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The United States (US) Department of Agriculture Forest Service Forest Inventory and

Analysis (FIA) program operates the national forest inventory of the US. Traditionally,

the FIA program has relied on sample-based approaches—permanent plot networks

and associated design-based estimators—to estimate forest variables across large

geographic areas and long periods of time. These approaches generally offer unbiased

inference on large domains but fail to provide reliable estimates for small domains

due to low sample sizes. Rising demand for small domain estimates will thus require

the FIA program to adopt non-traditional estimation approaches that are capable of

delivering defensible estimates of forest variables at increased spatial and temporal

resolution, without the expense of collecting additional field data. In light of this challenge,

the development of small area estimation (SAE) methods—estimation techniques that

support inference on small domains—for FIA data has become an active and highly

productive area of research. Yet, SAEmethods remain difficult to apply to FIA data, due in

part to the complex data structures and survey design used by the FIA program. Herein,

we present the potential of rFIA, an open-source R package designed to increase the

accessibility of FIA data, to simplify the application of a broad suite of SAEmethods to FIA

data. We demonstrate this potential via two case studies: (1) estimation of contemporary

county-level forest carbon stocks across the conterminous US using a spatial Fay-Herriot

model; and (2) temporally-explicit estimation of multi-decadal trends in merchantable

wood volume in Washington County, Maine using a Bayesian multi-level model. In both

cases, we show the application of SAE techniques offers considerable improvements in

precision over FIA’s traditional, post-stratified estimators. Finally, we offer a discussion of

the potential role that rFIA and other open-source tools might play in accelerating the

adoption of SAE techniques among users of FIA data.

Keywords: forest inventory and analysis (FIA), R package, forest carbon, merchantable wood volume, Bayesian

mixed-effects models, spatial Fay-Herriot models, area-level models, unit-level models
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INTRODUCTION

The United States (US) Department of Agriculture Forest
Inventory and Analysis (FIA) program conducts the US national
forest inventory (NFI), collecting data describing the condition
of forest ecosystems on a large network of permanent inventory
plots distributed across all lands in the nation (Smith, 2002).
These data offer a unique and powerful resource for determining
the extent, magnitude, and causes of long-term changes in forest
health, timber resources, and forest landowner characteristics

across large regions in the US (Wurtzebach et al., 2020). The
FIA program has traditionally relied on post-stratification to
improve precision of point and change estimates (Bechtold and
Patterson, 2005; Westfall et al., 2011). Like other NFIs (Köhl
et al., 2006; Breidenbach and Astrup, 2012), FIA has experienced
increased demand for estimates within smaller spatial, temporal,
and biophysical domains than post-stratification can reasonably
deliver (e.g., annual, stand-level estimates). The development of
estimation techniques that support inference on small domains—

referred to as small area estimation (SAE) methods—using FIA
data is an active area of research, with considerable progress
made in the last decade (Schroeder et al., 2014; Lister et al.,
2020; Coulston et al., 2021; Hou et al., 2021). SAE methods are
numerous and diverse, thoughmost seek to improve inference on
small domains by making use of statistical models and auxiliary
information that is correlated with target variables (Rao and
Molina, 2015).

Despite recent progress in SAE method development, many

FIA data users are likely to find such techniques difficult to
implement due to limitations in data accessibility and complexity
in survey design. Here, we demonstrate the potential of rFIA
(Stanke et al., 2020), an open-source R package (R Core
Team, 2021), to reduce barriers in data access that arise from
complexity in data coding, database structure, and Structured
Query Language used by the FIA program. Using a simple yet
powerful design, rFIA implements the post-stratified, design-
based estimation procedures described in Bechtold and Patterson
(2005) for over 60 forest variables and allows users to return
intermediate summaries of all variables for use in modeling
studies (i.e., plot, condition, and/or tree-level). Further, target
variables can be easily estimated for domains defined by any
combination of spatial zones (i.e., spatial polygons), temporal
extents (e.g., most recent measurements), and/or biophysical
attributes (e.g., species, site classifications).

Model-based SAE techniques offer a valuable alternative to
the design-based, post-stratified estimators implemented in rFIA.
Model-based SAE methods often seek to borrow information
from non-target domains (e.g., from neighboring spatial zones
if domains are defined by spatial boundaries) and auxiliary data
(e.g., remote sensing data) to improve precision of estimated
quantities for a domain of interest, and can generally be
classified into two distinct groups: unit-level and domain-level
(also referred to as area-level) models. Unit-level models are
constructed at the level of population units, where population
units are defined as the minimal units that can be sampled
from a target population. With respect to FIA’s survey design,
field plots represent population units (in the finite population

sense) and target populations are defined by any spatial and/or
temporal region with known extent. Unit-level models relate
target variables measured on sampled population units to
auxiliary data that is available for all population units (e.g.,
wall-to-wall remote sensing data) in order to predict quantities
of the target variables for a domain of interest (i.e., where
domains are defined by some combination of population units;
Rao and Molina, 2015). In contrast, domain-level models are
constructed at the level of domains. Here, domain-specific
auxiliary information (e.g., county-level census data, where
counties represent domains) is related to post-stratified or
direct estimates within corresponding domains (Rao andMolina,
2015). Hence, domain-level models effectively “adjust” direct
domain estimates in light of auxiliary information.

By design, rFIA does not implement model-based SAE
techniques directly, owing to their exceptional variety and
requirements for thorough model checking and validation.
Rather, rFIA automates the process of summarizing FIA data
to a form that is appropriate for input to a wide variety of
unit- and domain-level SAE models. Hence, rFIA allows the
user to focus their attention on model development and data
output, as opposed to the intricacies of FIA’s data structure and
sampling design.

