazon

basin (Peru) and Central Africa (Gabon) (Figure 1). While

having distinct forest types and ecology, we set up experimental

disturbance plots and collected as far as possible identical

datasets before and after logging, to act as an ideal calibration

and validation site for such algorithms.

Gabon is the second most forested country in the world,

with forests covering about 88% of its surface area (Poulsen

et al., 2017). We established our field plots in the Ogooué-

Ivindo province, in proximity of a disused airstrip (0.148◦S,

12.264◦E, Figure 1A) about 9 km North of the Ivindo village.

The area is dominated by mixed lowland tropical forest, and is
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FIGURE 1

Location of the two study areas in (A) Gabon and (B) Peru. The left panels show the position of the field sites within the country boundaries. The

layer in bright green is the primary humid tropical forest extent for the year 2001 from Turubanova et al. (2018). The right panels show the

location of the forest plots (yellow boxes) and the area covered by the UAV LiDAR acquisitions (white). Both RGB images of the field sites date to

May 2022 and are 3 m PlanetScope images acquired through Planet’s Education and Research Program (Planet Team, 2017).

part of a logging concession managed by the French company

Rougier Gabon, who harvests principally Aucoumea klaineana

(Okoumé) for commercial timber. The logging concession is

certified by the Forest Stewardship Council (FSC-C144419)

(Carstairs et al., 2022). The climate in the region is sub-

equatorial and is characterized by the alternation of two dry

seasons (June–August and December–February) and two rainy

seasons (September–November and March–April). The average

annual temperatures is 24 ◦C while the annual rainfall is

around 1,500 mm year−1, as measured by the Tropical Rainfall

Measuring Mission (TRMM 3B43) for the period going from

2009 to 2019 (Adler et al., 2003).

The second study region is located in the the southeastern

Peruvian Amazon, in the Madre de Dios department. Madre

de Dios is considered a biodiversity hotspot, with 40% of

its territory covered by Natural Protected Areas and home

to several Indigenous Communities, some of which live in

voluntary isolation (Tarazona and Miyasiro-López, 2020). The

presence of gold in the soil and river sediment, which is

often illegally mined, makes this area particularly vulnerable to

environmental degradation (Markham and Sangermano, 2018;

Diringer et al., 2020). Deforestation and forest degradation rates

have been exacerbated as a result of the construction of the

Interoceanic Highway (2006–2012), opening up the area for

further development, agriculture, and extractivist operations

(Caballero Espejo et al., 2018). We established the field sites in

the territory of the Indigenous Bélgica Yine Community (11.02
◦S, 69.72 ◦W, Figure 1B), about 6 km South of the Bélgica village,

in an area of planned logging operations. Since 2010, the Bélgica

has contracted a logging company, MADERYJA, to carry out

FSC-certified timber harvesting within their forest concession

(Burga Cahuana, 2013). The area is characterized by lowland
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tropical rainforest with a well-drained forest floor (terra firme).

The climate is warm and humid, with a dry season from May to

October and a rainy season from November to April. According

to the TRMMprecipitation estimates, annual rainfall for this site

is around 1,900 mm year−1 for the decade 2009–2019 (Table 1).

2.2. Field data

Four 1-ha Permanent Sample Plots were established in each

logging concession and inventoried in two phases, before and

after the extraction of selected trees. Standard forest inventory

techniques from Phillips et al. (2001) were employed alongside

TLS measurements, providing three dimensional models of each

tree. We also used a LiDAR sensor mounted on a UAV to collect

change data from the wider concession. In Peru the surveyed

zone includes the village surroundings, where land conversion

due to agricultural expansion is taking place during the dry

season, giving areas with greater forest disturbance proportions

than the plots (up to 100% AGB loss) (Figure 1B).

2.2.1. Forest inventory

In Gabon, we established four plots in the forested area

surrounding a disused airstrip, at an altitude of 500 m and on

flat ground, to facilitate the UAV operations (Figure 1A). The

plots had an area within 10% of 1 ha and orientations spanning

0–10◦North. The position of the plot corners were measured

by a differential GPS and corrected using the coordinates of

the integrated GNSS receiver of the TLS. Forest inventory

campaigns took place in August 2019 and then in February

2020, to account for the removal of 18 trees operated by

Rougier Gabon at the end of January 2020. In Peru, we

delimited four plots in the forest in proximity of the road that

connects Bélgica to Iñapari, at an altitude of 300 m above sea

level (Figure 1B). The plots were chosen in consultation with

community members and in areas that were rich in valuable

timber species, especially for use in community buildings. The

plots had an area within 10% of 1 ha and orientations spanning

0–40◦ North. Forest inventory data was collected in May 2019

and then in October 2020, to measure biomass change resulting

from the extraction of 24 trees during the second half of July

2019. In both sites, trees were selectively removed according to

FSC logging protocols, in different proportions for each plot,

to reproduce a range of degradation events. The Diameter at

Breast Height (DBH) of the removed trees ranged between

79–131 cm in Gabon and 50–129 cm in Peru. During the

pre-logging campaigns, we adopted the RAINFOR inventory

protocols Phillips et al. (2001) to identify, tag, andmeasure every

living stem with DBH > 10 cm. The average DBH recorded

was 30 cm in Gabon and 21 cm in Peru, with DBH values

ranging between 10–160 and 10–158 cm, respectively. We also

collected X and Y coordinates (≈ ±2 m) and determined tree

species information with the assistance of local botanists. Each

stem was visually inspected for damage and labeled according to

the percentage of its remaining biomass (25, 50, 75, or 90%) as

compared to an intact stem of the same size. During the post-

logging inventories, as well as remeasuring all the remaining

trees, we recorded the direction of tree felling and assessed the

collateral damage caused by the logging activities, according to

the damage classes described above. Wood density estimates

were derived from a global wood density database using tree

species information Chave et al. (2009). When possible, we

used species-specific wood density values. When multiple wood

density values were available for the same taxon, we reported

the arithmetic mean. In cases where wood density values were

unavailable for a species, we used the average across the genus

(29% of the stems); and, where no values were available, we

applied the plot average (25% of the stems) (Medjibe et al., 2013).

A pantropical allometric model from Chave et al. (2014) was

used to derive total AGB of trees in each plot from DBH (D) and

wood density (ρ) values, according to a regional environmental

stress factor (E) that averaged −0.096 in Gabon and 0.068 in

Peru (Chave, 2014). The equation is in the following form:

AGB = exp[−1.803− 0.976(E− ln(ρ))+ 2.673 ln(D)

− 0.0299× [ln(D)]2] (1)

Allometric estimates of AGB at individual tree scale are

found to have large uncertainties (Chave et al., 2014) which

tend to increase with tree size (Gonzalez de Tanago, 2018; Burt

et al., 2021). On the other hand, TLS measurements are found

to be in better agreement with the volume data from destructive

harvest experiments, with a mean tree-scale relative error of 3%

(Burt et al., 2021), thus providing more accurate estimates of

AGB values.

