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Climate change is becoming increasingly severe. Today, several studies have

found that climate change substantially influences the increasing number

of forest fires. Regional climate models (RCMs) are currently a vital tool for

climate forecasting in researching how to combat forest fires. As China’s forest

fire area, Yunnan province has frequent forest fires that generate significant

losses, so it is a crucial area for forest fire prevention in China. Therefore,

this study uses meteorological observational data from 25 stations in Yunnan

over the period 2004–2018 to compares and evaluates the Regional Climate

Forecast Model (RegCM) and Weather Research and Forecasting model (WRF)

in multiple dimensions. The optimal RCM is then determined for the forest

area of Yunnan. The results show that the deviations of RegCM predictions

from the spatial mean of the real temperature are less than 3◦C, whereas the

deviations of WRF are all greater than 3◦C. In addition, the RegCM correlation

coefficient exceeds 0.8, whereas the WRF correlation coefficient exceeds 0.75.

In terms of precipitation, the deviation of RegCM predictions for the whole

territory is less than 2 mm, whereas the overall deviation of WRF predictions

is great. The correlation coefficient for RegCM and WRF are both less than

0.5, but the RegCM correlation coefficient exceeds that of the WRF. We

thus conclude that RegCM is more suitable for predicting the climate of the

forest area of Yunnan. This study also provides references for related climate

forecasting and research into forest fire dynamics in general.

KEYWORDS

forest fire dynamics, RCM, regional climate forecast model (RegCM), weather
research and forecasting model (WRF), climate forecast
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1. Introduction

Forest fires dynamics are one of the main contents of
medium- and long-term forecasting of forest fire. It depends
mainly on the interaction between climate, vegetation, and
human activity. Over the long term, the climate is the main
factor that determines forest fire dynamics (Feldmann et al.,
2009; Dupuy et al., 2020; Goss et al., 2020). In recent years,
the climate has changed drastically, so the accuracy of climate
forecasts has become a major subject in forest fire research.

Climate prediction models are currently effective tools
for climate forecasting (Boer et al., 2016; Smith et al.,
2020; Ban et al., 2021). The regional climate model (RCM)
produces regional climate predictions from the global climate
model (GCM), but these predictions are inaccurate because
of the latter’s horizontal resolution of roughly 250–600 km
of the global climate model (Deser et al., 2012; Giorgi and
Gutowski, 2015; Giorgi, 2019). Commonly used RCMs include
(1) Regional Climate Forecasting Model (RegCM) from the
International Centre for Theoretical Physics, (2) Weather
Research and Forecasting (WRF) from the National Centers
for Environmental Prediction, (3) Climate-Weather Research
and Forecasting (CWRF) from the University of Maryland;(4)
Providing Regional Climates for Impacts Studies (PRECIS) from
the United Kingdom Meteorological Office Hadley Centre, and
(5) High-Resolution Limited-Area Model (HIRHAM) from the
Danish Meteorological Institute. Previous studies show that
RegCM is not suitable for high-latitude regions (Mallet et al.,
2017; Shi et al., 2018; Da Silva et al., 2019), WRF and CWRF are
suitable for most regions (Raghavan et al., 2016; Garrido et al.,
2020; Kuo et al., 2020), PRECIS is suitable for equatorial regions
(Centella-Artola et al., 2015), HIRHAM is suitable for polar
regions (Dorn et al., 2018). However, other studies reveal many
exceptions to these guidelines, especially in regions with unique
topographic and climatic characteristics, such as the Yunnan
forest area, where the selection of RCMs still requires evaluation
with the help of local characteristics data.

The present study compares meteorological observational
data from stations in Yunnan from 2004 to 2018 with
predictions of the selected RCM for the same period. We
then analyze the degree of deviation in multiple dimensions
between predictions and observations to determine which RCM
is suitable for the forest area of Yunnan based. This study should
provide a reference for researching forest fire dynamics and
related regional climate predictions research.

2. Data and method

2.1. Region of interest

Yunnan is located in southwest China (21◦8′–29◦15′N,
97◦31′–106◦11′E) and belongs to the highland area (Figure 1).

The terrain is unique; it is high in the northwest and low
in the southeast, descending stepwise from north to south at
an average of 6 m/km. The area has a subtropical highland
monsoon climate with small annual temperature differences
but large daily temperature differences. It has distinct dry
and wet seasons, the topography significantly affects the air
temperature, and the three-dimensional climate characteristics
are remarkable. The forest area of Yunnan has the highest
incidence of forest fires in China (Hong et al., 2007). The forest
fire-danger period is generally from December to June of the
following year, and the high-fire-danger period is from March
to May (People’s Government of Yunnan Province, 2022).

