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National forest inventories (NFI), such as the one conducted by the United States
Forest Service Forest Inventory and Analysis (FIA) program, provide valuable information
regarding the status of forests at regional to national scales. However, forest managers
often need information at stand to landscape scales. Given various small area estimation
(SAE) approaches, including design-based and model-based estimation, it may not be
clear which is most appropriate for the user’s application. In this study, our objective
was to assess the uncertainty in tree aboveground live carbon (ALC) estimates for
differing modes of SAE across multiple scales to provide guidance for appropriate
scales of application. We calculated means and variances for ALC with design-based
(Horvitz-Thompson), model-assisted (generalized regression), and model-based (k-
nearest neighbor synthetic) estimators for estimation units over a range of sizes for
30 subregions in California, United States. For larger areas (10,000–64,800 ha), relative
efficiencies greater than one indicated that the generalized regression estimator (GREG)
generated estimates with less error than the Horvitz-Thompson estimator (HT), while
the bias-adjusted synthetic estimator relative efficiency compared to either the Horvitz-
Thompson or model-assisted estimators exceeded one for areas 25,000 ha and smaller.
Variance estimates from the unadjusted synthetic estimator underestimated the total
error, because the estimator ignores bias and thus only addresses model variance.
Across scales (250–64,800 ha, 0–27 plots per area of interest), 93% of the variation
in the synthetic estimator’s relative standard error was explained by forest area, forest
dominance, and regional variation in forest landscapes. Our results support model-
assisted estimation use except for small areas where few plots (<10 in the current study)
are available for generating estimates in spite of biases in estimates. However, users
should exercise caution when interpreting model-based estimates of error as they may
not account for model mis-specification, and thus induced bias. This research explored
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multiple scales of application for SAE procedures applied to NFI data regarding carbon
pools, potentially supporting a multi-scale approach to forest monitoring. Our results
guides users in developing defensible estimates of carbon pools, particularly as it relates
to the limits of inference at a variety of spatial scales.

Keywords: aboveground live carbon, California (USA), estimation, forest, forest inventory and analysis, national
forest inventory (NFI), small area estimation, variance

INTRODUCTION

National forest inventories (NFI), such as the one conducted
by the USDA Forest Service Forest Inventory and Analysis
(FIA) program, provide valuable information regarding the
status of forests at regional to national scales. For example,
FIA data are critical to generating estimates of carbon stocks
and fluxes and developing and testing ecosystem models in
support of planning and reporting of carbon stocks and
dynamics in the United States (Tinkham et al., 2018). Such
data may also be essential for regional assessments, such as
forest resource reports describing status and trends in forest
attributes like forest area, tree species composition, stand
structure, and forest carbon pools (e.g., Brodie and Palmer,
2020). NFI data can also be integrated with remote sensing to
generate maps of forest attributes as a basis for improving the
quality and efficiency of estimates (McRoberts and Tomppo,
2007; Lister et al., 2020). For example, USDA Forest Service
monitoring of status and trends in late-successional and old-
growth forests in Oregon, Washington, and California relies
both on design-based estimates as well as predictions generated
by integrating FIA data with Landsat satellite imagery using
nearest neighbor imputation (Ohmann et al., 2012; Davis et al.,
2015). Thus, the national consistency in NFI data generates
efficiencies for assessment, planning, and monitoring (sensu
Wurtzebach et al., 2019), but the utility of NFIs for generating
reliable forest attribute estimates at stand to landscape scales
remains challenging.

While NFI is vital to supporting strategic planning, forest
managers often need information at stand to landscape scales
in support of tactical decision making. For example, the USDA
Forest Service’s 2012 planning rule increases the emphasis on
adaptive planning, a recognition of the central role of broad-
scale monitoring, and the consideration of climate change,
landscape-scale restoration, ecosystem services, and other values
(Nie, 2018). This implies an increasing emphasis for National
Forest planning on forest conditions from stand scales (10–
100s of hectares) to landscape scales (1,000–100,000s of
hectares). NFIs are not always designed to answer questions
at these scales (e.g., one FIA plot per 2,428 ha) and the
minimum area for estimation used by some authors can be
relatively coarse (e.g., roughly 27 plots over 64,800 ha EMAP
hexagons; Woodall et al., 2006; Menlove and Healey, 2020),
impractical for guiding forest management decisions at stand-
and landscape-scales.