2.2.2. Terrestrial laser scanning

Terrestrial Laser Scanning data were collected at the same

time as the pre-logging campaigns using a Riegl VZ-400 scanner.

The plots were subdivided in 10 × 10 m squares and two scans

were obtained at every grid intersection point, following the

procedures outlined in (Wilkes et al., 2017). The point clouds

of the logged trees, extracted via the treeseg package (Burt et al.,

2019), were used to calculate the quantitative structural models

of tree volume (QSMs) (Raumonen et al., 2013; Calders et al.,

2015). From the QSMs, the AGB of the logged trees was obtained

by multiplying wood density by model volume. At the time of

the analysis, processed TLS data volumes were only available for

the logged trees, hence it was not possible to calculate the total

AGB per plot using the TLS measurements. It is important to

note that the logged trees in our experiment were, in most cases,
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TABLE 1 Forest structure characteristics of each study site.

Study area Tree height (m) Stem density

(trees ha−1)

AGB density

(Mg ha−1)

Mortality rate

(% year−1)

Ivindo, Gabon 32–50 300 470 1.06

Bélgica, Peru 22–46 650 280 2.02

Stem densities and Aboveground Biomass (AGB) densities are derived from field inventories of all stems>10 cmDiameter at Breast Height (DBH) in eight permanent sample plots located

in the two study areas. Tree heights are derived from Terrestrial Laser Scanning (TLS) measurements of the largest trees in the plots. Mortality rates for the regions are taken from Lewis

et al. (2004).

TABLE 2 Aboveground Biomass (AGB) before and after logging and Aboveground Biomass Change (1AGB) figures for eight 1-ha selectively logged

plots located in Gabon (G) and Peru (P), obtained by field surveys and Terrestrial Laser Scanning (TLS).

Plot AGB before

logging [Mg ha−1]

AGB after logging

[Mg ha−1]

Number of trees

logged

1AGB [Mg ha−1] 1AGB [% ha−1]

GC1 574.2 (35.4) 443.0 (32.8) 7 131.2 (12.8) 22.8 (2.8)

GC2 399.5 (27.9) 371.1 (27.2) 2 28.3 (4.8) 7.1 (1.3)

GC3 435.3 (27.8) 380.4 (26.7) 4 55.0 (7.1) 12.6 (1.8)

GC4 473.8 (38.1) 364.9 (36.0) 5 108.9 (10.4) 23.0 (3.1)

PC1 295.6 (15.8) 245.9 (15.0) 9 49.7 (5.0) 16.8 (2.0)

PC2 266.6 (13.4) 229.5 (12.2) 6 37.1 (3.2) 13.9 (1.4)

PC3 270.7 (24.0) 189.7 (10.5) 7 81.0 (4.2) 29.9 (3.3)

PC4 261.8 (17.7) 249.1 (15.3) 2 12.8 (1.0) 4.9 (0.5)

Standard errors are reported in parentheses and calculated as σ =

√

∑n
i=1 x

2
i

N , where x corresponds to the AGB value for each tree i.

the largest trees in the plots, with an average DBH of 102 cm

(Gabon) and 79 cm (Peru). To increase accuracy and reduce

allometric bias, we adopted TLS-derived biomass estimates for

the logged stems. Total AGB change per plot was then calculated

by summing the TLS-derived AGB of the logged trees plus the

difference in allometric AGB of the remaining trees as measured

by the forest inventory surveys (Table 2). Given their smaller

sizes, we do not expect significant differences between AGB and

TLS-derived estimates for the non-logged trees; on the other

hand, if we use allometric equations for the logged trees, then

the biomass removed per plot is overestimated by up to 29% in

Peru and underestimated by up to 15% in Gabon, as compared

to the values derived from the TLS measurements (Table S1,

Figure S1).

2.2.3. UAV LiDAR

In Gabon, UAV LiDAR data were obtained in January 2020,

prior to selective logging in the permanent plots, and then in

January 2021, to measure the widespread disturbance resulting

from commercial logging operations in proximity of the airstrip,

which took place between November and December 2020. In

Peru, the first UAV LiDAR campaign took place in May 2019

in conjunction with the pre-logging census. The post-logging

LiDAR data were acquired in September 2021, accounting for

changes in canopy cover due to selective logging in the study

plots and agricultural encroachment in the forest fringes near

the village area. For both Gabon censuses, and the first Peru

census, a RIEGL miniVUX-1DL LiDAR mounted on a DELAIR

DT26X fixed-wing UAV was flown at 140 m above the ground

and at a speed of ≈17 ms−1, yielding a point density of 240

pts m−2. For the post-logging campaign in Peru a LiDAR

RIEGL Minivux-2UAV mounted on a rotor craft was used for

the UAV data collection, yielding a point density of 200 pts

m−2. Flight trajectories were corrected using post-processing

kinematic (PPK) positioning from ground control points and

a GNSS base station, resulting in a geometric accuracy of 1.8

cm (McNicol et al., 2021). Canopy height models (CHM) for

a total area of 1,239 ha (354 ha in Gabon and 885 in Peru)

were generated by taking the difference between the highest and

lowest returns in a 25 cm cell and after noise filtering (McNicol

et al., 2021). For each site, a 1CHM raster was obtained by

taking the difference between the pre- and post-logging CHMs.

Losses in canopy cover were identified as in areas where 1CHM

decreased by 10 m or more (Figure 2).

2.3. Sentinel-1 SAR data

The ESA Sentinel-1 mission provides dual-polarization SAR

data at high spatial and temporal resolution. The Sentinel-

1 constellation comprises two satellites: Sentinel-1A and
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FIGURE 2

Canopy height change from UAV LiDAR measurements (gray image) showing losses in forest canopy height of more than 10 m (red). (A) Canopy

height loss in Gabon from January 2020 to January 2021 indicating patches of disturbance in the study plots and in the surrounding concession;

(B) Canopy height loss in Peru from May 2019 to September 2021, showing fine-scale losses in the area of the study plots (left panel) and more

intensive, consistent patterns of forest to agriculture conversion in proximity of the village (right panel).

Sentinel-1B, launched on 3rd April 2014 and 25th April 2016,

respectively. Each satellite carries a SAR C-Band instrument

onboard operating at a frequency of 5.405 GHz in four

different modes. The preferred mode for land use applications

is Interferometric Wide-swath (IW) with a ground resolution of

20 × 5 m and a swath width of 250 km. The repeat orbit cycle

of each satellite is 12 days over the field sites. The data used in

this study were acquired as VV-polarized, ground range detected

(GRD) products in IW mode. The provided pixel size is 10 ×

10 m. All images were retrieved in descending mode and using

the same orbit for each study area (relative orbit number 80 for

Gabon and 127 for Peru) to ensure a consistent radar geometry
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for all the scenes. All available imagery were retrieved from

the geospatial cloud computing platform Google Earth Engine

(GEE) (Gorelick et al., 2017) using the Python API. Sentinel-

1 GRD scenes are provided by GEE already preprocessed and

radiometrically calibrated to the backscatter coefficient σ o in

decibels (dB) (Google Earth Engine, 2021).

