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Scots pine (Pinus sylvestris L.) is the most widespread forest tree species in

Central Europe. The range of Scots pine depends on the influence of forest

management on stand species composition, as the potential for the natural

regeneration of Scots pine monocultures is smaller than the current range

of the species. To achieve regeneration, pine requires specific ecological

conditions, including adequate soil preparation. The literature notes that the

effective natural regeneration of pine requires fire or mixing the organic soil

layer with the mineral layer. This hypothesis was critically evaluated carrying

out work with the main objective of comparing the germination and growth

dynamic of pine seedlings in two variants, simulating fire or soil scarification

against natural conditions. The research focused on analyzing the growth

of pine seedlings from germination to the final number of seedlings, which

remained unchanged until the end of the experiment. The evaluation was

carried out in soil monoliths from Kampinos National Park (KNP), in which

seeds from a homogeneous mother stand were planted. The quantitative

and qualitative characteristics of the seedlings were statistically evaluated,

including analyses of their root system characteristics. The results confirmed

the positive effect of mixing an organic and mineral layer at the germination

stage and during the subsequent growth of the pine. The seedlings had a high

survival rate (65.3%). However, the positive effect of fire on the regenerative

capacity of pine could not be confirmed; the number of obtained seedlings

(29.5%) was significantly lower than in the control variant. In addition, the

“fire variant” was characterized by high seedling mortality immediately after

germination. Root systems were important for the survival of the seedlings,

the development of which was affected by the tested variant. The analyses
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performed may have implications for the development of research on the

possible natural regeneration of Pines after natural disturbances. Additional

topic that needs further research is the response of seedling root systems to

changes in soil conditions.

KEYWORDS

natural regeneration, Scots pine, seeds, seedlings, disturbances

Introduction

Scots pine (Pinus sylvestris L.) has a wide distribution
range in Europe and Asia. Because of its natural plasticity,
this species has colonized a wide range of habitats, from
bogs to sandy inland and coastal dunes, with optimal climatic
growing conditions in Baltic countries such as Estonia, Latvia,
and Poland (see Interpretation Manual—EUR28) (European
Commission, 2013). In Poland, pine is widely distributed: its
share of the country’s forest area is 58.2% (State Forests of
Poland, 2022) (lasy.gov.pl) 2020). The forest area occupied by
pine exceeds the natural habitat conditions of its occurrence
due to historical (Socha et al., 2021), natural (Nowakowska,
2007), and anthropogenic (Reich et al., 1996) factors. A trend
currently observed in Poland is the decline of pine stands,
especially in areas under various forms of nature protection
(Przybylski et al., 2021). The reduced potential for pine stands
is due to natural selection processes, including an increase
in habitat availability (Socha et al., 2017) and the reduced
impact of natural and anthropogenic disturbances that favor the
natural regeneration of pine. One of the classic disturbances
to plant communities is fire (Seidl et al., 2011). Although its
role in shaping temperate forests is currently small due to the
widespread use of fire suppression, fire has had a significant
influence on the development of boreal habitats in the past
(Niklasson et al., 2010). The recovery of fire-damaged vegetation
begins almost immediately after a fire (Loster et al., 2011) and
depends primarily on habitat conditions (Dobrowolska, 2008).
The dynamic increase in the number of seedlings in burned
areas compared to control areas is due, in part, to the absence
of understory. Plant development is also positively influenced
by residual chemical compounds from burned organic tissues.
Burning the understory results in the germination of seeds
that have been displaced deep into the soil profile, which is
referred to as the soil seed bank. The germination process
requires the cessation of physiological inhibitions associated
with maintaining dormancy (Non-ogaki et al., 2010), beginning
with rapid water uptake of the dry seed, and ending with
embryo activation; this leads to the embryonic root piercing
the seed coat (Job and Caboche, 2008; Non-ogaki et al.,
2010). At the end of dormancy, biochemical changes occur
in the seed to prepare the embryo for germination. A key
factor in regulating the expression of genes responsible for

