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Introduction: The productivity of the Amazon Rainforest is related to climate

and soil fertility. However, the degrees to which these interactions influence

multiannual to decadal variations in tree diameter growth are still poorly

explored.

Methods: To fill this gap, we used radiocarbon measurements to evaluate

the variation in tree growth rates over the past decades in an important

hyperdominant species, Eschweilera coriacea (Lecythidaceae), from six sites

in the Brazilian Amazon that span a range of soil properties and climate.

Results: Using linear mixed-effects models, we show that temporal variations

in mean annual diameter increment evaluated over a specific time period

reflect interactions between soil fertility and the drought index (SPEI-

Standardized Precipitation and Evapotranspiration Index).

Discussion: Our results indicate that the growth response of trees to drought

is strongly dependent on soil conditions, a facet of forest productivity that is
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still underexplored, and which has great potential for improving predictions of

future tropical tree growth in the face of projected climate change.

KEYWORDS

Eschweilera coriacea, radiocarbon, SPEI, tree growth, tropical forest, wood density,
intraspecific variation

Introduction

Growth rates and turnover of woody biomass are important
components of carbon (C) cycling in the Amazon basin (Zhao
and Running, 2010). At the broad scale of the basin, growth rates
have been shown to vary according to water availability and soil
fertility (Toledo et al., 2011; Quesada et al., 2012; Sousa et al.,
2022). High water availability increases forest productivity in the
tropics (Pereira da Silva et al., 2002; Zuidema et al., 2022), thus
the extreme drought events suppress this productivity (Phillips
et al., 2009; Doughty et al., 2015). Additionally, the soil’s fertility
gradient is another factor that influences forest productivity in
the Amazon basin, as trees in the nutrient-rich soils closer to the
Andes have on average lower wood density, faster growth and
turnover, while those growing in poorer soils in the Central and
Eastern Amazon have generally higher wood density and slower
growth and turnover (Quesada et al., 2012).

The environmental resources have diverse effects on forest
productivity due to the heterogeneity of habitats in the tropics,
where nutrients, water availability and radiance (light) vary
over space and time (Muller-Landau et al., 2021; Sousa et al.,
2022). However, the effect of these environmental factors on
tree growth does not follow a certain pattern. For example,
the literature indicates that the increase in water availability
increases production (Zuidema et al., 2022), but an inverse
behavior is observed in forests with shallow groundwater (Sousa
et al., 2022). Another example is photosynthetically active
radiation (PAR), which would not be a limiting factor in the
tropics, but the cloud cover limits PAR in tropical wet forests,
and this limitation affects forest productivity (Clark and Clark,
1994; Schuur, 2003). In the Amazon basin, while soil fertility
drives forest productivity from west to east (Malhi et al., 2004;
Quesada et al., 2012), Toledo et al. (2011) state that in Bolivia the
climate is the strongest driver of spatial variation in tree growth.
However, the interactions between climate variation and soil
fertility are a potentially important facet of forest productivity.

Many of the studies that link the allocation of tree resources
to stem growth and changing environmental conditions rely on
permanent plot data and, thus, integrate the response of many
tree species. For example, the negative relationship between
tree growth and wood density reported across the Amazon
basin (Quesada et al., 2012) is driven in part by changes in
species composition with different life strategies or traits among
the different locations (Baker et al., 2004). Wood density are
trait with high heritability (Cornelius, 1994), were 74% of

species level wood density variation was explained at the genus
level (Chave et al., 2006). However, some authors showed a
significant intraspecific variation in that trait varying with an
environmental conditions, as flooded levels (Wittmann et al.,
2006) or different types of flooded forests (Schöngart et al.,
2005). Few studies in terra-firme forest have evaluated whether
the gradients in soil fertility can cause similar kinds of variation
in wood density and tree growth for a single species.

To fill this gap, we explored the decadal-average tree stem
growth rates for a single hyperdominant species, which was
sampled in terra firme forest sites in the state of Amazonas,
Brazil, that varied in climate and soil fertility. Average tree
growth was estimated over different time intervals by using
radiocarbon measurements to determine the calendar year of
wood growth at several points in radial sections for each tree.
Radiocarbon measurements were used to determine whether
growth rings were recognizable in the wood (Andreu-Hayles
et al., 2015; Schöngart et al., 2017); however, when ring counts
were compared with radiocarbon, many missing rings were
found in most trees (Ohashi et al., 2016; Herrera-Ramirez et al.,
2017; Santos et al., 2021). As we could not rely on ring-counting
for some species, instead we used the difference in the 14C-
determined calendar year to estimate the time interval during
which a specific radial growth increment took place, especially
in species without annual rings.