2.4. Change detection with cumulative
sums

The CuSum algorithm is recognized as a powerful statistical

method for detecting abrupt and systematic changes in time

series data (Page, 1955; Taylor, 2008; Manogaran and Lopez,

2018). While being extensively used for monitoring market

trends and industrial processes (Manly and Mackenzie, 2003),

it has recently found applications in the environmental sciences

for detecting seasonal climate changes (Manogaran and Lopez,

2018) and for monitoring deforestation and forest degradation

in temperate (Kellndorfer et al., 2019; Ruiz-Ramos et al., 2020)

and tropical forests (Ygorra et al., 2021). Results from Ruiz-

Ramos et al. (2020) and Ygorra et al. (2021) have shown the

robustness of this method for detecting cover changes in forest

canopy, with overall accuracy of 77% and 91%, respectively.

However, the data they used to obtain these numbers were

produced by visual interpretation of optical satellite imagery,

which presents many limitations. Even in 3 m resolution

PlanetScope images, degradation effects preceding deforestation

cannot be immediately detected, especially in the case of dense

and multi-storied canopies. Moreover, and this is particularly

relevant in tropical environments, canopy gaps can quickly

recover in between two cloud-free images, resulting in a large

underestimation of actual forest disturbances (Asner et al., 2004;

Shimizu et al., 2019; Ygorra et al., 2021). By contrast in this

study we use very high resolution (25 cm) in-situ data from

UAV LiDAR to validate the CuSum method in its ability to

detect subtle changes in forest canopy resulting from low-

intensity logging.

2.4.1. CuSum implementation

Ygorra et al. (2021) found that in tropical forests the co-

polarized backscatter (VV) showed best results, as compared to

the cross-polarized channel (VH), and this was also confirmed

by our preliminary tests. Therefore, time series data stacks were

generated using the VV-polarized channel containing the spatial

information (range and azimuth) and the temporal dimension

for each pixel of the Sentinel-1 image over the study area and

for a selected study period. The study period was set as the

time of the UAV LiDAR acquisitions (January 2020–January

2021 for Gabon and May 2019–September 2021 for Peru). In

order to capture all forest loss in the study period and build the

control trend in absence of structural changes, the data cubes

included all observations extending from at least 1 year before

(reference or pre-change data) to at least 6 months after the UAV

measurements (recovering or post-change data). For Gabon the

data cube comprised a total of 89 scenes from 6th January 2019

to 21st December 2021; while for Peru a total of 127 scenes from

2nd January 2018 to 18th March 2022 were downloaded.

The cumulative sum of the residuals (CuSum) is defined as

the CuSum of the difference between each pixel value and the

mean of the timeseries:

Rsumj =

n
∑

j=1

σ o
j,i − σ o

i (2)

where σ o
j,i is the value of each pixel i for each image j, n is the

number of images, and σ o
i is the mean of the time series over

each pixel i. Iteratively, CuSum can be written as:

Rsumj = (σ o
j − σ o

j + Rj−1, j = 1, 2, 3, ...n) (3)

where the starting value for the CuSum, R0, is equal to zero.

Figure 3 compares the resulting CuSum curves for disturbed

and undisturbed pixels in two of our field plots, where we have

precise information on the location and timing of the change

event. For undisturbed pixels, seasonal variations in canopy

cover (i.e., phenology), or changes in the moisture content of

vegetation result in small fluctuations in the CuSum curve,

which, in the absence of structural changes, oscillates around

a backscatter value of zero. On the other hand, the CuSum of

logged pixels appear like a bell-shaped curve, steadily increasing

until a sudden turn in direction. Since σ o
i is the overall average,

a sudden change in direction of the CuSum curve marks a shift

or change in the average trend. A downward slope indicates a

period of time where the values tend to be below the overall

average (Taylor, 2008). Different studies have reported a decrease

in the backscatter signal after forest disturbance (Joshi et al.,

2015; Reiche et al., 2018; Kellndorfer et al., 2019; Silva et al.,

2022), in agreement with what is observed here. As shown by

Figure 3, the shift from a positive to a negative trend occurs

in coincidence with the time of logging. Hence, the CuSum

chart not only gives an indication of change, but it also provides

information on when the change has occurred.

2.4.2. Threshold estimation and accuracy
assessment

Figure 3C implies that it must be possible to distinguish

between disturbed and undisturbed pixels by applying a

threshold on the peak of the CuSum curve. In-situ data on

canopy height loss from the UAV LiDAR measurements can

be used as reference data to estimate the optimum value for

this threshold, instead of adopting statistical methods (Ruiz-

Ramos et al., 2020) or parameterized thresholds (Ygorra et al.,

2021). The LiDAR-derived 1CHM raster (Figure 2) was first
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FIGURE 3

Comparison of disturbed and undisturbed pixels for selectively logged plots in (left) Gabon and (right) Peru. (A) Location of the disturbed pixels

(purple triangles) and undisturbed pixels (blue circles) on the Canopy Height Change raster from the UAV LiDAR measurements. Disturbance

areas on the LiDAR map are indicated in dark red. (B) Time series of Sentinel-1 (S-1) SAR backscatter values for the disturbed and undisturbed

pixels. (C) CuSum curves for the disturbed and undisturbed pixels. Pixels where logging activities took place display a bell-shaped curve peaking

around the time of logging (green line).

resampled by averaging to cells of 10 × 10 m, to allow direct

comparison with Sentinel-1 data. We considered a detection as a

canopy reduction of 10 m or more and determined the threshold

on the value of the CuSum peak, or Rsum_max, by matching

LiDAR canopy height loss to Rsum_max values within the same

cell. The overall accuracy of the method is defined as the ratio

between the number of real detections and the total number

of pixels:

OverallAccuracy(OA) =
TP + TN

TP + TN + FP + FN
(4)

where TP are the True Positive, i.e., pixels classified as canopy

loss by both the LiDAR and the CuSum algorithm; TN are the

True Negative, i.e., pixels classified as no change both by the

LiDAR and the CuSum algorithm; FP are the False Positive,

i.e., pixels classified as change by the CuSum algorithm but

not by the LiDAR, and FN are the False Negative, i.e., pixels

classified as change by the LiDAR but not by the CuSum

algorithm. The threshold was determined as the value of

Rsum_max that would minimize the False Negative and False

Positive detections in the Sentinel-1 observations, in reference

to the LiDAR data (Figure 4). Once a threshold on Rsum_max

was applied, adjacent pixels were grouped into polygons to

define the boundaries of each disturbance cluster. The same

procedure was also applied to the UAV LiDAR data to extract

polygons containing canopy loss values ≥10 m, which were

then compared with the disturbance clusters from the CuSum

algorithm. The total number of overlaps was calculated by

counting the places where the geometries of the two layers

intersected. Since the LiDAR data was collected at considerably

higher resolution than Sentinel-1 images, small clusters in

the LiDAR reference map were grouped into larger clusters

by creating a 10 m buffer around each polygon. This step

was necessary to avoid double counting LiDAR detections

overlapping the same CuSum cluster. We used QGIS software

(Polygonize plugin, QGIS version 3.10) to group raster pixels

into polygons and to perform all vector operations. The

overlap between the polygon datasets was performed using the
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FIGURE 4