Here we present two case studies chosen to demonstrate
some aspects of rFIA’s potential to simplify model-based SAE
applications using FIA data. First, we use the post-stratified
estimators implemented in rFIA to estimate current forest carbon
stocks within counties across the conterminous US (CONUS),
and develop a domain-level spatial Fay-Herriot SAE model to
couple these direct estimates with auxiliary climate variables and
improve precision of estimated carbon stocks. Second, we derive
a temporally-explicit unit-level estimator of total merchantable
volume for a small spatial domain in Maine (i.e., Washington
County), and compare precision of the model-based estimator to
that of a design-based, post-stratified estimator of merchantable
volume for the domains of interest (Washington County, all
years over the period 1999–2025). Specifically, we use rFIA to
extract survey design information associated with current volume
inventories in the State, and produce plot-level summaries of
merchantable volume for all plot visits since 1999. We then
develop a Bayesian multi-level model to estimate merchantable
volume at annual time-steps, and use the approach presented in
Little (2004) to derive a robust model-based estimator of total
merchantable volume for all domains of interest. All code and
data used in these case studies are available in Appendices A, B,
on GitHub (https://github.com/hunter-stanke/FGC_rFIA_SAE),
and at our official website (https://rfia.netlify.app).

METHODS

FIA Data
Data Collection
Since 1999 FIA has operated an extensive nationally-consistent
annual forest survey designed to monitor changes in forests
across all lands in the US (Smith, 2002). The program measures
forest variables on a network of permanent ground plots that are
systematically distributed at a base intensity of ∼1 plot per 2,428
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hectares across the US (Smith, 2002). Data collected on ground
plots are stored in a large, public database (i.e., the FIADatabase),
however the true locations of ground plots are not released in
order to protect the ecological integrity of plots and the privacy
rights of private landowners (Shaw, 2008).

For trees 12.7 cm diameter at breast height (d.b.h.) and
larger, tree attributes (e.g., species, live/dead, mortality agent)
and variables (e.g., d.b.h., height, volume) are measured on a
cluster of four 168 m2 subplots at each plot location (Bechtold
and Patterson, 2005). Trees 2.54–12.7 cm d.b.h. are measured
on a microplot (13.5 m2) contained within each subplot,
and rare events such as very large trees are measured on
an optional macroplot (1,012 m2) surrounding each subplot
(Bechtold and Patterson, 2005). Importantly, some variables in
the FIA database, like tree biomass and carbon, are modeled from
variables measured on field plots and auxiliary variables, such as
mean annual temperature, that are joined with the plots based on
their spatial location.

Survey Design
Traditionally, the FIA program has used post-stratification to
improve precision of point and change estimates, account for
variability in non-response rates, and to allow sample intensity
to vary across regions (Smith, 2002; Bechtold and Patterson,
2005; Tinkham et al., 2018). Importantly, post-stratification
is applied to populations defined by a set of exhaustive
and mutually exclusive geographic units with known areas—
known as estimation units using FIA’s terminology. Estimation
units are often formed from administrative boundaries, for
example counties, county groups, or large ownerships and are
constrained by State boundaries (i.e., estimation units can only
fall within one State). FIA implements post-stratification by
dividing each estimation unit into relatively homogeneous strata
using wall-to-wall remotely-sensed imagery. Strata are designed
to minimize within-strata sample variances, while ensuring
constant within-strata sample intensity. In short, FIA’s survey
design is hierarchical and area-based: States are comprised of
multiple estimation units, estimation units are divided into
multiple strata, and strata contain multiple inventory plots. We
refer readers to Bechtold and Patterson (2005) for a complete
description of FIA’s post-stratified survey design.

FIA uses an annual panel system to estimate current
inventories and change. Inventory cycles—the period of time
required to measure all ground plots with at least one forest
condition within an estimation unit—are generally 5–7 years in
length in the eastern US, and 10 years in length in the western
US (Bechtold and Patterson, 2005). A mutually exclusive and
spatially-balanced subset of ground plots with at least one forest
condition are measured in each year of an inventory cycle,
forming a series of independent annual panels. For example in an
ideal 5-year inventory cycle, 20% of ground plots are measured
annually, such that 100% of plots are measured once between
Year 1 and Year 5. In Year 6, the subset of plots measured in
Year 1 are remeasured, and a second inventory cycle emerges
consisting of all plots measured between Year 2 and Year 6
(not independent of the previous cycle, as 80% of measurements
are shared).

Precision of point and change estimates can often be improved
by combining annual panels within an inventory cycle (i.e.,
by augmenting current data with data collected previously).
While FIA does not prescribe a core procedure for combining
panels (Bechtold and Patterson, 2005), the temporally-indifferent
approach, which effectively pools data from annual panels into a
single periodic inventory, is the most widely known and used.
From our example 5-year inventory cycle above, the temporally-
indifferent approach pools all data collected between Years 1 and
5 and computes point estimates from the aggregated sample,
assuming all plots are measured simultaneously at the end of the
inventory cycle. Estimates of change could first be computed in
Year 6 in our example (consisting of a single annual panel, 20%
of remeasured plots), and change estimates for a full inventory
cycle could first be computed following Year 10. In the case
studies that follow, we use the periodic, or temporally-indifferent,
approach to estimate contemporary carbon stocks across the
CONUS, and the post-stratified estimator applied to individual
annual panels to characterize temporal trends in merchantable
volume in Maine. Importantly, both approaches rely on the same
direct post-stratified estimator, differing only in their treatment
of time as dimension of the survey design (i.e., the temporal
subset of data that the estimators are applied to).

The rFIA R Package
rFIA is an open source package for the statistical computing
environment R (R Core Team, 2021), and was designed to
simplify the process of working with FIA data. Specifically, rFIA
alleviates hurdles arising from FIA’s complex survey design and
database structure by offering a simple and highly flexible toolset
for data acquisition and management (e.g., downloading and
storing FIA data), population estimation (e.g., estimation of totals
and ratios for domains of interest), and alternative summary
of FIA data (e.g., plot-level summaries of forest variables). We
provide a brief description of the key features of rFIA here, and
refer readers to Stanke et al. (2020) for a detailed description of
the package and our official website (https://rfia.netlify.app/) for
example code and details regarding package installation.