Many estimation procedures utilizing NFI data are available
to users interested in quantifying forest conditions over smaller
areas of interest, referred to here as small area estimation (SAE)

(Rao and Molina, 2015), though they may vary in terms of
both variance and bias (Goerndt et al., 2012). It is important to
note that SAE does not necessarily refer to a specific geographic
scale of inference, but rather situations under which few if any
plots are available for direct estimation based on available forest
inventory data (Rao and Molina, 2015). At finer scales relevant
to some types of forest management and planning questions,
auxiliary data can be integrated with plot data to improve
estimation or make it more flexible. Auxiliary data can be used to
improve estimator efficiency through model-assisted estimation
and models can be used to relate plot data to auxiliary data upon
which we can base the development of forest attribute maps
or hybrid approaches (Ståhl et al., 2016). From design-based to
model-based inference, there is a tradeoff between reliance on
probability samples vs. models as the foundation of inference,
though selection of a specific estimation procedure depends on
the objectives of the study.

Design-based methods provide unbiased estimators for users
and are appropriate at relatively broad spatial scales where
often 100s or 1,000s of plots are available. For example, the
Horvitz-Thompson estimator (HT) (Horvitz and Thompson,
1952) has been commonly used for estimation of forest
attribute means and variances with forest inventory data as
it is simple to compute and design unbiased (Williams, 2001,
Bechtold and Patterson(eds), 2005, McConville et al., 2020,
Stanke et al., 2020). However, strong relationships between
auxiliary data and forest attributes of interest may lead
users to explore other estimation procedures. Model-assisted
estimation, such as generalized regression estimators (GREGs)
(Deville and Särndal, 1992), leverages models to support design-
based inference, thus providing unbiased estimators that are
appropriate for smaller scales than direct estimators based
on existing inventory data can support (Goerndt et al., 2012;
McConville et al., 2020). For example, simulation results
indicated that GREGs are more efficient than Horvitz-Thompson
estimators as they leverage the auxiliary information to reduce
uncertainties (McConville et al., 2020). Synthetic estimation
relies on a model alone and, using model-based inference, can
thus provide estimates over areas with few or no plots. But
bias in synthetic estimators depends on a variety of factors,
including data used for fitting models, vegetation characteristics,
model assumptions, and other sources of the error (McRoberts,
2012; Chen et al., 2016). For example, the development of a
synthetic k-nearest neighbor estimator for variance over areas
of interest provides one avenue with which to generate mean
and variance estimates for small areas with insufficient plot
support to leverage design-based and model-assisted methods
(McRoberts et al., 2007). Therefore, while many estimation
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methods for forest attributes have been used, it may not
always be clear to users which is most appropriate at a given
scale of inference.

While the emergence of predictive mapping of forest
attributes based on NFI data or other plot networks and
remote sensing (e.g., Ohmann and Gregory, 2002; Tomppo
et al., 2008; Saatchi et al., 2011; Beaudoin et al., 2014; Du
et al., 2014) may provide information at fine scales (e.g.,
30-m pixels for maps based on Landsat satellite imagery),
simply summing pixels to generate aggregate means or totals
does not constitute a small area estimate as there is no
characterization of uncertainty. The development of CONUS-
level nearest neighbor imputed maps of forest attributes based
on FIA plot data, climate, and multispectral remote sensing (e.g.,
Wilson et al., 2012, 2013) motivates a need to move beyond
simply aggregating pixels to compare model-based estimation
for k-nearest neighbors (kNN) techniques (e.g., McRoberts
et al., 2007; McRoberts, 2012) with model-assisted and design-
based estimation across scales and diverse forest conditions
(sensu Ståhl et al., 2016). Such an assessment is necessary to
identify whether there are clear patterns in the performance
and comparability of estimation procedures as a function of
estimation unit area and forest heterogeneity, which can both
influence the quality of kNN estimates when aggregated (Bell
et al., 2018). Information regarding the biophysical drivers
of uncertainty could inform how users interact with the
data, by providing a priori information on the appropriate
scale of inference given their precision needs, the size of
the area of interest, and the biophysical characteristics of
the landscape being examined. It could also guide additional
plot sampling or improvements to modeling approaches to
address forest types where forest attribute estimation is
particularly challenging.

Due to substantial uncertainties inherent in the estimation
of carbon stocks and fluxes (Glenn et al., 2015) and the
challenges of monitoring forest attributes for relatively small
areas, there is a need to understand the appropriate use of
differing estimation methods across scales. The foundation of
that understanding should rely on assessments of variation in
estimate uncertainty, both in terms of variance and bias, as the
area of an estimation unit changes. In this study, our objective
was to assess how tree live aboveground carbon (ALC; Mg
ha−1) estimates (mean and variance) differed as a function
of scale (250–64,800 ha) and estimation method (design-
based, model-assisted, and synthetic estimators). Specifically,
we ask what is the size of a small area, and thus the
size of the associated forest inventory sample, for which
a model-based, synthetic kNN estimator (SK) would be
selected in favor of either the Horvitz-Thompson or GREGs?
Using this information, we aim to provide guidance to
users for the appropriate scales of application for different
estimation methods and a quantification of the error associated
with different procedures. We also propose that a unified
framework, which leverages multiple estimation procedures
depending on the needs of the user, would support simple and
transparent estimation, thus expanding the potential population
of users of NFI data.