Calculating the value of the CuSum maximum (Rsum_max) from Sentinel-1 (S-1) time series that would minimize both False Positive (FP) and False

Negative (FN) change detections in (A) Gabon and (B) Peru. The optimum value is indicated by a circle at the point of intersection between the

FP and FN curves. Change is defined as a canopy height loss ≥ 10 m as derived from a UAV LiDAR 1CHM raster resampled to 10 × 10 m pixels.

The counts in Peru are double the size than Gabon as here the S-1 time series spans 2 years, consistently with the timeframe of the UAV LiDAR

acquisitions. True Positive (TP) and True Negative (TN) curves are also shown in this Figure.

overlay() method from the geopandas library implemented

in Python.

So far we have described CuSum curves peaking at positive

values of σ o, with a sudden shift in the negative direction at

the time of logging (Figure 3). Certain pixels in our study areas,

however, feature a diametrically opposite trend, with CuSum

curves peaking at negative σ o and then suddenly shifting in

the positive direction, meaning an increase in backscatter signal

after the change event. Figure 5 shows our study area in Gabon

with the location of pixels featuring a negative or positive

CuSum, after a threshold was applied on both negative and

positive peak values, as found by the processing step outlined

in Figure 4. Figure 5 shows how pixels with negative CuSum

peaks are spatially symmetric to pixels with positive CuSum

peaks. However, by overlaying the UAV LiDAR layer, we have

found that only the positive CuSum pixels correspond to areas

of canopy height loss (Figure 5C). Hence for this study we have

only retained pixels with positive Rsum_max values (decreased

backscatter), interpreting the latter as canopy gaps, or areas

of SAR shadow (Bouvet et al., 2018a), and negative Rsum_max

values (increased backscatter) as the border between standing

forest and the clear-cut (Villard and Borderies, 2007).

Previous studies have found that a CuSum-based change

detection method performed better when filtering or smoothing

the time-series (Kellndorfer et al., 2019; Ruiz-Ramos et al., 2020;

Ygorra et al., 2021). We have tested the detection accuracy

of the CuSum algorithm by smoothing the Sentinel-1, VV-

polarized time-series with spatiotemporal filters of increasing

window sizes, where a size of 1 pixel means that no smoothing

was applied. The algorithm was developed using the signal

module in Python (Virtanen et al., 2020) and consists of

convolving the original time series by a 3D kernel of size w × w

×w, wherew is the window size (in pixels). Results are shown in

Table 3. As accuracy is found to worsen with increasing window

size, we did not apply any boxcar filtering to the analysis.

2.5. Biomass change estimation

Subsequently to selective logging, a reduction in forest cover

amounting to a loss of 5–30% of initial biomass per hectare was

field-measured across the eight study plots, corresponding to

very low to low-intensity canopy disturbances. For this analysis

we also selected four undisturbed plots (1AGB = 0%), two for

each study site, in areas that did not experience logging activities.

To encompass the full spectrum of forest disturbance, we added

three plots in Peru that transitioned from forest to agricultural

land (1AGB = 100%). The 0% and 100% biomass change plots

were determined from empirical knowledge of the study area, in

addition to visual inspection of the UAV LiDAR reference map

and PlanetScope imagery.

Previous work had successfully correlated decreases in L-

band radar backscatter to structural changes in vegetation cover

(Mitchard et al., 2011a; Ryan et al., 2012; Joshi et al., 2015).

However, biomass estimation in tropical forests is inherently

limited by the saturation of the radar signal (Mermoz et al.,

2015). Shorter wavelength C-band data is generally considered

less useful because of even lower penetration depth, as compared

to L-band radar (Le Toan et al., 2004; Woodhouse, 2017). On

the other hand, Figure 3 shows CuSum curves of logged pixels

peaking at different values of σ o, possibly indicating a variation

in the intensity of the change event. For this reason, we tested

the sensitivity of the maximum of the CuSum curve, Rsum_max,
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FIGURE 5

(A) Image of the study area in Gabon, showing in blue the location of pixels with negative CuSum curves and in red the location of pixels with

positive CuSum curves, after applying a threshold of Rsum_max = 33 for the positive values and Rsum_max = -33 for the negative values; (B) Zoom

on one of the field plots (Gabon C1), indicating how positive and negative values of Rsum_max are arranged symmetrically to each others; (C) The

same plot, but with canopy height loss (≥ 10 m) from the UAV LiDAR appearing in red; (D) CuSum curves of five pixels with negative Rsum_max

(blue lines) and five pixels with positive Rsum_max (red lines) selected from the same field plot in panel (B). The time series of the two types of

pixels feature diametrically opposite trends, expressing in the time dimension the spatial symmetry that can be seen in (A,B).

TABLE 3 Comparison between the CuSum algorithm and the UAV LiDAR reference map in the study area in Gabon, when boxcar filters of increasing

window sizes are applied.

Window size (pixels) Rsum_max threshold FP FN TP TN OA

1 33 0.031 0.028 0.023 0.918 0.941

3 25 0.030 0.031 0.022 0.918 0.940

5 18 0.033 0.038 0.018 0.911 0.930

7 14 0.039 0.041 0.013 0.908 0.921

A detection is defined as a canopy height decrease≥ 10 m in the UAV LiDAR reference map. The figures below refer to the fraction of total pixels in the study area that are assigned to each

category both by the CuSum change algorithm and the LiDAR map. TP, True Positives; TN, True Negative; FP, False Positive; FN, False Negative; OA, Overall Accuracy.

to changes in the AGB values of the study plots, 1AGB,

before and after selective logging. After taking the average value

of Rsum_max in each plot, we analyzed its relationship with

1AGB using a linear regression model, taking 1AGB (in units

of % ha−1) as the dependent variable and Rsum_max as the

independent variable. The linear relationship between the two

quantities is in the form y = mx + c. Substituting x with

Rsum_max from the Sentinel-1 observations (resampled to 1 ha

pixels), we obtain 1AGB values for building a biomass change

map of the two regions.