Core functions in the rFIA R package can be divided into
three categories: (1) utility functions designed to acquire, load,
and save modifications to FIA data; (2) subset functions designed
to help users navigate FIA’s survey design and subset inventories
of interest in their applications; and (3) estimator functions that
ingest raw FIA data and produce population estimates (e.g.,
totals, ratios, and associated variances) or intermediate-level
summaries (e.g., plot- or tree-level summaries) of forest variables
within user-defined populations of interest. Table 1 provides a
brief description of the rFIA functions used in the case studies
presented herein, and Appendices A, B provide all associated
code required to reproduce these case studies.

By default, rFIA implements standard estimation routines
used by the FIA program—post-stratified estimators and a
temporally-indifferent (i.e., periodic) approach to combining
annual panels within inventory cycles—to produce population
estimates for more than 60 forest variables. These estimation
routines have been tested extensively across Forest Service
regions and potential domains of interest (e.g., defined by species,

Frontiers in Forests and Global Change | www.frontiersin.org 3 April 2022 | Volume 5 | Article 745874

https://rfia.netlify.app/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Stanke et al. Small Area Estimation With rFIA

TABLE 1 | Descriptions of core rFIA functions used in case studies presented

herein.

rFIA function Description

Utility functions

getFIA() Download FIA data, load into R, and optionally save to disk

readFIA() Load FIA database into R environment from disk

Subset functions

clipFIA() Spatial and temporal queries for FIA data

getDesignInfo() Extract survey design information for post-stratified inventories

Estimator functions

carbon() Estimate carbon stocks by IPCC forest carbon pools

volume() Estimate merchantable volume on standing trees

land types) to ensure national-consistency and appropriate
behavior of the estimators under a broad range of user-inputs.
Furthermore, resulting estimates have been validated against
official FIA estimation tools (i.e., EVALIDator; Miles, 2021),
and found to be accurate to two decimal places for all forest
variables (Stanke et al., 2020). In addition to standard estimation
approaches, rFIA offers users the ability to produce population
estimates for individual annual panels or combine annual panels
within an inventory cycle using a moving-average approach with
potentially time-decaying weights (simple, linear, or exponential
moving averages). We refer readers to section 2.2 of Stanke
et al. (2020) for additional details on the estimation routines
implemented in rFIA.

Domain-Level Model for Forest Carbon
Stocks
To demonstrate rFIA’s capacity to simplify development of
domain-level small area estimators, we estimate contemporary
forest carbon stocks by county across the CONUS using a
spatial Fay-Herriot model (Fay and Herriot, 1979; Petrucci and
Salvati, 2006). This process consists of two primary stages: (1)
produce post-stratified estimates of carbon stocks and associated
variances for all forestland in each county (i.e., domain), and
(2) “smooth” post-stratified estimates using a model constructed
from domain-average climate variables and spatial random
effects to improve precision of estimated quantities within each
domain. Figure 1 provides a conceptual diagram that illustrates
key steps in our general estimation approach.

FIA measures/models forest carbon variables on all forested
portions of inventory plots (Domke, 2022). Here, forestland is
defined as land with at least 10% tree canopy cover (or had
previously, or is expected to have in the future) that occurs in
a patch of at least 0.4 ha in extent and that is not narrower
than 37 m. The carbon() function in rFIA draws from forest
carbon variables to produce population estimates of forest carbon
stocks, where carbon stocks include the following ecosystem
components: live overstory, live understory, standing dead wood,
down dead wood, litter, and soil organic material. Here live
overstory, live understory, and standing dead wood encompass
both aboveground and belowground carbon stocks.

We used rFIA to download an appropriate subset of the
FIA Database from the FIA DataMart (FIA DataMart, 2021),
and select the most recent subset of current volume inventories
within each State across the CONUS. We then used the carbon()
function to estimate total carbon stocks within counties using the
periodic, temporally-indifferent approach (i.e., the samemethods
implemented by EVALIDator; Miles, 2021). Here, total carbon
stocks are a sum of all ecosystem components across public and
private forestland, and are expressed as a population total. We
convert estimates of population totals (tons CO2e) to population
means (tons CO2e · ha−1) by dividing population totals by the
areal extent of each county (known quantities). Similarly, we
convert the variance of the population total to the variance of the
population mean by dividing by the square of the areal extent of
each domain.

We next fit a spatial Fay-Herriot model to the post-stratified
estimates of population means, using the sae R package (Molina
and Marhuenda, 2015). Fay-Herriot models are widely used in
small area estimation and generally use domain-level auxiliary
data in an attempt to improve the precision of domain estimates
for a target variable. These models are often defined in two
stages, in which variability arising from imperfect observation
of the target variable within a domain (e.g., variability arising
from sampling) is modeled separately from variability arising
from functional processes (e.g., processes represented in the
auxiliary data). This framework is particularly useful as it allows
estimation of relationships between auxiliary variables and the
true state of a target variable, without requiring that the true
state of the target variable be known. Instead, the probabilistic
linkage between imperfect observations of the target variable
(e.g., sample-based estimates with known error) and its true
state are used to estimate these relationships, thereby allowing
information to be “borrowed” across domains (e.g., via shared
regression coefficients) and often improving the precision of
domain estimates for the target variable (Molina andMarhuenda,
2015).