dormancy-lifting is the carbon–nitrogen balance (Zhuo et al.,
1999; Zheng, 2009), and the increased supply of these elements
after fires accelerates this process (Van Staden et al., 2000).
A study by Turner et al. (2007) and Boerner et al. (2009)
documented higher concentrations of inorganic nitrogen in
burned areas compared to controls. Nitrification improves
growing conditions, especially in acidic soils, by increasing their
alkalinity, stimulating microbial activity, and promoting plant
germination (Pastor-López and Martin-Martin, 1995; Raison
et al., 2009). These processes rapidly return nitrogen to the
natural cycle (Gimeno-García et al., 2000). An increase in
organic carbon is also observed after low-intensity fires, while
humic acids may remain unchanged (Pardini et al., 2004; Badía-
Villas et al., 2014). However, these changes do not last long
(González-Vila et al., 2009), and excessive nitrogen can promote
the growth of pathogenic fungi that can be toxic to developing
embryos (Hilszczańska et al., 2008; Slama et al., 2021).

Soil scarification, which mainly includes mechanical site
preparation (MSP) or natural boar bucking, is described by Kerr
(2000) and Löf et al. (2012) as the best available method for
preparing habitats for pine seedling germination and growth.
The advantages of mixing the mineral and organic layers
include reduced competition for light, water, and nutrients
between seedlings and herbaceous plants (Nilsson and Örlander,
1999). This is especially important during the first and, usually,
the second year of pine seedling life, as forest floor plants
can hinder and delay germination, limiting seedling growth
through allelopathic effects (Jäderlund et al., 1998). A negative
effect of MSP can be the leaching of mineral nutrients, which
results in soil depletion (Piirainen et al., 2009). MSP alters
soil physical conditions such as water content, aeration, and
temperature, together with chemical properties such as organic
matter content, nutrient availability, and soil pH (Block and
van Rees, 2002; Heiskanen et al., 2007). The assumptions
of ecologically based sustainable forest management, which
minimizes the impact of human activities on nature, limit
the area covered by MSP in favor of the natural regeneration
of pines resulting from disturbances such as fire and soil
scarification. However, it is important to remember that the
potential for natural pine regeneration is limited, and it is
determined by climatic factors such as precipitation totals
(and their distribution over the growing season) and mean air
temperature (Puhlick et al., 2012). It also depends significantly
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on the sorption properties of the topsoil layers, especially the
thickness of the litter and humus layers and their moisture
content. The high organic matter content ensures that these
layers dry out quickly and thus exhibit high variability in their
moisture content (Hille and den Ouden, 2004). If the soil
is not loosened, the thickness of the aforementioned layers
often prevents or delays contact between the seedling root
and the mineral soil (Ibáñez and Schupp, 2002). These factors
make germination and seedling survival highly dependent on
the volume and intensity of rainfall (Oleskog and Sahlén,
2000). The relationships between the factors that limit natural
pine germination in stands can cause seeds to germinate in
some places and make germination impossible in others. This
phenomenon has been described as the “safe sites” hypothesis,
originally proposed by Harper (1977). To test the “safe sites”
hypothesis, the germination of seedlings was observed in
experimental gaps in different environments and different
species. The germination and emergence of seedlings in gaps
is a response to a variety of favorable ecological factors.
Gap formation is a prerequisite and occasionally a necessity
for seedling development, while the possibility of seedling
establishment is determined by, among other factors, the timing
of gap formation, size, shape, soil microstructure, the presence
or absence of litter, the influence of animals, and the temporal
and spatial dispersal of seeds (Grubb, 1986).