2.5.1. Tree cover loss map from global forest
watch

As in-situ biomass change data is not available for the

wider regions, we evaluated the performance of the biomass

change map in its ability to detect forest loss by comparing

it to the GFW Tree Cover Loss (TCL) product from Hansen

et al. (2013) for the year 2020. The comparison was performed

for the test region in Peru as this area experiences more

widespread forest disturbance. Since TCL in the GFW dataset

is defined as the complete removal of tree canopy at the
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FIGURE 6

Results of the CuSum change detection algorithm showing the location of the forest disturbance pixels in the study areas in Gabon (top) and

Peru (bottom). The inlets are zoomed views of two selectively logged plots for each study area. The left inlets are the UAV LiDAR reference map

(25 cm resolution), with areas of canopy height loss appearing in red. The right inlets show clusters of disturbances pixels from the CuSum

algorithm applied to Sentinel-1 data overlaid on the LiDAR reference map.

Landsat pixel scale (30 m resolution) (Hansen et al., 2013)

we compared this product with the 1AGB map where we

only retained values of 100% biomass loss. We resampled

the GFW TCL dataset to 1 ha resolution and calculated the

amount of 30 m pixels flagged as TCL to retrieve the total

disturbance area.
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TABLE 4 Results from the CuSum change detection algorithm showing total number of disturbance clusters, total disturbance area, and total

number of overlaps with respect to the LiDAR reference map (Gabon: 317 LiDAR clusters for a total area of 18.0 ha; Peru: 689 LiDAR clusters for a

total area of 84.8 ha).

Gabon Peru

Minimum cluster size (ha) Total

clusters

Total area

(ha)

Overlaps Total

clusters

Total area

(ha)

Overlaps

0.01 240 14.4 187 484 57.7 317

0.02 170 13.7 154 348 56.4 276

0.05 98 11.8 98 167 51.0 150

0.1 45 9.0 45 97 45.9 96

Results are shown for CuSum clusters of increasing minimum size (0.01, 0.02, 0.05, and 0.1 ha). CuSum clusters are classified as overlaps if they share part of their geometry with the

clusters from the LiDAR reference map.

3. Results

3.1. Spatiotemporal patterns of forest
disturbance

The CuSum formula from Equation (2) was applied to the

time series of VV-polarized Sentinel-1 images acquired over two

study areas in Gabon and Peru. The maximum of the CuSum

curve, Rsum_max, was chosen as the metric for detecting change.

Using the UAV LiDAR acquisitions as a reference map, we

determined a detection threshold of Rsum_max > 33 for Gabon

and Rsum_max > 36 for Peru (Figure 4), with OA = 94% and OA

= 82%, respectively. Figure 6 shows pixels classified as detections

after the threshold on Rsum_max is applied, as compared to

the UAV LiDAR reference map. Change pixels are found to

be spatially distributed into clusters, displaying geometrical

patterns of forest disturbances. By zooming over two selectively

logged plots in each study area, it is possible to observe how

the clusters obtained from the CuSum algorithm consistently

match patches of canopy loss from the LiDAR measurements.

In Gabon, during the study period going from January 2020

to January 2021, the CuSum method detected 240 disturbance

clusters covering a total of 14.4 ha (4% of the study area), while

field data from the LiDAR measurements estimated 317 clusters

of canopy loss ≥ 10 m, for a total of 18.0 ha (5% of the study

area). Seventy-eight percent of the disturbance clusters detected

with the CuSum method overlapped the location of the LiDAR

detections, with both maps having a minimum mapping unit of

0.01 ha (10 × 10 m pixel size). Increasing the minimum size

of the CuSum disturbance clusters improved the probability of

detection: 91% of the clusters with areas ≥ 0.02 ha matched the

LiDAR reference data, while 100% of the clusters with areas ≥

0.05 ha matched the location of the LiDAR detections. However,

increasing the minimum mapping unit reduces the number of

detections (Table 4). In Peru, the CuSum time series was filtered

for the study period going from May 2019 to September 2021,

to match the timeframe of the LiDAR acquisitions. In total,

i.e., both in the village area and the field plot site, the CuSum

algorithm detected 484 disturbance clusters, with a total area of

57.7 ha (7% of the study area), while the LiDAR reference map

estimated 689 disturbance patches, giving a total of 84.8 ha (10%

of the study area). 65% of the CuSum detections overlapped the

location of the LiDAR disturbances. This figure increased to 90%

when considering CuSum clusters ≥ 0.05 ha, and to 99% for

CuSum clusters≥ 0.1 ha (Table 4).

The position of Rsum_max in the CuSum chart corresponds

to the moment in time immediately before backscatter intensity

drops below the historical average. As a result, the time of

the disturbance event was derived by selecting the date of the

image that follows the date of the inflection point in the time

series. Disturbance events were filtered to retain only change

pixels within a single year. This was chosen as the year when

selective logging occurred in the permanent sample plots, i.e.,

2020 for Gabon and 2019 for Peru. Figure 7 shows the timing

of the change detections, in units of Day of Year (DOY), in

both our study areas. In Gabon, the field plots were selectively

logged at the end of January 2020, while commercial logging

operations in the surrounding area were carried out between

November and December 2020, in coincidence with the second

dry season (Figure 7A). In Peru, selected trees were extracted

from the study plots during the second part of July 2019, while

the rest of the area remained mostly undisturbed (Figure 7B).

More significant patches of disturbance are observed near the

village during a period going from June to August (Figure 7C).

Indeed this time frame corresponds to the peak of the dry

season, when forests fringes are cleared for agricultural fields

and pasture. These observations have been further confirmed by

inspection of PlanetScope imagery and conversations with the

Bélgica community.

3.2. Retrieving the magnitude of the
disturbance events

Relating the backscatter values of the CuSum maximum to

the LiDAR-derived mean canopy height loss per pixel reveals
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FIGURE 7

Dates of forest disturbance during the period of interest, determined as the year when the field sites were selectively logged. Dates are reported

in Day of Year units (1–366); (A) Dates of forest disturbance in Gabon, for changes during the year 2020; (B) Dates of forest disturbance in Peru,

showing changes occurred during the year 2019 in our study areas in proximity of the field sites and (C) near the village.

an exponential decay relationship between the two quantities,

implying that Rsum_max is sensitive to physical changes in forest

canopy, from 10 m up to about 50 m in vertical drop (Figure 8).

However, the large variations in Rsum_max magnitudes at pixel

level makes it difficult to derive accurate values of forest canopy

loss at this scale.

On the other hand, a strong correlation between the remotely

sensed Rsum_max and field-measured 1AGB was found using

a linear regression model with R2 = 0.95 and RMSE = 7.90

(p < 0.001) (Figure 9). The CuSum algorithm was applied to

Sentinel-1 VV-polarized time series acquired over an area ≈250

times larger than our study site in Gabon (99,938 ha in total)

and ≈150 times larger than our study site in Peru (39,559 ha

in total). Maps of biomass loss for the year 2020 were produced

for both locations from the coefficients of the regression model

(Figure 10). In Peru, where forest cut is more widespread, the

GFW TCL map estimated a total disturbance area of 348 ha

(0.9% of the total area) as compared to 504 ha (1.3% of the total

area) from the CuSum-derived biomass map. Sixty-one percent

of the detections from the GFWmap were found to overlap with

the observations of 100% tree canopy loss from the CuSummap.