2.2. Model selection and configuration

Regional climate forecasting model is developed by
the International Centre for Theoretical Physic and is
currently the most used RCM (Giorgi and Bates, 1989;
Giorgi et al., 1993; Seth and Giorgi, 1998); the simulation
results of different versions of RegCM have demonstrated
its applicability in China (Xuejie et al., 2001; Lu et al.,
2019; Dong and Shi, 2022). WRF is originally a mesoscale
weather forecast model developed jointly by the National
Centers for Environmental Prediction, the National Center for
Atmospheric Research, and several universities and research
institutes (Heikkilä et al., 2011). Numerous studies have
confirmed that WRF accurately simulates China’s climate
(Gao et al., 2013; Xiang-Hui and Xun-Qiang, 2015; Chen
et al., 2018; Entao, 2019). Most of these studies focus on
the mean climatology, however, comparison between RegCM
and WRF is rare (Gao, 2020), especially for the forest area
of Yunnan. Therefore, the present study uses local data
from the forest area of Yunnan to evaluate and compare
RegCM and WRF (version 4.6 for RegCM and 4.2 for
WRF).The running of RegCM and WRF requires the adaptive
configuration of several parameters for the simulation area
during operation. The simulation area is in the center of
the administrative division of Yunnan province (25◦30′N,
101◦36′E). The horizontal resolution is 10 km, and the buffer
area is divided into 10 grids. The dynamical and physical
configuration it mainly includes dynamical schemes such as
dynamical frame work, vertical layers, and physical schemes
such as cumulus convection schemes, land surface settings,
planetary boundary layers, microphysical parameterization,
and radiation schemes. The configurations of these schemes
are based on the experimental data of CORDEX-EA-I,
which have been demonstrated to be suitable for East Asia
(Guo et al., 2018; Yu et al., 2020; Li et al., 2022). These
configurations are given in Table 1 We use the ERA-
Interim as the initial and boundary conditions for both
RCMs, and the optimal interpolated sea surface temperature
from the National Oceanic and Atmospheric Administration
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FIGURE 1

Distribution of meteorological stations in Yunnan forest area.

TABLE 1 The dynamic and physical configuration of regional climate
forecast model (RegCM4) and weather research and forecasting
model (WRF).

RegCM WRF

Dynamic framework Static Non-static

Vertical layers 18 28

Cumulus convection scheme MIT Kain-Fritsch

Land surface setting BATS Noah

Planetary boundary layer scheme Modified Holtslag YSU

Microphysical parameterization SUBEX WSM5

Radiation scheme Modified CCM3 CAM

as the sea surface temperature (Kanamitsu et al., 2002).
Additionally, the simulation period is 15 consecutive years from
January 1, 2003, to December 31, 2018 (2003 is the start-
up period).

2.3. Observational dataset

We use the daily meteorological observational data
(2004–2018) from 25 stations in Yunnan (Figure 1), as
provided by the China National Meteorological Information

Center1. The data give air temperature (i.e., average daily
air temperature, maximum daily air temperature, minimum
daily air temperature), precipitation (20:00–08:00 precipitation,
08:00–20:00 precipitation, 20:00–20:00 total precipitation),
relative humidity (average relative humidity, minimum relative
humidity), wind speed (average wind speed, maximum wind
speed, maximum wind velocity), and other factors such as
sunshine hours.

2.4. Evaluation method

The daily meteorological simulated data were calculated for
each year by using both RegCM and WRF. We then analyzed
at a progressively more granular degree the deviation of
meteorological simulated data from meteorological observation
data for (1) 5 years annual average, (2) annual average during
the fire-danger period, (3) annual average monthly during
the high-fire-danger period, and (4) other dimensions. Finally,
the optimal RCM suitable for the forest area of Yunnan
is determined based on the degree of deviation. The daily
meteorological simulated data derived from these two RCMs
are minimum temperature, maximum temperature, average
precipitation, total precipitation, minimum relative humidity,

1 http://data.cma.cn
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maximum wind speed, and average wind speed. However,
previous studies (Zhu et al., 2022) show that the maximum
temperature and total precipitation are the main drivers of forest
fire occurrence in this region, and that the combination of these
two factors largely determines an area’s forest fire dynamics.
Therefore, we evaluate the maximum temperature (Tmax) and
total precipitation (Preci) from the simulated output data were
selected as the basis for evaluation.