Let Ȳd denote the estimated population mean of county d
obtained via the post-stratified estimators from rFIA, and v(Ȳd)
the estimated variance of Ȳd. Importantly, the estimators of Ȳd

and v(Ȳd) are derived under a design-based framework, and
hence can be assumed unbiased for large samples (an assumption
that is potentially violated for domains with few observations).
The spatial Fay-Herriot model for county d in 1, 2, . . . ,D, where
D is the number of counties (D = 3, 107), is then defined as

Ȳd = Zd + ǫd, (1)

Zd = x⊤d β + vd, (2)

where Zd denotes the true, but unobserved value of the
population mean in county d, and ǫd is a normally distributed
error term with zero mean and variance v(Ȳd). Equation (1)
represents post-stratified estimates of county-level population
means from rFIA as imperfect observations of true (unobserved)
county-level population means. In other words, we represent
the post-stratified estimate for domain d as being drawn from
a normal distribution with mean Zd (unobserved, and to be
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FIGURE 1 | Concept map illustrating key steps, functions, and workflows used in the development of our spatial Fay-Herriot model of forest carbon stocks in

conterminous US. Here, blue cylinders represent data inputs, orange hexagons represent intermediate data products, red ovals represent models, and green

rectangles represent domain estimates.

estimated) and variance v(Ȳd) (estimated directly from FIA data,
assumed to be known).

In Equation (2), xd is a vector of length three comprising an
intercept and two climate predictors for county d, and β is an
associated vector of regression coefficients. Climate predictors
include mean annual temperature and precipitation, and were
obtained from the long-term (30-year) climate normals hosted
in the PRISM climate dataset (PRISM Climate Group, 2010).
Climate normals were distributed on a 800 m2 grid spanning the
CONUS, and we took an average of grid cells within each county
to produce domain-level climate predictors. The collection of
county random effects v = (v1, v2, . . . , vD)

⊤ is assumed to follow
a first order simultaneous autoregressive (SAR) process

v = ρWv+ τ , (3)

where ρ is the autocorrelation parameter defined on the range
(−1, 1), and each element of the vector τ is a normally distributed
error term with mean zero and variance σ 2

v . Finally,W is aD×D
row-standardized county proximity matrix. In words, Equations
(2)–(3) represent the true county-level population means (Zd,
unobserved) as a linear function of our climate predictors and
a first-order spatial process which accounts for all variation in Zd

unexplained by x⊤
d
β (i.e., linear relationship between population

means and climate variables).
Petrucci and Salvati (2006) present an empirical best linear

unbiased predictor (EBLUP) under the Fay-Herriot model with
spatially correlated random effects, and an analytic estimator
of the mean squared error (MSE) of the EBLUP is described
in Singh et al. (2005). We use the sae R package (Molina and
Marhuenda, 2015) to fit the model described in Equations (1)–
(3), and obtain the EBLUP of population means ȲEBLUP

d
and

associated mean squared error MSE(ȲEBLUP
d

) for all domains via
restricted maximum likelihood.

We use the relative standard error (RSE, expressed as a
percentage) as a standardized measure of precision of the
estimators of forest carbon stocks

RSEPSd =
100 [v(Ȳd)]

0.5

Ȳd

, (4)

RSEEBLUPd =
100 [MSE(ȲEBLUP

d
)]0.5

ȲEBLUP
d

. (5)

Here, a lower RSE indicates higher precision. Following Coulston
et al. (2021), we compare the precision of post-stratified (design-
based) and model-based estimators of forest carbon stocks using
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the ratio of their respective standard errors for each domain

SERd =
[MSE(ȲEBLUP

d
)]0.5

[v(Ȳd)]0.5
, (6)

where SERd denotes the ratio of the standard error of the post-
stratified estimator (assumed unbiased) to that of the EBLUP
for domain d (derived from MSE, cannot be assured to be
unbiased). Hence, a SER less than one indicates the EBLUP
yields more precise estimates of forest carbon stocks than the
post-stratified estimator.

Unit-Level Model for Merchantable Wood
Volume Trends
To demonstrate rFIA’s capacity to simplify development of unit-
level small domain estimators of forest variables, we use a
Bayesian multi-level model to estimate multi-decadal trends
in merchantable wood volume in Washington County, Maine.
This process consists of four primary stages: (1) extract survey
design information associated with the most recent “current
volume” inventory in Maine; (2) produce plot-level summaries
of merchantable volume for all FIA plot visits within our
target population; (3) fit a Bayesian multi-level linear model to
estimate plot- and stratum-level trends in mean merchantable
volume, accounting for repeated inventory plot observations;
and (4) summarize regression model coefficients using post-
stratified design weights, yielding a robust model-based estimator
of temporal trends in total merchantable wood volume across
Washington County. Note that in this case study, domains are
defined by spatial, temporal, and biophysical boundaries, i.e.,
by the spatial boundary of Washington County, by individual
years over the period 1999–2025, and by the unknown extent
of timberland (defined below) in the region. Figure 2 provides
a conceptual diagram that illustrates key steps in our general
estimation approach.

FIA records merchantable wood volume of all trees (d.b.h.≥
12.7 cm) on forested inventory plots. The volume() function in
rFIA uses these observations to produce population estimates
and plot-level summaries of merchantable wood volume in
the bole and sawtimber portions of trees. We consider net
merchantable bole volume herein, defined as the volume of wood
in the central stem of trees (d.b.h.≥ 12.7 cm), from a 30.5 cm
stump to a minimum 10.2 cm top diameter, or to where the
central stem breaks into limbs all of which are ≤ 10.2 cm in
diameter (Burrill et al., 2021). Volume loss due to rot and form
defect are deducted. Further, FIA defines timberland as the subset
of forestland that is capable of producing crops of industrial wood
and is not withdrawn from timber utilization by legal statute
or administrative regulation (i.e., it excludes wilderness areas;
Burrill et al., 2021).