MATERIALS AND METHODS

Study Region
For this study, we focus on the Sierra Nevada Mountains
Ecoregion (M261; Cleland et al., 1997, 2007), a 179,376
km2 region located in California, United States (Figure 1).
Forest landscapes in M261 are diverse, ranging from low-
elevation woodlands to montane mixed conifer forests to high
elevation subalpine forests. Therefore, forest landscapes include
a variety of forest types characterized by different tree species,
forest heterogeneity, and stand structures. As a result, forest
carbon pools themselves are spatially heterogeneous, providing
a useful area for assessing differing estimation procedures across
various conditions.

FIGURE 1 | Study region map highlighting (A) nested hexagonal areas of
interest, (B) 1,000,000-ha subregions within M261, and (C) an inset showing
the study region location in the United States.
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In addition to the environmental and ecological heterogeneity
in forest landscapes within M261, tracking carbon emissions
and sequestration has been of major interest in California,
United States. Federal, state, and municipal governments leverage
numerous mitigation strategies for emissions reductions and
sequestration improvements, such as California’s forest offset
program (Anderson et al., 2017; Cameron et al., 2017). These
types of strategies require reliable information on forest carbon
pools at a variety of scales, from all California forest lands down
to individual property owners or management units. This study
region (M261; Figure 1) and others would benefit greatly from an
improved capacity to produce carbon pool estimates at a variety
of scales as well as guidance with respect to appropriate use of
NFI data provided by FIA.

Forest Inventory and Analysis Data
The FIA program is the NFI for the United States and provides
a field-based assessment of forest conditions on a uniform
triangular grid represented by a hexagonal lattice (one plot per
2,428-ha hexagon) across all lands regardless of ownership (i.e.,
non-private and private lands) in the United States (Bechtold and
Patterson(eds), 2005). Through its design, the FIA plot network
is well-suited for analyzing and quantifying forest conditions
(e.g., volume, biomass, and carbon) at varying scales over time
as the data provides a basis for unbiased estimates of forest
conditions in a consistent and timely fashion (Glenn et al., 2015).
As determined by aerial photography and other remote sensing,
FIA locates a single plot in each 2,428-ha hexagon—either by
random or collocated with a preexisting plot (Bechtold and
Patterson(eds), 2005), but measures only those plots located on
forestlands. On forestlands (i.e., land at least 0.4 ha in size that
is at least 10% stocked with trees or formerly having such tree
cover and not currently developed for a non-forest land use), field
crews visit permanent ground plots and measure a suite of forest
and tree variables, including tree species and diameter at breast
height (dbh; 1.37 m). Plots consist four sets of nested subplots in
a triangular arrangement, with trees 2.5–12.7 cm dbh measured
on 2.07-m fixed radius subplots within larger 7.32-m fixed radius
subplots used for trees at least 12.7 cm dbh. Therefore, field
data are, at their most basic, measurements of tree species, size,
and mortality status with associated scaling factors depending on
size of the tree and the plot design described above. Additional
measurements on FIA plots are plentiful (e.g., seedling counts,
tree mortality agents, etc.), but are not used in the current study
and are not discussed further.

Individual tree measurements were used to calculate
ecosystem- or stand-level statistics, such as tree density, tree
basal area, and species diversity. For this study, plot-level ALC
was estimated using these tree diameter and species data by
applying the Component Ratio Method (Jenkins et al., 2003;
Woodall et al., 2011). We used tree measurements from 2014
to 2018 to represent the most recent forest conditions in the
study area. While ALC estimates are themselves based on models
and thus include error (Clough et al., 2016), we treat these as
observations for the purposes of SAE in this study (sensu Wilson
et al., 2013).

Auxiliary Data
To support the generation of raster maps of imputed plots for the
study area by assigning a set of k plots to pixels based on their
proximity in feature space (e.g., Ohmann and Gregory, 2002), we
identified and developed a suite of auxiliary variables (Figure 2).
Predictive features, or auxiliary variables, were derived from
a digital elevation model (DEM), climate data, and satellite
imagery, then resampled to 30-m pixel resolution. Elevation,
along with its derivatives, from the 1 arc-second DEM of the
National Elevation Dataset (Gesch et al., 2002) formed the set
of topographic features used. Topographic derivatives included
slope, compound topographic index (Beven and Kirkby, 1979),
and potential annual direct incident radiation (McCune and
Keon, 2002). Climate variables, derived from the Daymet Version
3 (Thornton et al., 1997, 2016) 1-km gridded monthly summaries,
included mean annual growing degree days and mean annual
precipitation over the nearly 40-year record. The reflectance
bands for each Landsat 8 OLI collection 1 scene collected
during 2014–2018 were transformed to the Tasseled Cap (TC)
components of brightness, greenness, and wetness (Kauth and
Thomas, 1976; Baig et al., 2014). Harmonic regression, based on
a 3rd-order Fourier series (Wilson et al., 2018), was employed to
characterize the mean shape of the spectro-temporal profile for
each pixel and TC component over the 5-year period. A 3rd-
order Fourier series requires 7 model coefficients: one for the
fundamental frequency, as well as a pair for each of the three
harmonics (i.e., comprised of a sine and cosine term). Given that
a series was fitted to each of the three TC profiles, a total of 21
model coefficients were estimated.