Using the hyperdominant tropical tree species Eschweilera
coriacea (Ter Steege et al., 2020) growing in a terra firme
forest as a model, we hypothesized that stem growth rates
would be lowest in nutrient-poor soils and would increase with
soil nutrient content. In soils with higher fertility, rainfall is
likely to become a limiting factor, with growth rates increasing
with rainfall from dry to wet conditions. In addition, we
expect a negative relationship between wood density and tree
growth rate within a single species as observed in another
tropical forest ecosystem (Schöngart et al., 2005) and a narrow
intraspecific variation comparing to interspecific variation in the
tree community (Chave et al., 2006). Our study can therefore
help determine the role of intraspecific variation in traits that
have been observed varying with edaphic conditions across the
Amazon (Quesada et al., 2011). However, the main advantage is
that it contributes to knowledge on how climatic and edaphic
conditions interact to govern spatial and temporal variations in
tree growth. These are fundamental for understanding growth
dynamics, climate, and carbon cycling of forests across this
globally significant region.
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FIGURE 1

Map showing the locations of the study sites.

Materials and methods

Species selection

For this study, we selected the hyperdominant species
Eschweilera coriacea (DC.) S.A Mori, which has a mean
estimated population of 5 × 109 trees in the Amazon (ter
Steege et al., 2013, 2020) and is among the most widespread
and abundant canopy tree species in the terra firme forest
(Mori and Lepsch-Cunha, 1995). Eschweilera coriacea belongs
to the Lecythidaceae family, whose members are common in
mature Neotropical forests (Mori et al., 2007), As there are
several species that can be confused with Eschweilera coriacea,
all individuals had their identification confirmed by specialists
and were compared with reference materials in the herbarium
collections at the National Institute for Amazonian Research
(INPA) in Manaus, Brazil.

Characterization of the study area

We sampled individuals of E. coriacea from terra firme
upland forests in plateau areas at six sites within the state
of Amazonas (Figure 1). The vegetation in all sites can be
classified as old-growth, tropical evergreen forest with closed

canopy (Chambers et al., 2001). Across the sites, mean annual
rainfall varied from 2,427 to 3,621 mm (Figure 2). Five sites
have a Köppen’s climate classification of Af –without a dry
season, while Manicoré (the southern-most site) is Am–tropical
monsoon (Alvares et al., 2013).

Tree growth analyses–periodic annual
increment (PAI)

Between July 2013 and April 2014, five individuals of
E. coriacea were cut down at each site to analyze growth rates
and wood specific gravity. The diameter at breast height (dbh)
of these trees ranged from 18 to 47 cm. Discs cut at 1.3 m were
taken from each of the 30 trees (Sisbio License: 27391311). The
surfaces of the discs were coarsely polished with a disc sander
(grit 60) and then with a hand sander (grit 80 to 200). Two
radii per tree were selected at an angle that varied from 120
to 180 degrees in order to avoid holes, insect damage, or rot.
Radial slices with tangential widths of 12 mm were removed
with a band saw. These were trimmed to a thickness of ∼1 mm
with a circular table saw or a band saw. Cellulose (holocellulose)
was extracted from these thin wood sections using the method
of Kagawa et al. (2015). The chemical process for holocellulose
extraction was described by Ohashi et al. (2016) and included
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FIGURE 2

Seasonal distribution of monthly mean precipitation (gray histogram) and temperature (red line) at each study site [adapted from Alvares et al.
(2013)].

freeze drying and correction for any shrinkage of the wood from
its original dimensions.

Radiocarbon dating of the resulting holocellulose was
performed by removing 1 mm-thick slices of a length needed
to achieve 2–3 mg of material. These were centered at distances
of 5, 10, and 15 mm away from the bark on each of the two radii
from each individual.