Borkowska (2001) researched seedlings in gaps in mosaic
vegetation depending on the strength of the associated
disturbance. Severe disturbances simulated natural boar
bucking, and weaker disturbances simulated foraging by
herbivores. The control group consisted of undisturbed plots.
In all variants, the gaps functioned as safe germination sites or
regeneration niches (see Harper, 1977). In the context of the
analyses cited by Borkowska (2001) and the results of a study
conducted in Kampinos National Park (KNP) (Przybylski et al.,
2021), it can be assumed that “safe sites” are the only possibility
for the effective natural regeneration of pine. These observations
led to the following research hypothesis: The occurrence of fire
or soil scarification is a sufficient factor for the formation of
“safe sites” in the stand and the initiation of effective natural
regeneration of pine. The main objective of the study was to
compare the dynamics and vigor of pine regeneration, initiated
on the ground under controlled conditions: (a) following
low-intensity fire and (b) in a habitat with soil scarification
compared to natural (control) conditions. The study compared
the germination dynamics up to the obtaining the final number
of seedlings, which did not change by the end of the experiment.
An additional qualitative evaluation of the obtained seedlings
was performed by analyzing (a) seedling height and (b) the
anatomical characteristics of the roots in all experimental
variants. The results expand the scientific discourse on the
possibilities of natural pine regeneration in contrast to the
changing ecological conditions related to germination.

Materials and methods

Collection of plant material

The study material was collected from standing trees
growing at five sites (Table 1) in the strict protection area of
KNP.

The study collected 50 cones per tree from 11 standing trees
from each stand (Table 1 and Figure 1). In total, cones were
collected from 55 trees for all stands; however, it should be noted
that the collected seeds were separated for each population,
so in further studies, to obtain the effect of adaptation to
local growing conditions, no mixture of seeds was used. The
evaluation was carried out for the selected population of seeds
from 11 trees. The analysis of the quality characteristics of the
collected seeds was previously described in detail in Przybylski
et al. (2021), and the results showed very high average energy
and germination (98.4–99.9%).

Collection of soil material and
greenhouse experiments

Four stand fragments (research plot) were selected to
conduct the experiment in the greenhouse mimicking natural
habitat conditions (Supplementary Figures 1A,B), from which
3 soil monoliths measuring 40 × 50 × 30 cm were taken
(Figure 1). A total of 12 soil monoliths were collected from each
stand, 3 per research plot. The soil monoliths were immediately
transported to the greenhouse of the Forest Research Institute
(N 52◦06′17.8′′ E 20◦52′53.1′′). The collected soil monoliths
were divided into the following experimental variants, noting
that for each study plot, one soil monolith represents one
replicate in the experimental variant (in total, each variant had
20 replicates with 5 replicates per stand):

(a) Natural, with unmodified habitat (N) growth conditions;
(b) Fire (artificial burning of the herbaceous vegetation

layer), with simulated surface burning of herbaceous
vegetation (F);

(c) Soil scarification (artificial soil mixing), with surface mixing
of organic and mineral layers, simulating soil loosening by
wild boars (SP).

For each experimental variant, 30 seeds from 11 trees from a
homogeneous site were distributed in a fixed grid (to exclude
random sowing and germination from the seed bank) on the
study plot. Seeds were sown on April 30 year 2020 under
controlled conditions, and then live seedlings were counted
every 2 weeks (until October 6 year 2020). The observations
were used to calculate the following values:
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TABLE 1 The characteristics of the locations.

Location Czerwińskie
Góry

Wilków Granica Sieraków Wiersze

Abbreviation CG W Gr S Wi

Coordinates E 20◦23′36.67′′

N 52◦20′27.693′′
E 20◦32′34.005′′

N 52◦21′45.607′′
E 20◦27′50.019′′

N 52◦17′21.605′′
E 20◦46′34.957′′

N 52◦20′12.144′′
E 20◦39′45.706′′

N 52◦18′34.157′′

Age * of the dominant
P. sylvestris

200–210 (avg.: 205) 180–200 (avg.: 190) 160–170 (avg.: 165) 190–200 (avg.: 195) app. 160

Plant community Quercoroboris-
Pinetum

Quercoroboris-
Pinetum.