Generating Tree Aboveground Live
Carbon Estimates
Central to this manuscript is the comparison of multiple
estimation techniques for areas of different sizes in terms of
ALC mean and variance estimates. For this study, we examine
the Horvitz-Thompson estimator as an example of traditional
design-based estimation, GREG as an example of model-assisted
estimation, and a synthetic estimator based on the k-nearest
neighbors algorithm as an example of model-based estimation.

Horvitz-Thompson Estimator
Horvitz and Thompson (1952) developed an estimator that
provides a general framework for direct estimation under
multiple sample designs, whether or not auxiliary variables
are available. The Horvitz-Thompson (HT) estimator for the
population total Y is:

Ŷht = 6 Iidiyi

where, for the ith unit in a population of size N, Ii is a random
variable that indicates whether or not the unit is in the sample, di
is the unit’s design weight, and yi is the observation of the variable
of interest for the unit. The design weight of a unit is the inverse
of its probability of inclusion in the sample, πi, or di = π−i

1.
The inclusion probabilities are determined by the sample design,
which defines whether or not the sample units are to be drawn,
for example, from a simple random sample (SRS), systematic
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FIGURE 2 | Summarization of the source and generation of predictor (auxiliary) and response (forest inventory) variables used in the development of kNN mapping of
ALC.

sample, or cluster sample. Yates and Grundy (1953) developed an
estimator of the variance of the HT estimator,

Var̂(Ŷht) = 66(πiπj − πij)/πij(yi/π + yj/πj)
2

where πij is the joint inclusion probability of units i and j.

Generalized Regression Estimator
One approach to estimation when auxiliary variables are available
is to use a model-assisted estimator. One example is known as
the calibration estimator, or the generalized regression (GREG)
estimator (Deville and Särndal, 1992). The GREG estimator is
a generalization of a class of estimators, such as the ratio and
regression estimators, that use values of one or more auxiliary
variables for all population units with an assisting model to
calibrate the direct estimator. It still uses the design weights and
is therefore fundamentally design-based. As described in Rao
(2011), suppose that the parametric superpopulation model that
describes the relationship between unit-level observations of the
variable of interest and the auxiliary variables is,

yi = xi
′ β + εi

where β are the model parameters, xi are the auxiliary data, and εi
is the model error. In the current study, we used the predictions

from a non-parametric kNN model to replace the π ′iβ term (see
section Synthetic k-Nearest Neighbors Estimator). The errors
are assumed to be uncorrelated with mean of zero and variance
proportional to a known constant qi.

The GREG estimator of the population total Y is given by,

Ŷgreg = (Ŷht − β ′X̂) + β ′X

where X are the known population totals of the auxiliary variables
and Ŷ and X̂ are the corresponding estimated values for the
variable of interest and auxiliary variables using the sampled units
and their design weights. The variance is calculated as the Yates-
Grundy variance, based on the model residuals. The working
model used with the GREG estimator does not need to be a
parametric linear model, and could instead be non-linear or, as
in our study using the kNN algorithm, a non-parametric model.

Synthetic k-Nearest Neighbors Estimator
The model used as the foundation of our synthetic estimator and
required as the auxiliary data for our GREG estimator (the β ′X
term) was based on the kNN algorithm (Fix and Hodges, Jr.,
1952). The kNN imputation approach has been used extensively
as a flexible, multivariate, and non-parametric method for forest
attribute mapping (e.g., Ohmann and Gregory, 2002; Tomppo
et al., 2008; Eskelson et al., 2009; McRoberts et al., 2011;
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Wilson et al., 2013). Here, we briefly describe the development of
raster maps of imputed plots based on kNN as well as the SK
used for generating areal estimates for the mean and variance
of forest attributes. For mapping ALC in our study area, the
kNN algorithm was used to impute ALC data to individual pixels
where no tree measurements were taken based on their similarity
to forest inventory plots with relation to some set of predictors
(e.g., Figure 3). As the non-parametric kNN model was fit using
the FIA sample for the entire study region M261 and then used to
make predictions for all population units within several domains
of the study region, it forms the basis for a synthetic estimate of
ALC. While the kNN estimator is likely nearly, but not exactly,
unbiased across all units in the sample (sensu McRoberts et al.,
2007; Magnussen et al., 2009), there is no guarantee this holds for
a subsample, or any smaller domains.