To quantify the degree of deviation, we use four statistical
indicators categorized as temporal or spatial. The first temporal
statistical indicator is the root mean square error (RMSE),
which reflects the overall difference between predictions and
observational data. The RMSE is given by

RMSE =

√∑
(ai − bi)2

Ni

where ai is the observational data, bi is simulated output
data, and Ni is the total number of years. The second
temporal statistical indicator is the correlation coefficient R,
which measures the linearity of predictions with respect to
observational data. R is given by

R=
∑n

i = 1 (ai −−a)(bi −−b)√∑n
i =1 (ai −−a)2

√∑n
i =1 (bi −−b)

2

where a is the mean of the observational data, b is the mean of
the simulated output data, and n is the number of datasets. The
third temporal statistical indicator is the significance coefficient
p, which is obtained by applying a Pearson correlation analysis,
and it reflects the possibility of an event to occur (generally,
p < 0.05 means a correlation exists, p < 0.01 means a significant
correlation exists, and p < 0.001 means an extremely significant
correlation exists).

The spatial statistical indicator is mainly based on raster
images formed by Kriging interpolation, which is a linear
unbiased estimation of unknown sample points based on the use
of regional changes and variation functions as an essential tool.
We use Arcgis 10.8 software for interpolation.

3. Results and analysis

3.1. Comparison of spatial statistics

3.1.1. Temperature
Daily observational maximum temperatures at each

meteorological station from 2004 to 2018 were used as
real data, and data were obtained from (1) 5 years annual
average temperature, (2) annual average temperature
during the fire-danger period, and (3) annual average
monthly temperature during the high-fire-danger period.
These data were then compared with the RegCM and

WRF results to evaluate the accuracy with which RCM
can predict daily maximum air temperature in the
forest area of Yunnan.

3.1.1.1. Five-years annual average temperature

To clarify how RegCM and WRF simulate the temperature,
we divided the period 2004–2018 into three 5 years intervals. We
compared the spatial distribution of annual mean temperature
differences for RegCM, WRF and real data for three time
periods. Figure 2 shows the spatial distribution of the
difference between the simulated and real annual average
temperatures for each five-year period. The temperatures
predicted by RegCM and WRF decrease from south to
north, as does the real temperature. The RegCM results
are closer to the real temperatures than the WRF results,
which deviate significantly from the real temperature. The
spatial distribution of the RegCM results for each of the
three time periods accurately predicts the temperature over
the whole territory, with a negative deviation generally less
than 2◦C. Only in northwestern Yunnan is the negative
deviation greater (up to 5◦C). The WRF temperature is accurate
only in southeastern Yunnan, where the negative deviation
is less than 1◦C. In most other areas, the negative deviation
exceeds 4◦C, especially in northeastern Yunnan, where it
reaches 7◦C. However, the deviation from 2009 to 2013
exceeds that of the other two periods. Additionally, the WRF
produces similar results, with the largest deviation for 2009–
2013.

3.1.1.2. Annual average temperature during the
fire-danger period

The fire-danger period for the forest area of Yunnan
generally extends from December to June of the following
year. Thus, we analyze the RCM results over this period.
Figure 3 shows the spatial distribution of the differences
in the annual mean temperature during the fire-danger
period. The RegCM and WRF results are similar to the real
results. The RegCM results are accurate for the southern,
southwestern, southeastern, and northeastern Yunnan but
deviate negatively in northwestern, central, and northern
by up to 5◦C. The WRF results are accurate only in
southeastern Yunnan, the deviation in other areas exceeds
5◦C.

3.1.1.3. Annual average monthly temperature during
the high-fire-danger period

March to May is the high-fire-danger period for the
forest area of Yunnan, the vast majority of forest fires
occur during this period. To clarify the simulations by
RegCM and WRF for the high-fire-danger period, we
compare the differences with respect to the real results
for March, April, and May of each year. Figure 4 shows
that both RCMs accurately predict the real temperatures.
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FIGURE 2

Spatial distribution of the difference in 5 years annual average temperature.

The RegCM results have deviated the least from the real
temperatures. Figure 5 shows that the RegCM results deviate
mainly in western and northwestern Yunnan, but in most
areas of western and northwestern Yunnan in March,
and it is concentrated in scattered areas in western and

northwestern Yunnan in April. The sporadic areas of the
month expanded to parts of southwestern Yunnan in May,
and the maximum deviation attains 10◦C. The overall results
of WRF are poor, with negative deviations in the range of
4–7◦C.
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FIGURE 3

Spatial distribution of the difference in annual average temperature during the fire-danger.