The overlap reached 83, 73, and 90%when AGB loss values from

the CuSummap were extended to1AGB> 80%,1AGB> 60%,

and 1AGB > 50%, respectively (Figure S3).

3.3. Comparison to RADD alerts

In this section we compare the CuSum change detection

algorithm to the RADD disturbance alerts (Reiche et al., 2021),

as both are derived from Sentinel-1 data. Radar for Detecting

Deforestation Alerts for South America are only available from

2020, hence we chose this year for performing the comparison.

As we did with the CuSum layer, RADD alert pixels were

grouped into disturbance clusters to allow direct comparison

with our results. In our test site in Gabon, the RADD product

is able to detect only seven disturbance clusters, as compared

to 240 from the CuSum algorithm. All RADD alerts overlap

the LiDAR reference map; however, none of the RADD alerts is

able to detect logging in our field plots (Figure 11A). In Peru we

could not perform the comparison with our selectively logged

plots, as timber was extracted during 2019. For this comparison
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FIGURE 8

Distribution (boxplots) and means (green circles) of Sentinel-1 CuSum maximum backscatter for each UAV LiDAR measurement of canopy

height loss in our study area in Gabon. Data is binned into intervals of canopy height loss of 1 m. The mean values of the distribution follow an

exponential decay curve (blue dashed line) in the form y = ae(−bx), where a = 18.67 and b = 0.03. The coe�cient of determination R2, the Root

Mean Square Error (RMSE) and the p-value are shown on the plot.

FIGURE 9

(left) AGB loss in Mg ha−1 in the eight 1-ha selectively logged plots in Gabon (G) and Peru (P); (right) AGB loss (1AGB) vs. the maximum of the

CuSum curve (Rsum_max) for plots in Gabon (brown circles) and Peru (blue triangles). In addition to the eight field-inventoried plots (right), four

undisturbed plots (1AGB = 0%) and three fully deforested plots (1AGB = 100%) were added to the sample data.

we selected the village site, as this area normally experiences

agricultural expansion during each dry season. Here, RADD

alerts are able to spot large and spatially continuous patches of

deforestation, likely clear cuts for conversion into agriculture

and pasture, omitting to detect more scattered and subtle

changes (Figure 11B). In terms of total area, in our study site

in Gabon, RADD is able to map 3% (0.5 ha) of the disturbance

area detected by the UAV LiDAR reference map (18.0 ha), as

compared to 80% coverage by CuSum (14.4 ha); in Peru, RADD

is able to map 54% (42.5 ha) of the area detected by the LiDAR

reference map (79.3 ha for the village site), as compared to 59%

by CuSum (46.8 ha). This implies that, at least in our study sites,
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FIGURE 10

Maps of above ground biomass (AGB) loss (% per hectare) for

two areas in (A) Gabon and (B) Peru, with the location of the

study sites (white line) and the field plots (red boxes). Non-

forest areas have been masked using the primary humid tropical

forest extent for the year 2001 from (Turubanova et al., 2018).

RADD Alerts are able to detect clear cuts, but are less sensitive

to low-intensity forest disturbances.

4. Discussion

This study provides the first ground truth validation of

the CuSum change detection algorithm. This was successfully

tested over tropical rainforests located in the Amazon (Peru)

and Central Africa (Gabon). Highly accurate information on

the spatiotemporal distribution and the magnitude of forest loss

was derived by a combination of field-measured UAV LiDAR,

TLS, and forest inventory data. We have adopted a single

change metric, the maximum value of the CuSum distribution,

to map the location, timing, and magnitude of forest canopy

loss. The sites selected for this study presented different degrees

of disturbances, from individual tree removal to clear cuts

and forest fragmentation in proximity of an inhabited area.

The CuSum algorithm was able to detect the full spectrum

of the disturbances, with a 78% probability of detection over

the study site in Gabon and 65% probability of detection over

the study site in Peru, for patches as small as 0.01 ha in

FIGURE 11

Comparison between RADD Alerts (blue) (Reiche et al., 2021)

and CuSum change detection algorithm (black) for disturbances

in the year 2020 in our study areas in (A) Gabon and (B) Peru.

Overlapping areas between the two products are color coded in

pink. The non-forest mask in (B) is the product of a land cover

classification produced by the authors using PlanetScope 3m

resolution imagery from 16th July 2019.

size and canopy disturbances of 10 m and greater in vertical

drop, including variations in the understory vegetation. The

probability of detection increased to 100% in Gabon and 90%

in Peru when considering detections equal or greater than

0.05 ha in size. Sentinel-1 data analyzed with this algorithm

exceeded our expectations in its ability to estimate the timing of

disturbance events, such as selective logging in our study plots

early in 2020 vs. the more widespread selective logging in the

forest concession at the end of the same year (Figure 7A).

4.1. Reproducibility and generality

The results of this study indicate that the CuSum method

is an effective, simple, and highly reproducible tool for

monitoring forest structure dynamics, even in the case of low-

intensity logging. Forest monitoring systems relying on optical

imagery, such as the GFW Alerts (Hansen et al., 2016) and

DETER in Brazil (Shimabukuro et al., 2006), are inherently

limited by cloud coverage, which hampers the possibility of
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capturing the full extent of forest loss in tropical regions.

Building on the freely available, temporally dense, and cloud-

penetrating Sentinel-1 dataset, the CuSum method is suitable

for mapping disturbances in a continuous manner and at pan-

tropical scales (Ruiz-Ramos et al., 2020; Hethcoat et al., 2021).

In particular, the algorithm was successfully tested in two

contrasting tropical forest ecosystems, the Amazon and Central

Africa rainforests, which greatly differ in species composition

and stand structure. In both locations we used experimental

data from UAV LiDAR to calibrate the algorithm to distinguish

intact forest from disturbed forest, thus setting an empirical

threshold on the change metric. Interestingly, we have found

that the 95th percentile of the CuSum maximum distribution

approximately corresponds to the value of this empirical

threshold (Figure S4). This opens the possibility of extending

the proposed method beyond the test sites, even in the absence

of in-situ measurements of forest canopy loss. The detection

accuracy of this approach needs to be further explored, and the

analysis scaled to the regional level to evaluate the variability

of the threshold in response to differences in forest structure

and topography.