SNFPC/Querco
Carpinetum

Quercoroboris-
Pinetum

Quercoroboris-
Pinetum

Dominant soil type AP, partially DBA AP, partially DBA AP, partially Lv AP, partially DBA AP, partially DBA

SNFPC, substitute of natural forest plant community; AP, Albic Podzols; DBA, Dystric Brunic Arenosols (rusty soils in Polish nomenclature); Lv, Luvisols.
*Unpublished data from Kampinoski National Park.

FIGURE 1

The main part of the figure shows the total area of Kampinos National Park together with the administrative subdivision into protected areas.
The location of the stands selected for the study within the park is marked with black dots. For each stand there are detailed maps where black
dots indicate the location of trees from which seeds were collected and red dots indicate the locations where soil monoliths were collected.

(a) Germination capacity of the field (GC), expressed as the
maximum number of germinated seeds (%);

(b) Survival rate (S), expressed as the number of seedlings that
survived to the end of the experiment (%);

(c) Mortality (M), expressed as the difference between
GC and S.

At the end of the experiment, the height of the living
seedlings was measured to the nearest 1 mm and analyses of the
selected characteristics of their roots were performed.

Root characteristics analysis

Analysis of the selected root traits after seedling growth
was performed after the removal of a root ball. Root
characteristics were analyzed for all seedlings that survived
to the end of the experiment. Root systems were then
rinsed from the substrate by soaking them in water in
several stages. The cleaned roots, after being wrapped
in a paper towel, were placed in plastic bags, and the
remaining water after rinsing was poured through sieves to
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extract any roots that may have become dislodged during
rinsing. Root systems were scanned in a container filled
with water on an EPSON Perfection V800/V850 scanner
(software version 1.9 V3.93 3.9.3.4) adapted to Regent
Instrument’s WinRHIZO software (version 2017). The scan
was performed at a resolution of 600 dpi in 16-bit grayscale.
This allowed the root system to be clearly separated from the
background. The resulting image was saved in TIFF format.
The measurement of root parameters was performed using
WinRHIZO software (2017).

Statistical analysis

Survival rate variable
To compare the survival rates of pine regeneration in the

three experimental variants (N, F, SP), a one-way analysis of
variance was used. The significance of the model effects was
tested by the Wald χ2-test for a type 3 analysis. Pairwise
comparisons were made between least-square means with
Tukey’s post-hoc test. Calculations were performed using
the GENMOD procedure with the BINOMIAL option of
SAS/STAT R© v. 14.3 (SAS Institute Inc., 2017).

The MIXED procedure of the SAS program was used to
model changes in survival rates through time. The REPEATED
command with the TYPE = UN option was used, and, in this
case, all effects were assigned intersubject degrees of freedom
to provide better approximations of small samples to the
corresponding sampling distributions.

The CALIS procedure of the SAS program was used to
investigate the correlation between the studied traits. This
procedure, dedicated to structural equations, allows for the
determination of ML estimators with correction for the small
sample size. Using the ROBUST option, modified statistics were
obtained, which are asymptotically robust against violations of
the assumption of normality of distributions and/or dedicated
to small samples (Satorra and Bentler, 1988, 1994).

Other variables
In order to examine the effect of the experimental variants

on the other traits of the aboveground parts of the seedlings
(seedling height) and roots (length, surf. area, avg. diameter, root
volume, and tips), a one-way analysis of variance and detailed
comparisons of the means were performed using the Tukey test.
Calculations were performed using the GENMOD procedure of
the SAS program (without the BINOMIAL option).

Results

Based on the analysis of variance, significant differences
were found between the survival rates of the experimental
variants (Table 2).

TABLE 2 The results of tests (Wald for survival rates (S) and F for other
traits) testing differences between the experimental variants (N, F, SP)
for tested traits.