The 2–3 mg of sampled holocellulose was combusted with
CuO in evacuated and sealed quartz tubes at 900◦C, and
the resulting CO2 was purified and converted to graphite
using sealed-tube zinc reduction (Xu et al., 2007). Radiocarbon
analyses were performed at the W. M. Keck Carbon Cycle
Accelerator Mass Spectrometry Facility at the University of
California, Irvine, USA. Radiocarbon data are reported as the
fraction modern (FM), the ratio of 14C/12C in the sample
divided by that of a pre-industrial wood standard. Using this
standard annotation, a correction is applied to remove the
effects of mass-dependent isotopic fractionation using measured
δ13C values (Stuiver and Polach, 1977). The accuracy for 14C
analyses is 2–3h for modern samples based on the long-term
reproducibility of secondary standards.

To convert fraction modern (FM) data to calendar years of
wood formation, we used OxCal [version 4.2] (Ramsey, 2009)
with the calibration curve: Bomb 13 SH 1 2 (Hogg et al., 2013;
Andreu-Hayles et al., 2015). Only 14C data in the bomb period
after 1950 AD were considered (errors of at most 1–2 years).
Dates older than 1950 (0.96 to 1.0 FM) indicate wood formed
between ∼1650 and 1950 AD and were not used in further
analyses. If one or more of the samples from our standard
depth increments of 5, 10, and 15 mm dated as being older
than 1950, we took additional samples at depths closer to the
bark in order to have three samples dating post-1960 per radial
transect in order to calculate mean annual increments. Calendar
year results were reported using 95.4% probability determined
from combined uncertainties in the 14C analyses and calibration
curves (Ramsey, 2009).

The periodic annual increment (PAI) was determined by
dividing the growth distance between two radiocarbon-dated
sampling points by the number of calendar years elapsed. We
assumed the outermost xylem represents the year the tree was
cut down (Figure 3). The distance between two dated points
or from a dated point to the outermost xylem indicates how
many millimeters the radius grew in the time that had elapsed,
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FIGURE 3

Explanatory figure for how we used 14C dating to estimate
growth rates, expressed as periodic annual increment
(PAI). (i) Photo showing the holocellulose (white) slab that is
∼1 mm thick; the portions removed for 14C measurements at 5,
10, and 15 cm radial positions can be seen. The calendar age
determined for each sample is shown, as well as the assumed
year of tree cut at the bark, and the calculation of PAI is shown
as an example. (ii) Graph showing how PAI varies with time for
each interval dated with 14C. The red number (N) indicates the
distance (mm) from the dated point to the bark; PAIr1- periodic
annual increment of radius 1; PAIr2- periodic annual increment
of radius 2; PAI = The sum of the two radii over the entire period
(assuming the sum of the two radii provides a measurement of
the diameter increment; For this individual, PAI declined over the
decades since the 1970s. Mean PAI is the periodic annual
increment averaged out over the entire period represented in
the outer 15 mm (usually representing multiple decades of
growth).

and was determined by the difference between the two 14C
calibrated years or between the calibrated date and the year that
the tree was cut down. The increment divided by time elapsed
was defined as the periodic annual increment (PAI; mm/year).
Figure 3 shows the example of tree EC-Ju-1, in which we can
observe a variation in the growth rate of over time.

Wood specific gravity

The radial and longitudinal variation of the wood specific
gravity (wood density) was determined for all the tree trunks.
Eight subsamples (2 × 2 × 2 cm3) were removed from each
part of the trunk, four in the radial direction (bark to pith)

TABLE 1 The three linear mixed-models that were tested to describe
the relationship between the variation in the tree growth (periodic
annual increment – PAI), and the drought indices (Mean negative
SPEI), soil fertility (PC1 axis of the soil data), and the random effect at
each site and on each tree.

Model 1 -PAI = SPEI + (1 | site)+ (1|tree)

Model 2 -PAI = SPEI + PC1 Soils+ (1 | site)+ (1|tree)

Model 3 -PAI = SPEI ∗ PC1 Soils+ (1 | site)+ (1|tree)

from two heights and at four different positions on the trunk
(base, 1.3 m, 50 and 100% of commercial height), which totaled
32 subsamples per tree. The wood specific gravity from each
subsample was determined as the ratio between water-saturated
volume and dry weight (Williamson and Wiemann, 2010). The
saturated volume was determined using Archimedes principle
of liquid displacement in the saturated samples after 15 days
submerged in water. Afterward, the samples were oven-dried for
3 days at 103◦C until a reaching constant weight.