In terms of disturbance characteristics, the CuSum method

was able to detect a variety of disturbance events ranging from

small-scale logging for commercial timber extraction (e.g., in

Gabon) to large area deforestation for subsequent agricultural

use (e.g., near the village in Peru). This classification is only

possible thanks to our detailed, first-hand knowledge of the

study sites, as the CuSum method on its own does not provide

any information on the underlying causes of the disturbance. For

example, tree mortality, wind, and other natural factors are the

likely causes of canopy losses observed in the area surrounding

our field plots in Peru (Figure 6B). In this case, the location and

size of the disturbance clusters does not provide any information

on the nature of these events, making it difficult to distinguish

them from the anthropogenic disturbances that occurred within

and in close proximity of the study plots. There are cases

where it is possible to identify the nature of the disturbances by

looking at the shape and location of the clusters. For example,

new logging roads and crop fields are easily recognizable, as

they arrange themselves in geometric patterns and are usually

connected to other features in the landscape. A caveat on

scaling this methodology on a larger area is that automatic

remote sensing approaches may not be sufficient for an accurate

classification: fieldwork, knowledge of the study area, and image

interpretation are still crucial to fully understand the dynamics

on the ground (Myers, 2010; Reams et al., 2010; Beuchle et al.,

2021).

4.1.1. Location accuracy vs. timely event
detection

The majority of fine-scale disturbances in our study areas

went undetected by the RADD product, which is currently

the best SAR-based system for mapping forest disturbances

across the tropics (Reiche et al., 2021). In our study site

in Gabon (where RADD provides data for the year of the

logging activities), RADD was able to detect only 2% of the

disturbances measured by our reference map (7 RADD vs. 317

LiDAR detections)—as compared to 59% from CuSum (187

CuSum vs. 317 LiDAR detections)—missing all the selective

logging in our core plots. However, we have not tested the

performance of the CuSum method for NRT monitoring,

which is the essential feature of the RADD Alert system. The

potential of CuSum analysis for NRT has already been proposed

by the literature (Ruiz-Ramos et al., 2020). As the success

of the CuSum algorithm is ultimately linked to constructing

an adequate picture of the pre- and post-disturbance trend,

there is an intrinsic limitation on the minimum number of

images required for capturing the point-wise change that we

classify as a detection. In this study, we have tested the CuSum

method on time series acquired using a repeat-track orbit

and a descending acquisition mode, using a minimum of 12

months (≈ 30 images) for building the pre-disturbance dataset

and a minimum of 6 months (≈ 15 images) for the post-

disturbance trend. Enhancing NRT performance, for example

by reducing the amount of images required to build the post-

disturbance dataset, may also reduce the number of detections.

Compared to the RADD system, the CuSum method is able to

detect disturbances as small as 0.01 ha in size (as compared

to 0.1 ha, the minimum mapping unit for RADD) and can

provide accurate information on time and magnitude of the

disturbance events. On the other hand, the intrinsic latency

of the method may not make it suitable for NRT detections.

However, while future work should explore the possibility of

enhancing NRT capability of the CuSum algorithm, the two

systems can complement each other in terms of usage and

applications. For example, while RADD may be appropriate for

mapping activities that require immediate intervention (such

as illegal logging), the CuSum methodology can be used for

building yearly maps of forest loss, providing more accurate

figures on time and magnitude of the disturbance events for

long-term monitoring and reporting purposes.

4.1.2. Potential for biomass change estimates

In this study, we explored for the first time the relationship

between the CuSum method and forest physical parameters,

using the same metric that was adopted for mapping location

and time of the disturbances. A statistically significant

relationship (R2 = 0.95 and p < 0.001) was found between the

CuSum maximum and field-measured AGB loss percentages at

a 1 ha scale (Figure 9). The spread of Rsum_max values for the

assumed 0% and 100% 1AGB plots in Figure 9 is evidence that

the plots were not field-inventoried, and hence the associated

value of 1AGB may be inaccurate. For example, plots that

are not selectively logged will still experience small variations
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in forest biomass due to natural tree mortality. Despite the

underlying noise, these plots adds evidence to the assumption

that the magnitude of Rsum_max is directly correlated to the

amount of biomass removed. Hence, a pan-tropical linear model

was used for directly deriving maps of forest biomass change

with values ranging from 0% (intact forest) to 100% change

(deforestation). The maps show different levels of disturbance

compared to each other, which can be explained by the

distinctive characteristics of the two sites. In Gabon, this region

is scarcely populated, the main human settlement being the

village of Ivindo in the western corner, which is also the site

of Rougier’s logging camp. The rest of the area is dominated

by a dense canopy cover and is largely part of Rougier’s forest

concession, bordered east by Ivindo National Park and south by

the Ogooué River. Here, timber is logged on a rotational basis

and at low-intensities, according to FSC-certified protocols.

Limited patches of deforestation are observed in proximity of

the village, likely caused by the logging camp activities, as it

was observed during the field campaigns. The area in Peru, on

the other hand, is characterized by a higher human presence,

especially concentrated in and the around the town of Iñapari

and the Bélgica village, with small, isolated households scattered

along the Acre River, which marks the border between Peru

and Brazil. Consistent patterns of forest disturbance are visible

in proximity of human settlements and bordering grasslands

and agricultural fields, indicating agricultural expansion into

the forest fringes. Most of these patterns are concentrated

along transport infrastructures, namely the Acre River and

the road connecting Iñapari to Bélgica. However, land use in

Bélgica’s territory (dashed black line) is regulated and, with the

exception of the area around the village which is allocated to

agricultural/urban use, it is mainly divided between a protected

area and a forest concession for low-intensity timber extraction.

Indeed, the biomass change map shows a clear demarcation

in land use as soon as the road from Iñapari enters Bélgica’s

territory (Figure 10B). These observations are in line with

findings from previous studies (Hirschmugl et al., 2020), which

report similar patterns of forest disturbances in test sites located

in the forests of Peru and Gabon.

A lack of ground measurements of forest biomass change

in these areas combined with the absence of remote sensing
products on AGB loss figures makes it difficult to validate these
maps; however, at least for deforestation rates (AGB Loss =

100%), we can compare our findings with the GFW dataset

(Hansen et al., 2016). In Peru, where forest disturbance is

more widespread, we found a 61% overlap between the two

maps, for detections covering ≈1% of the overall study area.

The overlap increased to 90% when the CuSum map included

pixels containing at least 50% biomass loss (Figure S3). Different

spatial resolutions—30 × 30 m for the original GFW dataset,

resampled to 100 × 100 m for comparing purposes—and the

geometric incongruency of the two sensors (Landsat for GFW

vs. Sentinel-1 for our study) are limiting factors for this analysis,

where we may be excluding pixels that are very close but not

intersecting. The final result still shows the ability of the CuSum

algorithm to correctly locate the deforestation areas, presenting

itself as a complementary tool to optical datasets for monitoring

forest loss.

4.1.3. Limitations and future work

This study presents a first empirical application of the

CuSum method, showing the potential of this technique for

future forest disturbance mapping. On the other hand, this work

opens up further trajectories of research, which can refine the

methodology presented here, or even translate the analysis to

other areas of investigation where change detection methods are

required.