An ecological ordination of tree species found in the ecological
province was conducted using a canonical correspondence
analysis (CCA) model (ter Braak, 1986). The set of 27 predictor
variables described above used were the four topographic
variables (slope, compound topographic index, and potential
annual direct radiation), two climate variables, and 21 Fourier
series coefficients associated with each pixel at the location of
the plots measured during 2014–2018. The response variables
used were live tree aboveground biomass per hectare by species
for trees located on the central 7.32-m fixed radius subplot of
the plots (Figure 2), to better match the pixel resolution of the
predictor variables. There were 2,251 plots with live trees on
forest conditions used to fit the CCA model.

The fitted CCA model coefficients formed the feature space for
measuring proximity between each pixel and the set of measured
plots (Figure 3; Ohmann and Gregory, 2002). All 27 orthogonal
canonical variates of the CCA model were used with the kNN
algorithm. Because the CCA model generates orthogonal axes,
this approach avoids multicollinearity when assigning nearest

FIGURE 3 | Conceptual diagram highlighting the kNN imputation process for
a simple case with two metrics (CCA axes) defining the feature space. After
the CCA modeling (solid circles) are located in the feature space, then a pixel
to be imputed (open circle) is placed in that space based on the auxiliary data
(geospatial predictors). Distances from the focal pixel to all plots in the feature
space are calculated and the k nearest neighbors are identified by minimizing
those distances (indicated by dashed lines). Each of those nearest neighbors
was imputed back to the pixel to populate a multiband raster, with the mean
ALC for neighbors across bands being the predicted ALC for the pixel.

neighbors based on the resulting feature space. There were 3,631
plot locations with a complete record of both predictor and
response variables used in the imputation for M261, with non-
forest conditions assigned a value of 0 for forest condition and
tree variables. The value of k used for kNN regression, with
predicted values being the unweighted mean of the k-nearest
plots, excluding the nearest plot using the Manhattan distance
metric, was selected to minimize mean squared error of predicted
total live tree aboveground biomass. The optimal value of k for
province M261 was 28.

To generate model-based mean and variance estimates for
ALC based on the maps of nearest neighbors, we applied an
areal estimation technique for kNN imputation (McRoberts et al.,
2007; McRoberts, 2012), and our SK. For an AOI, the mean ALC
was calculated as the mean pixel-level ALC across all forested
pixels and the 28 nearest neighbors for each pixel, excluding
the nearest plot. Variance estimation incorporated pixel-level
variance in ALC across the 28 nearest neighbors as well as
covariance between pixel pairs within an AOI. The covariance
between any two pixels depends on the standard deviation in ALC
across neighbors for each pixel and the number of plots shared
by the two pixels within the list of the k = 28 nearest neighbors.
Thus, the SK estimator generates model-based mean and variance
estimates for ALC, or any other forest attribute of interest for
which plot data are available.

Because imputed maps were based on plots that were visited
in the field (i.e., forestlands) and we wished to avoid extrapolating
beyond the scope of our input data, we used a map of forest type
groups (Wilson, 2021) to mask out non-forest lands. As a result,
we assume that ALC = 0 for non-forest lands. We also apply
the SK estimator only for forestlands, meaning that mean and
variance in ALC is for forestlands only. To generate mean ALC
for all lands, we multiplied the mean ALC from the SK estimator
with the proportion of pixels within an AOI that were forested.
Because we assume that ALC = 0 for non-forest lands and is thus
not a random variable, variance in ALC for all lands is equal to
variance in ALC for forestlands.

For this study, we implemented the SK estimator using R and
ArcGIS Pro. Our implementation of the SK estimator utilized an
R script embedded within an ArcGIS Pro Model Builder Toolbox.
Manipulation of spatial data was handled within ArcGIS Pro 2.6
and mean and variance calculations were processed in R (4.0.2;
R Core Team, 2020) within ArcGIS Pro using the arcgisbindings
package (version 1.0.1.244; Esri., 2021). ArcGIS Pro required
Spatial Analyst and the following R packages: doParallel (version
1.0.16; Microsoft Corporation, and Weston, 2020), raster (version
3.4-5; Hijmans, 2020), rgdal (version 1.5-23; Bivand et al., 2021),
rgeos (version 0.5-5; Bivand and Rundel, 2020), and snow
(version 0.4-3; Tierney et al., 2018). To accelerate processing
time, we adopted a subsampling approach for pixels within an
AOI, avoiding the need to assess all pairwise comparisons of
individual pixels (McRoberts et al., 2007). An example R script
upon which our ArcGIS Pro workflow is based can be found in
Supplementary Material 1.