We used rFIA to download the Maine subset of the FIA
Database from the FIA DataMart (FIA DataMart, 2021), extract
survey design information (i.e., stratum and population areas)
for the most recent current volume inventory in the State
(2019 inventory), and summarize plot-level net merchantable
bole volume for all plot-visits in the State since the onset of
the annual FIA program (i.e., first plots measured in 1999).

Here, plot-level summaries of merchantable volume are simply
a sum of merchantable volume on all trees within our domain of
interest—timberland in Washington County—at each inventory
plot, expressed on a per-area basis (m3 · ha−1). All plots outside
our domain of interest (e.g., non-forested) receive a value of zero.

In the 2019 inventory, Washington County is split into
three distinct estimation units (split into private and public
ownerships, and inland census water). As FIA’s estimation units
are geographically distinct (i.e., independent populations), we
combine these estimation units into a single target population
representing Washington County. Importantly, FIA’s estimation
units should not be confused with population units in a finite
sampling framework. Estimation units can be seen as minimum
target populations for estimation using FIA’s survey design. These
populations are comprised of many population units, some of
which may be sampled (i.e., plot locations).

We next formulate a multi-level linear model to characterize
plot-, stratum-, and domain-level trends in merchantable
wood volume from our visit-level summaries. By explicitly
acknowledging the nested, hierarchical nature of FIA’s survey
design in our multi-level model, we can derive inference at
multiple scales simultaneously (e.g., estimation of both plot-
and stratum-level trends), partition estimated variance (i.e.,
uncertainty) across scales, and improve parameter estimates by
allowing partial-pooling of information within groups (e.g., when
few observations are available on a plot, estimated trends are
“pulled” toward the stratum-level mean). This is in contrast to
conventional approaches that may perform independent linear
regressions for each plot (i.e., no pooling of information) or
combine data from all plots within a stratum and perform a
single linear regression (i.e., complete pooling of information) to
estimate trends across scales.

Let yhij denote the merchantable bole volume within our
domain of interest that was observed at visit j, on plot i, belonging
to stratum h. Further, let thij denote the year of visit j on plot
i, relative to onset of the annual FIA program (i.e., t = 0, 1, 2
for plots visited in 1999, 2000, 2001, etc.). Our model is then
defined as

yhij = αhi + βhi · thij + ǫhij, (7)

where αhi is a plot-level intercept term describing the mean
merchantable volume at plot i, belonging to stratum h, in 1999
(i.e., onset of the annual FIA program, t = 0), and βhi is
a plot-level slope term describing the average annual change
in mean merchantable volume at plot i, belonging to stratum
h, over the period 1999–2019. The error term ǫhij is assumed
normally-distributed with zero mean and constant variance.

Trends in merchantable volume are expected to vary both
among plots (e.g., growth rates vary by forest type, and some
plots may be harvested) and among strata (e.g., predominately
forested vs. non-forested strata). We model this variability by
treating plot-level parameters (αhi and βhi) as random effects
that follow distributions defined by associated stratum-level
parameters (αh and βh), and similarly treating stratum-level
parameters as random effects that follow distributions defined by
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FIGURE 2 | Concept map illustrating key steps, functions, and workflows used in to estimate multi-decadal trends in merchantable wood volume in Washington

County, Maine. Here, blue cylinders represent data inputs, orange hexagons represent intermediate data products, red ovals represent models, and green rectangles

represent domain estimates.

a set of population-level parameters (α and β):

αhi ∼ normal(αh, σ
2
αhi
), (8)

βhi ∼ normal(βh, σ
2
βhi
), (9)

αh ∼ normal(α, σ 2
αh
), (10)

βh ∼ normal(β , σ 2
βh
), (11)

where σ 2
αhi

and σ 2
βhi

are the stratum-level (among plot) variances

of the regression coefficients, and σ 2
αh

and σ 2
βh

are the associated

population-level (among stratum) variances. In words, Equation
(7) states that plot-level trends (defined by αhi and βhi, for each
plot in i = {1, . . . , 310}) are estimated from data collected at each
visit of an FIA plot (yhij), Equations (8)–(9) state that stratum-
level trends (defined by αh and βh, defined for each stratum in
h = {1, . . . , 6}) represent an “average” of plot-level trends for all
plots within a particular stratum, and Equations (10)–(11) state
that the domain-level trend represents an “average” of overall
population-level trends.

To complete the Bayesian specification of Equation (7) we
assigned prior distributions to all parameters. We choose weakly
informative normal priors for α (i.e., mean 50, standard deviation
250) and β (i.e., mean 0, standard deviation 100), and weakly
informative half student-t priors for all variance terms (i.e., mean
0, scale 100, 3 degrees of freedom; Gelman, 2006). The mean
and standard deviation assigned to priors for α and β differ,
as α represents a point-in-time estimate while β represents an
estimate of average annual change. Hence, assigning a prior
to α with a positive mean reflects our knowledge of the non-
negativity of the target variable (ideally would be addressed
via specification of a non-negative likelihood function, but is
not here due to computational constraints), and assigning a
prior with zero mean to β represents an assumption of no
change in the population over time. Further, as β represents an
annual rate, we expect it’s absolute value to be considerably less
than the population total at a point-in-time (e.g., α), and our
assignment of a lower standard deviation to the prior on β reflects
this belief. Using these priors, we estimated the model using
Hamiltonian Monte Carlo (HMC) algorithms implemented in
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the probabilistic programming language, Stan (Carpenter et al.,
2017), and affiliated R package, brms (Bürkner, 2017). We
simulated three Markov chains, for a total of 4,000 iterations
per chain. We assessed convergence via visual inspection of
traceplots, and ensured proper model specification via posterior
predictive checks.