Trait DF Test statistic P

Survival rates 2 Chi-square = 678.13 <0.001

Seedling height 2 F = 2.62 0.08

Root parameters

Length 2 F = 4.74 0.01

Surf. area 2 F = 1.55 0.22

Avg. diameter 2 F = 3.5 0.03

Root Volume 2 F = 0.78 0.46

Tips 2 F = 2.92 0.06

DF, degrees of freedom; P, probability.

TABLE 3 Means and standard errors (in parentheses) of seedling
tested traits; associated with the experimental variants (N, F, SP).

Variant

Trait SP F N

Seedling survival (S) 65.17 (0.97) c 29.17 (0.93) a 36.00 (0.98) b

Root length 67.85 (5.94) a 44.27 (5.94) b 65.13 (5.79) a

Root average diameter 0.145 (0.035) b 0.170 (0.035) b 0.267 (0.034) a

Means with the same letters within a row are not significantly different at P ≤ 0.05.

Detailed analyses confirmed the presence of significant
differences between the three variants (Table 3).

Germination began on April 30 and continued until June 10,
when the maximum number of germinated seeds was reached.
The highest number of seedlings was obtained for the SP
variant (80% of seedlings) and the lowest for the F variant
(48% of seedlings) (Figure 2). The seedlings in the initial stage
germinated the fastest for variants SP and F, although it should
be noted that the germination dynamics of variant F decreased
significantly as the peak was approached. Variant N was
characterized by lower germination dynamics throughout the
measurement period, and the maximum number of seedlings
(48% of seedlings) finally obtained did not differ significantly
from the number of variant F seedlings due to the stability
of germination through time (Figure 2). The death (Mor.)
of germinated seedlings could be observed from the time of
germination (June 10) to August 2 (Figure 2). Seedling mortality
increased until July 12, and most seedlings died in variant F, in
which the mortality process was the most intense and lasted the
longest. The lowest Mor. rate was observed in the SP variant,
while the process was the least dynamic in variant N (Figure 2).
From August 2, there was no significant change in the number
of seedlings that survived until the end of the experiment
(stabilization phase). In the stabilization phase, the number of
seedlings varied significantly among the variants until the end
of the observation (Table 2 and Figure 2).

The SP variant had a significantly higher GC value
compared to the other variants (Figure 2), with the difference
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FIGURE 2

Germination dynamics of the tested pine seeds (A) from the beginning of the experiment to the peak of germination (B) and from the peak of
germination to the end of the experiment in the studied variants (SP, F, N) at selected timepoints: 0 (planting) to 30 April; 1–24 May; 2–7 June;
3–18 June; 4–28 June; 5–12 July; 6–2 August; 7–22 August; 8–6 September; 9–end of experiment.

between the values accounting for almost 30% of the
possible seedlings. On the other hand, the variation in S
for variants N and F is due to the Mor. of the obtained
seedlings. It should be noted that, with almost identical GC
values for N and F, the Mor. of the seedlings in F was
about 6% higher.

The results also show that the germination capacity of
seedlings in the field (GC) is demonstrably lower than the
germination capacity of homogeneous seeds obtained under
controlled conditions in seed evaluation stations (Forest

Research Institute) (Przybylski et al., 2021). The results obtained
were 22% lower for the SP variant and 52% lower for the N
and F variants. At the end of the experiment, seedling height
was measured for each variant (Table 4). At the end of the
experiment, seedling height was measured for the variants. The
highest seedlings were found in variant F (mean 8.59 cm)
and the lowest in variant SP (mean 6.99 cm) (Supplementary
Table 1). These results were subjected to a one-factor analysis of
variance, which showed no significant differences between the
variants (Table 2).
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TABLE 4 Detailed variation of traits (GC, S, and Mor.) in the analyzed variants (N, F, SP) of the experiment.