FIGURE 4

The trend of annual average monthly temperature during the high-fire-danger (unit: ◦C).
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FIGURE 5

Spatial distribution of the difference in annual average monthly temperature during the high-fire-danger.
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3.1.2. Precipitation
We also calculated 5 years average precipitation, annual

average precipitation during the fire-danger period and
annual average monthly precipitation during the high-fire-
danger period using daily observational precipitation data
from meteorological stations from 2004 to 2018 as real
data. These results were then compared with the results
of RegCM and WRF to evaluate the accuracy with which
the two RCMs can predict daily total precipitation in the
forest area of Yunnan.

3.1.2.1. Five-years annual average precipitation

To analyze the precipitation results of RegCM and
WRF, we divided the period 2004–2018 into three 5 years
periods and compared RegCM and WRF with the real
annual average precipitation data in these three time periods,
respectively. Figure 6 shows the spatial distribution of
the difference in annual average precipitation for each
5 years period. The results of RegCM are close to the
real precipitation, whereas the WRF results deviate by
more than 9-fold. The spatial distribution of the RegCM
results for the three periods accurately predicts the
precipitation over the whole territory, with a deviation
generally less than 3 mm. The WRF results deviate from
the real precipitation by less than 3 mm only in southwest
Yunnan. In other areas, the deviation exceeds 3 mm,
especially in northwest Yunnan, where the deviation exceeds
7 mm.

3.1.2.2. Annual average precipitation during the
fire-danger period

We now analyze the simulation capability of RegCM
and WRF during the fire-danger period. We first compare
the daily simulated precipitation results from RegCM and
WRF with the real results for the fire-danger period 2004–
2018 (see Figure 7). Figure 7 shows the spatial distribution
of the difference in annual average precipitation during
the fire-danger period. The RegCM and WRF results are
similar overall to the real results. The RegCM results are
accurate over the entire region, with deviations of less
than 3 mm. For the WRF results, the deviations exceed
14 mm over the entire region, with a maximum deviation of
20 mm.

3.1.2.3. Annual average monthly precipitation during
the high-fire-danger period

We further analyze the simulation details of RegCM
and WRF in the high-fire-danger periods by comparing the
discrepancies for March, April, and May of each year. Figure 8
shows that the RegCM results deviate little from the real
results, whereas the deviation of the WRF results from the

real results is over tenfold greater. Figure 9 shows that the
RegCM results are accurate over the entire region, whereas the
WRF results are generally poor, with deviations of 4–20 mm in
most areas.

3.2. Comparison of temporal statistics

3.2.1. Temperature
We now statistically compare the RegCM and WRF results

with the real temperature results with the help of Taylor plots
and the statistical indicators RMSE, correlation coefficient R,
confidence p, and standard deviation (STD). Recall that the
more the RMSE or STD approaches zero or the more R
approaches 1, the better the result, and a correlation is significant
when p < 0.01. Table 2 shows the statistical indicators. For
the temperature, the RMSE for RegCM is less than that of
WRF. The coefficient R is closer to unity for RegCM than
WRF, and p < 0.01 for both RegCM and WRF, suggesting
that both RegCM and WRF correlate significantly with the
real temperature in each dimension, although RegCM is more
strongly correlated.

For the datum point of the Taylor chart, RMSE = 0, R = 1,
and STD = 0. For a Taylor chart, the closer the prediction
point is to the reference point, the better the simulation is.
Based on the data given in Table 2, RMSE, R, and STD
may be integrated into an extreme value graph to obtain the
temperature Taylor graph (Figure 10). In all dimensions in
the Taylor diagram, the RegCM result is closer to the datum
point than WRF. A temperature Taylor diagram is obtained by
integrating RMSE, R, and STD over an extreme value coordinate
diagram (Figure 10). In each dimension, the RegCM result is
closer to the reference point of the Taylor diagram than the
WRF result.

3.2.2. Precipitation
We also statistically compare the RegCM and WRF

results with the real precipitation results. As shown in
Table 3, the RMSE of the RegCM results is less than
that of the WR, the coefficient R of the RegCM results is
greater than that of the WRF results, and both RegCM
and WRF have p < 0.01, suggesting that both RCMs
correlate significantly with the real precipitation in
all dimensions. Although the RegCM results correlate
more strongly with the real precipitation than the WRF
results, R < 0.5 indicates that neither RCM follows the
real precipitation. According to the Taylor diagram for
precipitation (Figure 11), the RegCM point in each
dimension is closer to the reference point than the
WRF point.