While the set of parameters estimated in Equations (10)–
(11) (α and β) allow us to derive an estimator of population-
level trends in merchantable volume, such estimators ignore
variation in the size of strata (i.e., which is known from
FIA’s survey design) and thus may be biased toward stratum
that contain a large number of plots (as sampling intensity
may vary across strata, a constant relationship between plot
number and stratum size cannot be assumed). This bias may
be addressed, however, by adjusting population-level parameters
using a product of model- and design-weights (Little, 2004).
Let α∗

h
and β∗

h
denote a set of posterior samples of stratum-

level regression coefficients observed at a single iteration of the
HMC algorithm. We then compute design-adjusted estimates of
population-level regression coefficients, denoted as α̂∗ and β̂∗,
for each set of posterior samples as

α̂∗ = A−1
H∑

h=1

Ah · α
∗
h , (12)

β̂∗ = A−1
H∑

h=1

Ah · β
∗
h , (13)

where Ah is the known area of stratum h, and A is the combined
area of all H strata (i.e., A =

∑H
h=1 Ah, equivalent to the

combined area of estimation units). Here, model-weights are
implicit in estimates of stratum-level parameters, arising from the
hierarchical nature of the model described in Equations (8)–(9).
In contrast, design weights are explicit, with large strata receiving
more weight than small strata. In essence, we take an area-
weighted mean of regression coefficients across strata to estimate
trends at the population-level, thereby explicitly acknowledging
features of FIA’s survey design in the construction of our model-
based estimator of population parameters.

Using our adjusted population-level regression coefficients,
we derive a robust model-based estimator (Little, 2004) of the
population mean and total for our domains of interest, denoted
as Ȳ(t)∗ and Ý(t)∗, respectively:

Ȳ(t)∗ = α̂∗ + β̂∗ · t, (14)

Ý(t)∗ = A · Ȳ∗
t . (15)

Here, variability in Ȳ(t) and Ý(t) across posterior samples
reflects uncertainty in the model-based estimator of the
population parameters. We produce point estimates of
population parameters and their associated variances from
the posterior mean and variance, and obtain 95% interval
estimates from the 2.5 to 97.5% percentiles of the posterior
samples for each population parameter. Similarly, we compute
the relative standard error for each estimator as the ratio of the
posterior standard deviation to the posterior mean.

FIGURE 3 | County-level estimates of mean forest carbon density (tons CO2

equivalent per hectare, tCO2e · ha
−1) produced by the spatial Fay-Herriot

model with climate predictors (top), and associated relative standard error (%;

bottom). Gray shaded counties indicate no forested FIA plots were

encountered in the county during the most recent current volume inventory,

i.e., post-stratified estimator of total forest carbon and associated variance for

the county are equal to zero.

Finally, we evaluate the performance of the model-based
estimator of trends in total merchantable volume by comparing
model-based population estimates to post-stratified annual
estimates for the same population of interest over the period
1999–2019. All post-stratified estimates were computed using
the annual approach implemented in the volume function in
rFIA, and hence represent estimates of individual annual panels.
We have elected to use estimates for annual panels because
our domains are partially defined by individual years. A direct
estimator then, by definition, should draw only from data
collected within a particular year to produce domain estimates.
Importantly, this approach differs from standard FIA estimation
procedures, which pool data from multiple (up to 10) annual
panels within an inventory cycle to generate domain estimates.

RESULTS

Results from design-based and model-based estimators are
often not strictly comparable due to fundamental differences
in their underlying inferential paradigms (see, e.g., Little,
2004). Of particular importance, design-based estimators
can be reasonably assumed unbiased for large samples,
whereas model-based estimators cannot be assured to be
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FIGURE 4 | County-level ratios of the standard error of the spatial Fay-Herriot model-based estimator of mean forest carbon density, relative to that of the

post-stratified estimator. Ratios <1 indicate the model-based approach yields a more precise estimator of forest carbon stocks than the traditional design-based

approach. Gray shaded counties indicate no forested FIA plots were encountered in the county during the most recent current volume inventory, i.e., direct estimator

of total forest carbon and associated variance for the county are equal to zero.

FIGURE 5 | Relative standard error (%) of model-based (i.e., spatial

Fay-Herriot model) and post-stratified estimator estimators of mean forest

carbon density by county, ordered by increasing relative standard error of the

direct estimator.

unbiased (Lohr, 2019), and in the event of model mis-
specification, adverse effects on inference can be substantial
(Little, 2004). Even among model-based estimators, frequentist
and Bayesian inferences yield different interpretation in
some cases (see, e.g., Gelman et al., 2004). Therefore,
comparing results derived from these different paradigms,
presented in subsequent sections, should be received with
an understanding about the respective modes of inference.
For example, in some cases we compare design-based

estimate derived confidence intervals to Bayesian model-
based credible intervals. While it can be convincingly argued
such comparisons are not appropriate, we present comparative
results to explore general patterns in estimates and highlight
estimators’ qualities.

County-Level Forest Carbon Stocks
Our results indicate the EBLUP derived from the spatial Fay-
Herriot model (described in Equations 1–3) offers considerable
improvements in precision relative to the post-stratified
estimator of county-level forest carbon stocks across much of
the CONUS. We present model-based estimates of mean forest
carbon density, along with associated estimates of precision,
in Figure 3. Similarly, we map the spatial distribution of
the SER in Figure 4. Finally, we illustrate improvements in
relative precision offered by the model-based estimator (i.e.,
measured by the relative standard error), along a gradient
of relative precision in the post-stratified estimator, in
Figure 5.

The spatial Fay-Herriot model yields spatially smooth
estimates of county-level forest carbon stocks, that generally
reflects the distribution of forestland across the CONUS
(Figure 3). The largest estimated forest carbon densities are
in the coastal Pacific Northwest, Northern Lake States, and
Appalachian regions. In contrast, the smallest estimated forest
carbon densities appear in the Southwest, Great Basin, and
Northern Plains. We show the relative precision of the model-
based estimator generally decreases with estimated mean forest
carbon density (Figure 3; lower precision in counties with
low carbon density relative to high carbon density) and with
county size (Figure 5; lower precision in small counties relative
to large counties). Notably, we show the relative precision
of the model-based estimator was generally smallest in the
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FIGURE 6 | Annual model-based and design-based estimates of total merchantable wood volume (million m3) on timberland in Washington County, Maine.