Variants N F SP

Populations S (%) GC (%) Mor. (%) S (%) GC (%) Mor. (%) S (%) GC (%) Mor. (%)

Gr 58.3 66.7 8.4 39.2 46.5 7.3 69.2 80.8 11.6

Wi 27.5 27.5 0 31.7 45 13.3 76.7 88.3 11.6

CG 28.3 45.8 17.5 23.3 55 31.7 49.2 58.3 9.1

S 24.2 49.2 25 22.5 42.5 20 75.8 85 9.2

W 41.7 47.5 5.8 30.8 47.5 16.7 55.8 71.7 15.9

Means 36 47.34 11.34 29.5 47.3 17.8 65.34 76.82 11.48

GC, germination capacity of the field; S, survival rate; Mor., Mortality.

After completing the experiment, the prepared root samples
of a single plant were analyzed for selected characteristics, and
the results were statistically evaluated. A preliminary analysis
of the root thickness indicated differences between the tested
variants. Variant F had the highest percentage of thin roots,
while the thickest roots were found in variant N (Figure 3).
The analysis of variance showed significant differences in root
characteristics between variants (N, F, SP) for length and average
diameter (Table 2). No significant differences were found for
the surface area and root volume parameters. The tip parameter,
despite its lack of statistical significance (P = 0.06), appears to
be a biologically important discriminating factor. Therefore, it
is included in the calculation of correlations between the traits
that were studied.

A statistical analysis of the root length characteristics
between the tested variants revealed significant differences for
SP and F and for F and N (Table 3). For SP and N, the difference
was not significant.

Significant differences were found between the SP and N,
F and N experimental variants in terms of the root average
diameter trait (Table 3); For SP and F, the difference was not
significant.

A correlation analysis was performed for the parameters
that differed significantly from the experimental variants studied
(Table 5). In variant N, a significant positive correlation between
S and root parameter length (P = 0.02) and tips (P = 0.03) was
demonstrated; the indicated dependencies of S in relation to the
root parameters were confirmed in the evaluation of variant SP,
in which a significant negative correlation with length (P = 0.04)
and tips (P = 0.04) was demonstrated. In variant F, no correlation
was found between S and the analyzed root characteristics.

Discussion

The research presented was conducted in KNP, which is
an example of a legally protected forest ecosystem where pine
dominates the species composition of the stand. In a national
park, natural regeneration processes that spontaneously
influence the species composition of the stand and its spatial

structure can occur. In the context of pine, the possibility of
its natural regeneration is limited, which is influenced, among
other factors, by the features analyzed in the present study.
According to Tomczyk (1990), one of the most important
components limiting the natural regeneration of pine is the
thickness of forest litter, where values of 6–7 cm practically
prevent seedling survival. For this reason, a prerequisite for the
survival of pine forests is the occurrence of large-scale natural
disturbances, such as fires or local phenomena, which create
safe germination sites (Borkowska, 2001). The above factors
influence the removal of the vegetation cover from the forest
floor, which significantly increases the probability of natural
pine regeneration (Gmyz and Skrzyszewski, 2010). However, the
present research only partially confirms this relationship. For
the experimental variant in which a local habitat disturbance
was simulated, i.e., mixing the mineral soil layer with the organic
layer (SP), almost twice as many seedlings were obtained at the
end of the measurement period (Table 4). On the other hand,
the same effect could not be confirmed for the variant in which
fire was simulated (F); moreover, the number of pine seedlings
obtained in this variant was significantly lower (Table 3) than
in the control variant of the experiment (N). In connection with
these results, the study of Béland et al. (2000) was confirmed,
according to which mineral soil is the optimal substrate for the
germination of forest trees. Under these conditions, seeds have
excellent moisture conditions due to the capillary transport
of water to the soil surface. In contrast to seed germination
in the mineral layer, seed germination in the organic layer is
not favorable due to rapid drying and difficult wetting under
low and steadily decreasing precipitation totals (Sewerniak
et al., 2012). The results confirm the importance of natural or
artificial habitat preparation for the success of pine regeneration
processes. In Poland, forestry practices involve site preparation
to initiate stand regeneration in the event of felling, which
promotes natural regeneration, for example, by lateral seeding.
Under natural conditions, mixing the organic and mineral
layers occurs due, in part, to the activity of wild boar (Sus
scrofa). There are differing views on the effects of wild boar on
forest communities (Hone, 2002). In deciduous forest stands,
such as in the Tilio–Carpinetum community, soil loosening
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FIGURE 3

Quantitative breakdown (cm.) of total root length for all variants studied. Results shown were divided into root thickness classes (mm.): blue
represents fine roots; orange represents thin roots; gray represents thick roots.