In this work, we have only considered the co-polarized

backscatter (VV), which is generally sensitive to surface or

double-bounce scattering mechanisms between radar signal

and measured target. On the other hand, the cross-polarized

channel (VH) is useful to describe variations in the presence

of multiple-bounce or volume scattering. A combination of co-

and cross-polarized backscatter, such as the ratio of VH and VV

backscatter, should be more sensitive to vegetation dynamics

(Veloso et al., 2017). Ygorra et al. (2021) has concluded that

the best detection of vegetation cover change is achieved when

combining both VV and VH; hence, future work should look

at adding information from the VH channel, and possibly

testing the detection ability of the combined ratio (VH/VV). The

number of detections may be further increased by combining

both the positive and negative CuSum curves that were shown in

Figure 5. Such analysis may also improve our understanding of

the scattering mechanisms at play in the presence of the change

event. In this study, we have focused on the detection of a single

change event over the entire period of observation. Nonetheless,

a pixel may experience multiple disturbances, especially over the

course of a multi-year analysis. For example, different waves

of selective logging may occur within the same pixel, leading

to a clearing event or to conversion into another land use.

A complete analysis of the disturbance trends should include

the detection of these secondary change points. This can be

achieved by dividing the time series before and after Rsum_max

and repeating the analysis until the value of Rsum_max falls below

the selected threshold.

Another direction of work should then focus on generalizing

the algorithm beyond the availability of in-situ measurements,

by improving the thresholding procedure and decoupling it

from the empirical data, for example by using statistical

inference as proposed here, or more advanced time series

techniques. Furthermore, the ability to retrieve biomass loss

estimates directly from the change metric should be refined by

adding more ground measurements to the regression model

covering the entire spectrum of forest disturbance rates; and

by using ground measurements, including the low-magnitude

AGB loss, to validate the final product. The output should

be validated in different areas and for different magnitudes
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of biomass change, especially for the low-intensity variations.

Adding calibration data at finer resolutions (< 1 ha), for example

using the LiDAR metrics, would allow to retrieve estimates of

biomass change potentially even at the original 10 m scale,

providing better results for local and regional assessments of

forest health.

Since the CuSum technique is essentially a change detection

method, it can be exploited for monitoring other types of abrupt

or sustained changes in land use, such as crop dynamics, floods,

and soil cover changes (Ruiz-Ramos et al., 2020; Ygorra et al.,

2021). It can be similarly implemented on other SAR-based

datasets at different wavelengths, such as the upcoming ESA’s

Biomass P-band mission, NASA’s NISAR L/S-band, and JAXA’s

ALOS-4 L-band, all planned for launch in 2023. Due to the

nature of the field measurements, the analysis in this paper

was limited to measures of forest loss; however, this does not

exclude the possibility of using the same method for mapping

forest regrowth. A very interesting line of research would be to

observe the behavior of the CuSum distribution in the case of

positive changes in stand volume or in canopy height, expanding

the analysis to include estimates of forest gain, which are still

excluded from current SAR-based monitoring systems.

5. Conclusions

This study presents a simple and effective methodology

for detecting fine-scale disturbances in dense and multistoried

tropical forests. A single metric based on the CuSums of VV-

polarized Sentinel-1 time series was used to retrieve location,

time, and magnitude of the disturbances. The results of the

change detection algorithm were tested on highly detailed,

in situ measurements of forest canopy loss retrieved with a

combination of UAV LiDAR, TLS, and field inventory surveys,

in the two distinct tropical forests located in Gabon and Peru.

The probability of detection for this new method was 78%

in the test site in Gabon and 65% in the test site in Peru,

for disturbances as small as 0.01 ha in size and for drops in

tree height as low as 10 m, including changes in understory

vegetation. The timing of the detections matched the time

when selective logging was carried out the field plots; in

the wider concessions, it was consistent with the patterns of

disturbances of the two test sites. The algorithm presented here

was able to capture different intensities of forest degradation

and deforestation, outdoing other forest monitoring tools such

as the SAR-based RADD system and the Landsat-based GFW

tool in capturing finer and more widespread tropical forest

disturbances. In addition to other forest monitoring systems,

the methodology outlined in this paper has the potential of

retrieving the magnitude of the disturbance. A correlation

between the change metric and biomass change was found

with R2 = 0.95 and R2 = 0.83 for canopy height loss. Given

the global coverage and free availability of Sentinel-1 data,

the approach can be generalized to the regional scale and

potentially used to quantify other types of forest dynamics, such

as forest regrowth.
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TABLE S1

Comparison between Aboveground Biomass change (1AGB) figures of

eight 1-ha selectively logged plots located in Gabon (G) and Peru (P),

where the AGB of the logged trees is calculated either using an

allometric equation (Allometric 1AGB) or Terrestrial Laser Scanning data

(TLS 1AGB). Allometric 1AGB is calculated as the di�erence in AGB

between the first and second inventory. TLS 1AGB is the sum of the TLS

volumes for the logged trees and the di�erence in AGB between the first

and second inventory for the unlogged trees. Standard errors are

reported in parentheses.

FIGURE S1

Comparison between Aboveground Biomass (AGB) values derived using

allometric equations and AGB values derived from Terrestrial Laser

Scanning (TLS) measurements for the logged trees in Gabon (blue

triangles) and Peru (red circles).

FIGURE S2

Maps of the CuSum spatial results for the study in area in Gabon,

showing the location of the detections from the CuSum method (red),

the results from the LiDAR reference map (blue) and the overlaps

between CuSum and LiDAR detections, for CuSum clusters of increasing

size: (A) CuSum clusters ≥ 0.01 ha; (B) CuSum clusters ≥ 0.02 ha; (C)

CuSum clusters ≥ 0.05 ha; (D) CuSum clusters ≥ 0.1 ha.

FIGURE S3

Comparing the GFW Tree Cover Loss product and the CuSum-derived

aboveground biomass (AGB) loss map for the Peru test site, at di�erent

threshold of AGB loss: (A) AGB Loss = 100%, (B) CuSum AGB Loss >

80%; (C) CuSum AGB Loss > 60%; (D) CuSum AGB Loss > 50%.

FIGURE S4

Comparison of thresholding procedures for change detection. 1)

Thresholding using UAV LiDAR data to calculate the value minimising

both False Positive (FP) and False Negative (FN) detections yields

Rsum_max = 33 for Gabon (top left) and Rsum_max = 36 for Peru (top right).

2) Thresholding using the 95th percentile of the Rsum_max distribution

gives a value of Rsum_max = 31 for Gabon (bottom left) and Rsum_max = 42

for Peru (bottom right).

FIGURE S5

LiDAR vertical profile of the field site in Gabon, showing the presence of

multi-storied forest canopies.
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