Model-based point estimates are derived from the posterior median of Hamiltonian Monte Carlo (HMC) samples of parameters presented in Equations (14)–(15), and

are represented by the solid, dark blue line. Similarly, model-based interval estimates (i.e., Bayesian 95% credible intervals) are derived from the 2.5 to 97.5% quantiles

of HMC samples, and are represented by dashed, dark blue lines. Further, realizations of parameters presented in Equations (14)–(15) from each HMC sample are

represented as thin, semi-transparent blue lines. Hence the posterior predictive distribution of the model-based estimator of total merchantable wood volume can be

inferred from the relative density of thin blue lines in a given region of the graph (i.e., higher density of lines indicates higher posterior probability). Annual, design-based

point estimates are represented by white circles, and are connected by a solid black line. Design-based interval estimates (95% confidence intervals) associated with

each annual point estimate are presented as vertical gray bars. All design-based estimates were produced using the annual, post-stratified estimation approach

implemented in rFIA (Stanke et al., 2020).

Northern Plains and Southern Lake States regions, likely arising
from a combination of small county sizes and relatively low
forestland area.

We show the model-based estimator of forest carbon stocks
offered the greatest improvements in precision in the coastal
Pacific Northwest and eastern US, relative to the post-stratified
estimator (Figure 4). In these regions, the SER commonly fell
below 0.5, indicating the standard error of the model-based
estimator was less than half that of the post-stratified estimator
for a given county. Across the Interior West, in contrast, we
show the model-based estimator rarely improved precision by
more than 10% (i.e., SER commonly exceeded 0.9). Further,
results presented in Figure 5 indicate the model-based estimator
generally offered consistent improvements in relative precision
over the post-stratified estimator, regardless of the absolute
magnitude of the post-stratified estimator’s relative precision.

Trends in Merchantable Wood Volume in
Washington County
Our results indicate the model-based estimator of total
merchantable wood volume in Washington County, Maine
(approach described in Equations 7–15) offers substantial
improvements in precision relative to the post-stratified
estimator (Figures 6, 7). Specifically, we show 95% credible
intervals associated with model-based point estimates are
consistently narrower than 95% confidence intervals associated
with the post-stratified estimator (Figure 6). On average over the
period 1999–2019, the relative standard error of the model-based
estimator was 55.9% lower than that of the post-stratified
estimator (ranging from 48.9 to 62.4% lower across all years;
Figure 7), indicating the model-based estimator is more than
twice as precise as the post-stratified estimator for our domain
of interest. Further, consistent alignment of post-stratified and
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FIGURE 7 | Relative standard error (%) of model-based and post-stratified

estimators of trends total merchantable wood volume on timberland in

Washington County, Maine.

model-based point estimates suggests the model-based estimator
is generally unbiased for the domain of interest (Figure 6).

Both approaches indicate that total merchantable wood
volume in Washington County has increased considerably
over the period 1999–2019 (Figure 6). Notably however, the
model-based approach yields a smooth, linear trend in total
merchantable volume. The post-stratified estimator, in contrast,
exhibits large inter-annual variability (±5–10% per year, arising
from sampling) and pronounced cyclical patterns over the same
period (arising from remeasurement of annual panels). Further,
the model-based estimator offers an intuitive approach to
characterize the magnitude, direction, and statistical significance
of temporal trends in our target variable—a feature the
post-stratified estimator lacks (absent estimating change from
remeasured plots). Specifically, the posterior distribution of the
adjusted population-level regression coefficient, β̂ , yields an
estimator of average annual change in total merchantable wood
volume across our domain of interest. The posterior median
of β̂ was 1,293,900 m3 · yr−1 (95% credible interval: 588,000–
1,989,000 m3 · yr−1), indicating a relatively rapid increase in total
merchantable wood volume over the last two decades. Further,
we show the probability that β̂ exceeds 0 is > 0.999, indicating
very high certainty in the observed upward trend.

Finally, the model-based approach offers the ability to
forecast changes in our variable of interest, along with
associated estimates of uncertainty. We highlight this unique
capacity in Figures 6, 7 by predicting total merchantable wood
volume, along with estimates of relative precision, over the
period 2020–2025—years for which no FIA data has yet been
collected/released for our target population. By the year 2025,
we estimate, with 95% probability, that total merchantable wood
volume on timberland in Washington County, Maine will range
between 124.4 and 154.7 m3.

DISCUSSION

The FIA program operates the largest network of permanent
forest inventory plots in the world, making it well suited to
provide critical information on US forests over large geographic
and temporal domains (e.g., periodic, state-level estimates).
However, the program has experienced increased demand for
estimates of forest variables for smaller spatial and temporal
domains than traditional sample-based estimation approaches
can deliver. Providing such estimates without additional
investments in field sampling requires adopting alternative
estimation approaches. Here, we presented two case studies
that demonstrated some aspects of rFIA’s potential to simplify
application of SAE to data collected by the FIA program, and thus
accelerate adoption of such techniques by FIA data users.