To determine whether variance estimates with the
subsampling approach converge on the estimate based on
all pixels (i.e., stability of variance estimator), we generated five
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replicates for each of the 30 subregions of randomly selected
pixels for sample proportions from 0.01 to 0.30 and AOI areas
of 1,000, 5,000, and 10,000 ha. Initial testing on a high-end
workstation indicated that computation time scaled with the
square of the number of pixels. Given that constraint, we
limited the generation of replicates to intervals of 0.01 for
sample proportion between 0.01 and 0.15, but also generated
replicates at sample proportions of 0.20, 0.25, and 0.30. The
upper value of 0.30 was selected as it was roughly double the
recommendation from a previous study (McRoberts et al., 2007).
Thus, we attempted to balance reasonable computation time
with appropriate coverage of lesser sample proportions which
we assumed would be less stable. We then estimated variance
for each replicate, sample proportion, and area combination
and calculated the percent difference between that estimate and
the estimate derived from the one generated when using all
pixels in an AOI.

To identify the proportion of pixels that must be subsampled
to generate SK variance estimates that converge on the estimate
using all pixels within an AOI (i.e., a stable variance estimate),
we used ordinary least squares regression (lm function; R Core
Team, 2020) to fit a regression model for the absolute value
of the proportional difference between sample and full variance
SK estimates as a function of forest area within each AOI and
proportion of pixels in the AOI sampled to generate variance
estimates. Given that we were generating ALC estimates for
forest lands, rather than all lands, we used forest area instead
of AOI area to reflect the total number of pixels, and thus the
amount of information, being used by the SK variance estimator.
Additionally, forest area accounts for both AOI area as well
as forest dominance (proportion of AOI that was forested).
We included proportion of AOI being subsampled to represent
the influence of the subsampling procedure. Data exploration
indicated that the greatest predictive power for the regression
model was achieved when log-transforming both response
and predictor variables. We compared regression models with
differing combinations of main effects (P and F) using AIC,
selecting the model that minimized AIC as the best.

To solve for the proportion of pixels to sample P for values of
forest area F in order to generate variance estimates within 1% of
the estimate using all pixels in an AOI (Y = 0.01), we reorganize
the regression equation as

P =
0.01− (β0 + β1F + β3F2)

β2

When P> 1, we set P = 1 as this indicates a need to use all pixels in
an AOI. Note that forest area is the product of AOI area and forest
dominance, such that for any AOI area, the proportion of pixels
to be sampled depended on the forest dominance in the AOI.

Comparisons of Tree Aboveground Live
Carbon Estimates
To compare ALC estimates generated by the differing approaches
across scales, we first defined areas of interest (AOI) across
the study region in order to represent a diverse suite of forest

conditions (Figure 1A). Across M261, we created 30 1,000,000-
ha hexagons as subregions covering 500,000–1,000,000 ha each.
For each subregion, we selected the 648 km2 Environmental
Monitoring and Assessment (EMAP) hexagons (White et al.,
1992) overlapping the centroid of the subregion, resulting in
30 hexagons 64,800 ha in size across the study region M261
(Figure 1B). For FIA-based forest attribute estimation, the EMAP
hexagons have been identified as providing a balance between fine
spatial scale and sufficient numbers of plots to support design-
based inference (Woodall et al., 2006; Menlove and Healey, 2020).
We then generated hexagons at eight additional scales, centered
on the same centroids: 50,000, 25,000, 10,000, 5,000, 2,500,
1,000, 500 ha, and 250 ha. These hexagons were the estimation
units for this study.

We compared mean and variance estimates from each of
the different methods described above (HT, GREG, and SK)
only for the 10,000, 25,000, 50,000, and 64,800-ha AOIs. We
compared results from the GREG and SK estimators with the
HT estimator results using simple linear regression in order to
roughly assess uncertainties in model-assisted and model-based
estimators relative to design-based estimators. For each AOI
at each scale, we also computed the relative efficiency (RE) of
the SK and GREG estimators relative to the HT estimator and
to each other, which is simply the ratio of the variances being
compared. Two versions of the SK estimator were used for these
comparisons. Unadjusted SK is the usual synthetic estimator that,
by assuming the modeled relationship between predictor and
response variables developed for M261 holds for all domains
within it, also assumes unbiasedness for SAE. Adjusted SK uses
the design-weighted estimate of the bias provided by the sample
to calculate mean square error, where MSE = variance + bias2.
Under most SAE scenarios, this adjustment would not be possible
because of small sample sizes.