Frontiers in Forests and Global Change 08 frontiersin.org

https://doi.org/10.3389/ffgc.2022.1073554
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-1073554 December 24, 2022 Time: 16:34 # 9

Deng et al. 10.3389/ffgc.2022.1073554

FIGURE 6

Spatial distribution of the difference in 5 years annual average precipitation.
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FIGURE 7

Spatial distribution of the difference in annual average precipitation during the-fire-danger.

FIGURE 8

Distribution of annual average daily monthly precipitation during the high-fire danger (unit: mm).

4. Discussion and conclusion

Regional climate forecast model produces more
accurate temperature and precipitation predictions over
the entire region than WRF. For temperature, the RegCM
results deviate only slightly from the real temperature in
most areas except northwest Yunnan, and the deviation
decreases during the high-fire-danger period, especially
in May. For precipitation, although the RegCM results
do not match the real precipitation, the predicted mean
precipitation is acceptable in all time periods and over
the entire region, which meets the needs of forest-
fire forecasting.

The results also clearly show the correlation between
RegCM simulated temperature and precipitation, which is
mainly attributed to the land surface model (Lynch et al.,
1997), the physical parameterization (Lorant et al., 2006),
the choice of simulated terrain (Letcher and Minder,
2015), and the choice of the global climate model or

reanalysis data (Rummukainen et al., 2001; Landgren
et al., 2014). This difficulty can be alleviated by using
convective allowable scale regional climate modeling
(Stratton et al., 2018), boundary downscaling (Adachi
and Tomita, 2020), RCM coupling (Wang et al., 2016),
and multi-RCM ensemble averaging (Sørland et al.,
2021).

Forest fire dynamics are an important tool for forecasting
medium and long-term forest fire danger, and the accuracy
of the research results is directly related to the policy
designation and effectiveness of local forest management.
Based on the results of this study, the direct use of
classical RCM still does not fully satisfy the requirements
of accurate prediction of forest fire dynamics due to the
specificity of terrain and climate. Therefore, only research
and construction of RCMs based on the feature data of
the study area can meet the requirements. The general
steps for developing a suitable RCM are (1) to build
an integrated physical model by solving the mathematical

Frontiers in Forests and Global Change 10 frontiersin.org

https://doi.org/10.3389/ffgc.2022.1073554
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-1073554 December 24, 2022 Time: 16:34 # 11

Deng et al. 10.3389/ffgc.2022.1073554

FIGURE 9

Spatial distribution of the difference in annual average monthly precipitation during the high-fire-danger.
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TABLE 2 Statistical indicators of temperature.

RegCM WRF

RMSE R P RMSE R P

2004–2008 3.76 0.82 0.00 4.50 0.77 0.00

2009–2013 3.85 0.82 0.00 4.61 0.76 0.00

2014–2018 3.80 0.82 0.00 4.71 0.75 0.00

Fire-danger period 3.85 0.84 0.01 4.79 0.79 0.00

March 3.34 0.87 0.00 4.24 0.80 0.00

April 3.13 0.86 0.00 4.03 0.79 0.00

May 3.24 0.82 0.00 4.20 0.71 0.00

equations of a three-dimensional network; (2) add the
high-resolution information obtained from the integrated
physical model to the GCM to reduce the scale of the
coarser horizontal resolution of the GCM; (3) set the

TABLE 3 Statistical indicators of precipitation.

RegCM WRF

RMSE R P RMSE R P

2004–2008 5.72 0.43 0.00 28.09 0.36 0.00

2009–2013 5.33 0.38 0.00 22.65 0.37 0.00

2014–2018 5.71 0.41 0.00 27.19 0.37 0.00

Fire-danger period 4.80 0.46 0.01 25.33 0.45 0.00

March 3.22 0.45 0.00 24.64 0.44 0.00

April 4.28 0.53 0.00 27.29 0.39 0.00

May 5.15 0.55 0.00 27.12 0.43 0.00

boundary conditions based on the interaction between the
representative climate system components and their feedback;
and, finally, (4) generate comprehensive output for the
domain of interest.

FIGURE 10

Temperature Taylor diagram. (A) Temperature Taylor diagram every 5 years; (B) Temperature Taylor diagram during the fire-danger period; (C)
Temperature Taylor diagram monthly during the high-fire-danger period.

FIGURE 11

Precipitation Taylor diagram. (A) Precipitation Taylor diagram every 5 years; (B) Precipitation Taylor diagram during the fire-danger period; (C)
Precipitation Taylor diagram monthly during the high-fire-danger period.
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