Environmental data

The standardized precipitation and evapotranspiration
index–SPEI (Vicente-Serrano et al., 2010) was determined at
each site and used to assess diameter growth responses to
drought events at the different temporal scales represented by
our 5 mm radial samples. SPEI is a drought index that captures
the main impact of temperature increase on water demand, as
it uses both precipitation and potential evapotranspiration data
at a spatial resolution of 0.5 degrees (Beguería et al., 2014).
SPEI is a relative measurement that is comparable across space
and time. In other words, SPEI can correct for the fact that
the same amount of rain could represent extreme drought at
one site, but could represent greater than average rainfall at
another site. Monthly average SPEI values (negative values equal
drought) were calculated at each site and then averaged over
each dated time interval represented by wood formed between
1950 and 2014.

To assess differences in soil properties, we sampled mineral
soils (0–20 cm depth) from two collection points at a distance of
5 meters from the base of each sampled tree. The two samples
were combined and used for subsequent analyses at the Soil
and Plant Thematic Laboratory of the National Institute for
Amazonian Research (INPA) according to method described
by Quesada et al. (2010). The parameters evaluated include
sand, silt and clay content (%), pH (hydrogen potential), Mg
(magnesium), K (potassium), Ca (calcium), Na (sodium), and
SB (sum of base cations) in cmol∗kg−1. Differences in soils
between sites were summarized using principal component
analysis (PCA) and, in particular, the axis of first component
(PC1) provides a useful measure of the fertility gradient between
sites with the highest scores for Mg, K, pH, SB, and sand
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FIGURE 4

Graphics showing the distribution points between Eschweilera coriacea traits varying by axis 1 (PC1) from the principal component analysis
calculated using soil data expressing the soil fertility, were: (A) PAI (mm/year)–Periodic annual increment. (B) Wood density (g/cm3). The black
line indicates the tendency line of the regression from each data set. Acronyms of the study sites: Manicore, Manicoré; Jurua, Juruá; Manaus,
Manaus; Atalaia, Atalaia do Norte; Maues, Maués; SGC, São Gabriel da Cachoeira.

(Supplementary Figure 1). The macronutrients Mg and K
are essential elements for plant growth and are involved in
several essential physiological functions (Zekri and Obreza,
2003).

Statistical analysis

The relationships between tree growth, wood density and
environmental variables were verified using linear regression
models. To test for interactions, three increasingly complex
models were generated (Table 1) and used tree growth as a
dependent variable. Initial models explored tree growth as a
function of either SPEI or fertility (PC1 axis value for each
tree). Tree growth as an additive effect of SPEI and fertility
was subsequently modeled. In this model, soil fertility would
be expected to have a positive effect on growth and its effect
is independent of SPEI. In a final model, interactions between
SPEI and fertility were tested, by which soil fertility is expected
to moderate growth response to SPEI. Competing models were
compared with a drop in deviance test: a model with higher
deviance according to AIC (Akaike Information Criterion)
and BIC (Schwartz’s Bayesian Information Criterion), which
provides a poorer model fit to the data than a model with
lower deviance (Bates et al., 2015). Fixed effect variables are
the variables that influence the response, and are known as
explanatory variables in standard linear regression (Bolker et al.,
2009). Random effect variables are categorical variables of
the factors that need to be controlled (Bolker et al., 2009).
The analyses were performed in R with the main packages
MASS (Venables and Ripley, 2002), lme4 (Bates et al., 2015),

bbmle (Tools and Team, 2022), ggplot2 (Wickham, 2016), and
stargazer (Hlavac, 2022).

Results

Across all the sites, the mean periodic annual increment
(PAI, henceforth tree growth) of E. coriacea varied from 0.4 to
6 mm/year with an overall average of 2.63± 0.30 mm/year. The
tree growth was related to the soil fertility index (PC1) (r2 = 0.58
and p < 0.001, Figure 4A) and had a negative relationship with
wood specific gravity (r2 = 0.37 and p < 0.001). The mean wood
specific gravity was 0.77 ± 0.01 g/cm3, which varied by 0.69 to
0.89 g/cm3 and had an inverse relationship with the soil fertility
index (PC1) (r2 = 0.59 and p < 0.01, Figure 4B).