First, we estimate contemporary county-level forest carbon
stocks across the CONUS using a domain-level spatial Fay-
Herriot model (Figure 3), and show the model-based approach
offers considerable gains in precision across the predominately
forested regions of the CONUS (Figure 4). Previous efforts have
applied spatial Fay-Herriot models to FIA data to improve
precision of estimators of forest density variables (Goerndt et al.,
2011), private landowner characteristics (Ver Planck et al., 2017),
and forestland removals (Coulston et al., 2021). Domain-level
models are particularly useful when inventory plot locations are
unknown or measured imperfectly, as spatial auxiliary data need
not be associated with plot locations, but rather with domains
(Rao and Molina, 2015; Mauro et al., 2017). That is, spatial
predictors can be used in domain-level models without requiring
the release of actual FIA plot locations. We provide all code
and data used to develop the domain-level model presented
herein in Appendix A, on GitHub (https://github.com/hunter-
stanke/FGC_rFIA_SAE) and at our official website (https://rfia.
netlify.app). Our procedures can be easily adapted for use with
alternative target variables, spatial regions, and/or auxiliary data,
and we encourage interested users to adapt our code for use in
their own applications of domain-level SAE models.

Second, we follow the approach presented in Little (2004)
to develop a temporally-explicit unit-level estimator of multi-
decadal trends in merchantable wood volume in Washington
County, Maine, using a Bayesian multi-level model. We show
the model-based approach offered substantial improvements in
precision of annual estimates, relative to the traditional, post-
stratified approach (Figures 6, 7). Further, we show the model-
based estimator offers an intuitive approach to characterizing
the magnitude, direction, and statistical significance of temporal
trends, and allows predictions of the target variable to bemade for
unobserved domains, with associated uncertainty (e.g., forecast
change). Unit-level SAE models have been widely applied to FIA
data in recent decades (Ohmann and Gregory, 2002; Goerndt
et al., 2011; McRoberts et al., 2017; Babcock et al., 2018), and
frequently draw from remotely-sensed auxiliary variables to
support domain estimation. However, extending the approach
presented herein to incorporate spatial auxiliary data will present
challenges for most users of FIA data, as neither the true
locations of inventory plots, nor the spatial boundaries of strata
used for post-stratification are available in the public version of

Frontiers in Forests and Global Change | www.frontiersin.org 11 April 2022 | Volume 5 | Article 745874

https://github.com/hunter-stanke/FGC_rFIA_SAE
https://github.com/hunter-stanke/FGC_rFIA_SAE
https://rfia.netlify.app
https://rfia.netlify.app
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Stanke et al. Small Area Estimation With rFIA

the FIA Database. Nevertheless, the unit-level model presented
can be easily adapted for applications involving alternative
populations of interest, and might be useful in the detection
and characterization of long-term change in forest ecosystems.
Further, such models can be used to characterize the status and
change in forest variables at spatial and/or temporal domains that
are not currently possible using sample-based approaches (e.g.,
stand-level estimates).

Role of rFIA in Accelerating the Adoption
of SAE Techniques for FIA Data
We posit that rFIA has the potential to simplify the application of
model-based SAE techniques to FIA data in three key ways. First,
rFIA implements standard, periodic post-stratified estimators—
consistent with the estimators implemented by FIA’s popular
online estimation tool, EVALIDator (Miles, 2021)—within highly
flexible, user-defined domains. These direct estimators, along
with their associated variances, form the basis for construction
of domain-level estimators, as demonstrated by our spatial Fay-
Herriot model (Fay and Herriot, 1979; Petrucci and Salvati, 2006;
Pratesi and Salvati, 2008) of county-level forest carbon stocks.
Second, rFIA implements post-stratified estimators for individual
annual panels, offering increased temporal specificity over
standard periodic estimation approaches (i.e., the temporally-
indifferent estimator), and supporting the development of
small area estimators that require direct annual estimates
of forest variables at aggregate scales. Examples of such
temporally-explicit, domain-level estimators include mixed-
estimators (Van Deusen, 1999) and the spatial-temporal Fay-
Herriot model (Marhuenda et al., 2013). Finally, rFIA allows
summaries of forest variables to be returned for individual
response units (i.e., plot-level) and provides utility functions for
extracting design information relevant to particular inventory
cycles (e.g., stratum assignments and weights). Together, these
data can be used to construct a wide variety of unit-level
estimators that acknowledge features of FIA’s survey design, as
demonstrated in our multi-level model of trends in merchantable
wood volume in Washington County, Maine.

Adoption of SAE methods by FIA data users (particularly
new users) is limited more by FIA’s complex data structure and
survey design than by the availability of tools that implement
SAE methods. Thus, we argue the primary benefit of rFIA in
accelerating SAE method adoption is its ability to simplify the
process of summarizing and formatting FIA data to serve as input
to a wide variety of SAE models. There is a large suite of existing,
open-source tools that provide generalized implementations of
many domain-level and unit-level SAE models. For example,
the sae R package (Molina and Marhuenda, 2015) is specifically
designed to implement domain-level SAE models, and we draw
from this functionality to develop the domain-level model of

forest carbon stocks presented herein. Our intention is not to
duplicate efforts of others by implementing common SAEmodels
natively in rFIA, but rather to reduce barriers to the application
of such SAE models to FIA data that arise from the complexity of
FIA’s data structure and sampling design.

Future Extensions of rFIA
Current efforts to extend rFIA include the implementation
of a suite of model-based time-series estimators that aim to
improve the precision of annual estimates of forest variables,
thereby increasing the relevance of FIA data for change detection,
characterization, and attribution. Specifically, we aim to provide
an intuitive implementation of Van Deusen’s mixed-estimator
(Van Deusen, 1999), which was recently shown by Hou et al.
(2021) to offer considerable improvements in the precision of
annual FIA-based forest land area estimates, at both the state-
and county-levels. Further, we aim to provide an alternative
Bayesian estimator of annual trends in forest variables based
on a measurement error model (e.g., similar to Bayesian meta-
analysis; Sutton and Abrams, 2001). Notably, both approaches
effectively smooth annual, post-stratified estimates of forest
variables, and hence are compatible with FIA’s existing survey
design and database structure.
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