TABLE 5 Correlations between the survival rate and the significant root parameters for the experimental variants (N, F, SP): S, length (roots),
average diameter (roots), and tips (roots).

Variants SP F N

Traits S Length AvgDiam Tips S Length AvgDiam Tips S Length AvgDiam Tips

S – 0.04 0.06 0.04 – 0.47 0.80 0.84 – 0.02 0.07 0.03

Length –0.46 – 0.00 <0.01 –0.17 – 0.84 <0.01 0.51 – 0.82 0.03

AvgDiam –0.43 0.67 – 0.09 –0.06 –0.05 – 0.24 –0.42 0.05 – < 0.01

Tips –0.47 0.66 0.40 – 0.05 0.74 –0.27 – 0.49 0.50 0.75 –

For each variant, correlation coefficients are below the diagonal (significant values are in bold), and P are above the diagonal.

caused by wild boars reduces seedling density (Piroznikow,
1998), but the effects on conifer stands may be the opposite,
if only because of differences in forest litter thickness. In the
context of the presented results, we should consider whether
the natural regeneration of pine is possible in areas with strict
protections. First of all, it is important to mention the limited
size of the wild boar population, which is restricted by organized
human hunting and reduced by predator pressure. In recent
years, African swine fever (ASF) has been an additional factor
limiting the wild boar population in Poland and Europe.

In the ongoing scientific debate, it is worth considering
whether the present size and number of protected areas can
sufficiently initiate the natural regeneration of Scots pine.
The original natural forests of Europe were characterized by
different dynamics; for deciduous forests, small-scale gaps and
a mosaic of medium-scale development phases were typical.
For coniferous forests, large-scale natural disturbances were
typical, to which temperate forest ecosystems with pines were

cyclically exposed. The most common large-scale disturbance
is fires, which in modern Poland usually only reach small
areas, the result of a comprehensive organizational and technical
system meant to protect forest areas from fires. KNP is both
the second largest national park and the largest forested park
in Poland, with an area of 38,000 ha, and it is classified in
the highest fire danger category (Tyburski et al., 2019). KNP
experiences approximately 57% of the fires in all national
parks in Poland each year (Szaga, 2015). In 2015, 61 fires
were recorded in Kampinos Forest, including 52 ground-
cover fires. The average size of a forest fire was only 0.36 ha
(Szaga, 2015). The relatively small area of the average fire is
the reason for the low extent of the observed natural pine
regeneration in KNP (Przybylski et al., 2021). It should also be
noted that, due to ongoing mandatory forest fire protection
in Poland (which is also implemented in national parks),
it is unlikely that the frequency of large fires will increase
significantly. Therefore, it is worth considering whether small
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fires can have a significant impact on promoting natural pine
regeneration. In the present study, the effect of forest litter
fire on seed germination was investigated. During the first
days, the germination process was dynamic and similar to
variant a mixed organic and mineral layer (Figure 2A). In
the later stages of the experiment, the seedlings of the fire
variant started to die, so that the fire variant had the lowest
survival rate at the end of the experiment (Figure 2B). The
reasons for the high seedling mortality in the fire variant
could be related to the ecological growing conditions. The
restoration of a community after a disturbance occurring in
a small area occurs due to seeds in the same ecosystem,
possibly with a small contribution from light-seeded species
(Faliński, 2001). Despite knowledge about the positive effect
of the exposed mineral layer on pine seedling germination
(Hille and den Ouden, 2004), it should be noted that litter
removal favors an increase in understory species richness
(Dzwonko and Gawroński, 2002). Moreover, plant growth in
plots with a burned organic layer is more dynamic, and it
depends on habitat moisture and fire intensity. In the process of
secondary succession or fire regeneration, light-seeded species
also appear, such as grasses, shrubs, and trees (Zaniewski and
Otrȩba, 2017), which further increase competition with pine
seedlings.