Using AIC, BIC, and Pr values, the temporal variation in
the tree growth was tested via three mixed-effects models to
determine the dependent variables affecting this factor (Table 2).
By itself, the dependent variable SPEI (drought index) did not
explain the tree growth. However, the interaction between soil
fertility and drought index is the most explicative model for
the temporal growth variation (model 3 and Figure 5). The
vast majority of growth responses to drought were negative,
decreasing growth when there was a strong drought. However,
the effect of the drought on the growth decreased with soil
fertility. It is possible to determine these interaction effects via
the slope variation between sites (Figure 5). The decreasing
growth on fertile soils is abrupt and in infertile soils the
tree growth remains slow, and with little variation. However,
two trees at the Maués site showed a slightly positive growth
response to drought.
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Discussion

Our results prove the strong effect of the interaction between
soil fertility and climate on the temporal variation in tree growth
of the hyperdominant species Eschweilera coriacea. Trees at sites
with fertile soils grew the fastest and those with the least fertile
soils grew the slowest. This result agrees with the overall pattern
found for the tree community as a whole at the basin scale
(Malhi et al., 2004; Quesada et al., 2012). The tendency for trees
to decrease wood productivity with drought intensification has
already been described in the literature (Brando et al., 2008;
Phillips et al., 2009; Doughty et al., 2015; Feldpausch et al.,
2016); however, we were able to show that the magnitude of
the drought effect differed among sites. Individuals growing
in fertile soils decreased their growth rates dramatically with
drought intensification, while, in less fertile sites, growth rates
remained slow and showed less decline with the increase in
the drought index. The drought index on its own does not
significantly influence tree growth without the fertile soils
effect in our models. Thus, adding the soil fertility index as a
dependent variable in the mixed-effects models, we determined
that, overall, the nutrient limitation is the strongest factor for
limiting the growth of E. coriacea over this large portion of the
Amazon. If this is true for other trees as well, the sensitivity of
wood production to drought would be expected to be greatest in
faster-growing forests.

Many tropical soils are highly weathered, reflecting ancient
landscapes exposed to hot and humid climate conditions.
Nutrient availability is thus highly dependent on soil age
(Quesada et al., 2011). Chemically, the poorest soils are acidic,
highly leached, with low cation exchange capacity and high
aluminum saturation (Dalling et al., 2016). In these soils,
phosphorus and nitrogen are the main limiting nutrients in
vegetation biomass production (Quesada et al., 2012; Dalling
et al., 2016; Lambers and Oliveira, 2019). In the present study,
the macronutrients Mg and K were the most explanatory
elements of PCA axis 1, which defined our fertility gradient.
These two elements are indispensable for plant growth and
are involved in several essential physiological functions. Mg
is the central element of chlorophyll and is thus directly
involved in photosynthesis. It also has an important function
to activate several enzymes and is involved in carbohydrate
metabolism and nucleic acid synthesis (Zekri and Obreza,
2003). K is a basic need for growth functions and is required
for the formation of sugars and starches, protein synthesis,
cell division, and neutralization of organic acids (Zekri and
Obreza, 2003). Nutritional deficiency affects several metabolic
factors, including the hydraulic conductance of the root system
(Minshall, 1975), osmotic adjustment and turgor maintenance
(Mengel and Arneke, 1982). The interaction between soils and
water deficit was expected because both water and nutrients are
important for metabolic processes to occur effectively (Sands
and Mulligan, 1990).

TABLE 2 Statistical parameters comparing the three linear
mixed-effects models tested to describe the relationship between the
variations in the PAI (tree growth), SPEI (drought index), and PC1 Soils
(soil fertility index).

Models AIC BIC Deviance Pr(>Chisq)