The SK estimator was applied to all scales described above,
though larger areas can require substantial processing time.
It should be noted that there are many users interested in
estimating means and variances for forest attributes for areas that
are much smaller (<10,000 ha). Therefore, we present variance
estimates for smaller areas to quantify estimate variance for the
SK estimator at scales relevant to forest managers. To examine
the variance of ALC estimates across a gradient of AOI area (250–
64,800 ha) for the SK estimator, we developed linear mixed effect
regressions of the log relative standard error (% of mean ALC
estimate) as a function of log forest area, forest dominance, and a
random effect for the 1,000,000-ha subregion. Forest dominance
was calculated as the proportion of area in an AOI that was
forested. We used all the estimates across scales (250–64,800 ha)
for the 30 subregions as inputs. We then used the lme function
in R (nlme package version 3.1-140; Pinheiro et al., 2019) to fit a
model for log relative standard error in the ALC estimates as

yij~N
(
γ0 + γ1Aij + γ2Dij + αj, σ

2)
αj~N

(
0, τ2)

where yij was the log relative standard error for AOI i in
subregion j, γ0, γ1, and γ2 were regression parameters, Aij
was the forest area (ha) in AOI i in subregion j, Dij was the
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forest dominance (unitless) in AOI i in subregion j, σ2 was the
process variance for the regression, αj was the random effect for
subregion j, and τ2 was the variance for the random effects. We
fit two additional linear regression models, one with forest area
Aij only and one with forest area Aij and forest dominance Dij,
in order to examine the explanatory power of each component of
the model describing the coefficient of variation.

RESULTS

Small Area Estimate Convergence
We tested the stability of the SK variance estimator as a function
of the proportion of pixels sampled. We found that increasing
the proportion of pixels sampled quickly led to convergence in
variance estimates, supporting the use of only a subset of pixels
with an AOI (Figure 4). We found that generating variance
estimates within 1% of the estimate based on all pixels depended
on several factors, including AOI area and proportion of pixels
being sampled. For 10,000-ha AOIs, sampling 7% of pixels
resulted in most variance estimates being within 1% of the
estimate using all pixels, whereas 15% were required to ensure
that most estimates were within 0.5%. Proportion of pixels
sampled needed to increase for smaller areas to achieve the same
convergence in variance estimates, with 5,000 ha AOIs requiring
14% and 1,000 ha AOIs requiring 30% of pixels sampled for most
estimates to converge within 1%.

Our regression analysis examining the stability of variance
estimates indicated that the best model for log absolute value
of the proportional difference between sample and full variance
estimates Y explained 33.5% of the variation and included
an intercept (β0 = −1.868 ± 0.088 SE), log forest area F

(β1 = −0.516 ± 0.010 SE), and log proportion pixels sampled P
(β2 =−0.576± 0.015 SE).

Predicted proportion sampled increased as AOI area and
forest dominance within the AOI decreased, indicating that the
stability of the variance estimate depends on the number of pixels
being considered. For the purposes of the rest of this study, we
set the proportion of pixels sampled for estimating variance using
the SK estimator to the values predicted by the 25% forest cover
scenario (gray diamonds in Figure 5) to increase the likelihood of
estimate convergence. Thus, to generate variance estimates using
the SK estimator for 250, 500, 1,000, 2,500, 5,000, 10,000, 25,000,
50,000, and 64,800-ha AOIs, we used 1.00, 1.00, 0.82, 0.36, 0.19,
0.10, 0.05, 0.02, and 0.02 for proportion of pixels sampled.

Comparing Estimation Methods Across
Scales
Mean ALC estimates based on GREG generally agreed with
HT estimates, though that agreement decreased as AOI area
decreased (Table 1). Regressions of GREG and HT mean ALC
estimates across AOIs showed that slopes decreased from 1.010 to
0.818 and R2 decreased from 0.972 to 0.805 as AOI area decreased
from 64,800 to 10,000 ha. The regression intercept also decreased
as AOI area decreased. Relative standard errors increased from 16
to 31%, while the RE of GREG vs. HT estimators increased from
1.45 to 1.54 as AOI area decreased.

Comparisons of the SK estimator with HT and GREG
estimators indicated a more complex story regarding estimator
performance (Table 2). Like GREG, regression of SK and
HT mean ALC estimates indicated decreasing agreement with
decreasing AOI area, with R2 ranging from 0.920 to 0.758
for 64,800 and 10,000 ha areas, respectively. Slopes from the
regression were relatively constant (0.992–1.026) for scales

FIGURE 4 | Percent difference between AOI variance estimates based on a sample of pixels vs. using all pixels for AOIs of differing sizes. In this case, we examined
30 1,000, 2,500, and 10,000-ha AOIs distributed across the study region, each with five replicates. White horizontal lines indicate median, boxes indicate 50%
intervals, and whiskers indicate 90% intervals. Dashed horizontal lines demarcate –1 and 1% differences.
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FIGURE 5 | Proportion of pixels sampled for AOIs of differing sizes and forest
extent to, on average, generate variance estimates within 1% of the variance
estimate using all pixels.

TABLE 1 | Regression results (y = mx+b) of the scatterplot of GREG (x) vs. HT (y)
estimates across spatial scales, along with median relative standard error (% of
estimate) and median RE of the GREG vs. HT estimator.