Increased plant growth results from a favorable ratio of
carbon and nitrogen in the soil. Nitrogen is the nutrient most
affected by fire (Mataix-Solera et al., 2011). In the first few
years after a fire, inorganic nitrogen concentrations increase
more in burned areas than in control areas (Turner et al., 2007;
Boerner et al., 2009). Fire-induced changes in soil inorganic
nitrogen can be attributed to the release of the compound
from dead roots where it was previously stored (Rivas et al.,
2012). According to Smithwick et al. (2005), nitrification has
the most beneficial effect on plant growth, especially in acidic
soils, because the reduced acidity increases microbial activity.
It is possible to increase soil organic carbon in low-intensity
fires by burning plant residues to compensate for the carbon
lost during the fire (Knoepp et al., 2005). The results obtained
in the present study for variant F demonstrate a larger number
of germinated seeds compared with variant N during the first
observation period, which could be due to an increased supply
of carbon and nitrogen. However, it should be noted that, firstly,
variant F had a lower number of germinated seeds compared
with variant SP and, secondly, that variant F had the highest
number of seedlings that died after germination of all the
variants studied. The former observation confirms the thesis
that mineral soil is the optimal environment for pine seed
germination. In the context of seedling dieback, competition for
resources, i.e., water and minerals, plays a dominant role, and
the parameters of the root system are probably decisive. In the
conducted study, the analysis of root thickness classes proved
the differentiation of this trait among the experimental variants.
Detailed analyses of root characteristics revealed significant

differences among the variants for the root length and average
diameter parameters. Tips are also an important parameter for
pine seedlings; while it did not reveal any statistically significant
differences between variants, its value (P = 0.06) proves the
correctness of this trait choice in a biological context. The
total length of the root system (length) revealed a statistically
significant difference between the SP and N variants and
the F and N variants, and the average root thickness (avg.
diameter) between SP and F. Correlations between the seedling
survival rate and the length and tips in the SP (negative
correlation) and N (positive correlation) variants were found
in the data obtained. These results confirm studies by other
authors (Kottke, 2002; Leuschner et al., 2004; Ostonen et al.,
2007) describing root plasticity as a response to local soil
heterogeneity. The data obtained confirm the increased survival
rate of pine seedlings characterized by longer roots, which
is a priority under conditions of competition for water and
minerals.

Synopsis

Our results allow us to form conclusions in relation to
the objective of the study. The possibility of the natural
regeneration of pines in boreal habitats is limited, and it requires
the occurrence of natural or anthropogenic disturbances.
The best results are obtained when the organic layer of
the forest understory is mixed with or removed from the
mineral layer. Under such conditions, pine seeds germinate
intensively, and their survival rate is high. On the other
hand, wildfire, especially at low intensity and on a relatively
small area, does not provide conditions that trigger natural
pine regeneration in the first year after fire. The results
obtained in the present study indicate intensive seedling
germination after fire, but followed by a high seedling mortality
rate. Consequently, the number of seedlings at the end of
the experiment was higher in the variant that simulated
natural conditions without disturbance than in the variant
that simulated a wildfire. The studied disturbances in the
understory had no significant effect on the height of seedlings,
but they significantly altered the root systems by changing
their individual characteristics. In addition, the influence of
fine root length on seedling survival was shown to be critical
for pine regeneration in the context of competing for limited
environmental resources. The results obtained raise research
questions that can form the basis for further scientific projects.
The role of fire as a factor ensuring the natural persistence
of pine-dominated ecosystems does not emerge from the
results. An interesting aspect related to a dynamically changing
climate is the high plasticity of roots depending on current
habitat conditions.
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