PAI∼ SPEI −95.16 −82.23 −105.16

PAI∼ SPEI
+PC1 soils

−100.83 −85.35 −112.86

PAI∼ SPEI
*PC1 soils

−105.53 −87.43 −119.53 <0.01

Extreme drought events limit water availability and are
associated with high canopy temperatures and increased
vapor pressure deficit. To survive these conditions, trees use
physiological mechanisms such as stomatal control of the leaves
which limit carbon uptake and prevent further water loss
through transpiration, thus protecting the plant from possible
hydraulic failure (McDowell et al., 2008). Decreased growth
rate is an immediate response to decreased carbon uptake, as
newly fixed C is redirected to survival functions, and reduces
secondary growth (Chapin et al., 1990). In addition, trees
adjust allocation to anatomical tissues according to environment
conditions (Olson et al., 2014). Acquisitive trees with higher
growth rates tend to develop larger vessels with lower hydraulic
safety (Oliveira et al., 2021), which is represented by low
wood density. The negative relationship between growth rate
and wood density observed in the present study (r = −0.58
and p < 0.001) indicates intraspecific adjustment in resource
allocation in the same species across different environments
(Hacke et al., 2001; Chave et al., 2009). The intraspecific
variation in wood density reported in this study (0.20 g/cm3)
was narrow comparing to tree community level (Chave et al.,
2006), however varied with environmental conditions as was
showed for another tropical trees species (Schöngart et al., 2005;
Wittmann et al., 2006). Future studies regarding the variation
in hydraulic traits in this species across the environmental
gradients would be important in order to understand how this
hyperdominant species, which is present across much of the
Amazon basin, adapts to its local environment.

Maués was the second lowest fertile site in our study
(see PCA soils in Supplementary Figure 1), where two
trees increased their growth during periods with a higher
drought index (negative SPEI values). This pattern of increasing
productivity in dry years was also observed in forests that have a
shallow water table and excess water limits growth (Sousa et al.,
2022). We do not have information about the depth of the water
table at the Maués site, but our results suggest that more studies
monitoring the influence of a shallow water table on tree growth
across the Amazon basin are necessary in order to understand
this tree growth pattern.

This paper is the first to use radiocarbon data to estimate tree
growth rates over periods of multiple decades and examines the
underlying reasons for temporal variation in growth. Vieira et al.
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FIGURE 5

The linear mixed-model predictions show the periodic annual increment (PAI) of Eschweilera coriacea in mm/year responding the interaction
between soil fertility and drought index. Sites are distributed in descending order according to the soil fertility gradient. SPEI corresponds to the
Standardized Precipitation-Evapotranspiration index (drought index). The trend lines are the values predicted by the linear mixed model for each
tree. Acronyms of the study sites: 1_Manicore: Manicoré; 2_Jurua: Juruá; 3_Manaus: Manaus; 4_Atalaia: Atalaia do Norte; 5_Maues: Maués;
6_SGC: São Gabriel da Cachoeira.

(2005) used 14C dating to determine growth rates, and found
that the results corroborate those obtained using dendrometer
bands over the same time periods in permanent plots. This
method is applicable for studying tree growth in species and
does not rely on visibility or annual tree rings. While we
used radii of sections cut for allometry measurements, the
small sample size needed for radiocarbon means that it can
also be measured using wood cores such as those used for
dendrochronological analysis. In the years since about 1960,
radiocarbon dating can determine the age of samples to within
±2 years of resolution. Thus, 14C dating is useful in the field
of forestry for confirming the annual nature of rings, for
independently estimating tree age, and for quantifying temporal
variation in growth rates over time.

The tree flora of the Amazon is estimated to contain
around 15,000 species (Ter Steege et al., 2020) with some
227 species being hyperdominant species. The evolutionary
history for many species in the Amazon has been poorly
investigated, especially for hyperdominant species (Heuertz
et al., 2020; Damasco et al., 2021). Given the wide distribution
of Eschweilera spp. across the Amazon basin, more phylogenetic

studies of this genus are necessary because it remains a non-
monophyletic group (Huang et al., 2015). For another
hyperdominant species (Protium heptaphylum), eight
evolving lineages that are adapted to distinct soil and
climate conditions were identified (Damasco et al., 2021).
We restricted our sites to terra firme plateau areas, which are
well-drained forests dominated by clay-rich soils, in order
to avoid additional speciation that could be associated with
environmental filtering.

The Amazon basin has 227 hyperdominant species that
comprise 50% of the trees in the basin (ter Steege et al.,
2013). Only 1% of these species account for 50% of the
basin’s carbon stock and productivity (Fauset et al., 2015).
The species Eschweilera coriacea is a hyperdominant species
in the Amazon (Ter Steege et al., 2020) and is ranked second
highest in biomass production in the basin (Fauset et al., 2015).
As a highly representative species, the patterns of diameter
growth in response to soil-climate interactions described in
this paper may reflect more general responses for forest
trees in terms of their carbon balance, especially in years of
extreme drought.
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