Area (ha) m b/ȳ R2 RSE RE (HT)

10,000 0.818 0.215 0.805 30.977 1.542

25,000 0.954 0.113 0.928 24.566 1.556

50,000 0.991 0.093 0.946 21.234 1.406

64,800 1.010 0.062 0.972 16.148 1.450

greater than or equal to 25,000 ha, but decreased to 0.905 for
10,000 ha AOIs, while intercepts increased as AOI area decreased.
Relative standard errors for unadjusted SK were smaller than
other estimators (7.8–8.4%), resulting in RE compared to HT of
4.5–16.8. However, the unadjusted SK estimator RE values do not
account for potential biases inherent in the synthetic approach.
When we accounted for bias, using the design-weighted estimate
of bias, relative root mean square error of adjusted SK increased

from 24 to 33% and RE compared to HT increased from 0.649 to
2.269 as AOI area decreased from 64,800 to 10,000 ha. Similarly,
adjusted SK estimator RE compared to GREG increased from
0.496 to 1.263 as AOI area decreased from 64,800 to 10,000 ha.

Across subregions, linear mixed effects modeling indicated
that the relative standard error for ALC from the SK estimator
decreased with forest area and forest dominance within an
AOI (Table 3 and Figure 6A). The linear mixed effects model
including log forest area, log forest dominance, and a random
effect for subregion explained 93% of the variation in the log
coefficient of variation, whereas models without random effects
or without random effects and forest dominance explained 59
and 39% of the variation, respectively. Mapping random effects
indicated that coefficient of variation tended to be lesser in the
northwestern, greater in the northeastern, and more variable in
the southern portion of the study area (Figure 6B).

DISCUSSION

Comparing Estimators (10,000–64,800
ha)
Augmenting NFI data with auxiliary data using either model-
assisted or model-based estimation facilitates SAE, but our results
emphasize that the appropriate estimation procedure depends
upon the area of an AOI, and thus the sample of plots, being
considered. In our study, 25,000 ha was the nominal scale below
which one would consider changing from the GREG to the
adjusted SK estimator, or vice versa: RE for GREG was greatest
among estimators tested for areas larger than 25,000 ha and RE
for adjusted SK was greatest for areas less than or equal to 25,000
ha (Tables 1, 2). In the case of the FIA data used in this study,
25,000 ha roughly equates to 10 plots whereas the commonly used
EMAP hexagons (64,800 ha) would generally contain 27 plots.
Even at the 64,800-ha scale, the GREG estimator RE compared to
HT was greater than one, indicating that GREG estimators should
be preferred given sufficient plot support in an AOI.

Our results highlight a fundamental limitation of the
unadjusted SK estimator examined: the lack of appropriate
accounting of bias. The synthetic estimator used in
this study assumes unbiasedness in pixel predictions
(McRoberts et al., 2007). Given that regression slopes close
to one and intercepts close to zero highlight agreement, SK
mean ALC estimates did not exhibit major systematic lack

TABLE 2 | Regression results (y = mx+b) of the scatterplot of the unadjusted synthetic (x) vs. HT (y) estimates across spatial scales, along with median relative standard
error (% of estimate) and median relative efficiency of the synthetic vs. HT and GREG estimators.

Unadjusted synthetic Adjusted synthetic

Area (ha) m b/ȳ R2 RSE RE (HT) RE (GREG) RRMSE RE (HT) RE (GREG)

10,000 0.905 0.073 0.758 7.880 16.843 11.853 33.284 2.269 1.263

25,000 1.024 −0.002 0.874 8.185 11.088 6.450 24.496 1.263 1.226

50,000 1.026 −0.037 0.897 8.356 7.079 5.149 25.023 0.904 0.681

64,800 0.992 −0.047 0.920 8.383 4.542 3.536 24.033 0.649 0.496

Adjusted synthetic results are based on root mean square error, including the HT estimate of bias.
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TABLE 3 | Fixed effect and mixed effect linear regression results for predicting the log coefficient of variation in tree aboveground live carbon as a function of area,
dominance, and subregion.

Model β0 β1 β2 Residual standard error Random effect variance (τ 2) R2

Forest area −1.817 (0.140) −0.104 (0.008) 0.270 0.39

Forest area and dominance −1.551 (0.058) −0.095 (0.007) −0.537 (0.047) 0.222 0.59

Forest area, dominance, and
subregion random effect

−1.803 (0.062) −0.088 (0.003) −0.223 (0.048) 0.096 0.050 0.93

FIGURE 6 | Mixed effects regression results of relative standard error as a
function of scale and landscape. (A) Mean predictions of coefficient of
variation based on forested area and forest dominance (percent of AOI that is
forested). (B) Spatial distribution of random effects across study area.

of fit, but R2-values were less than those reported for GREG
(Tables 1, 2). This increased error in mean predictions was not
reflected in the unadjusted SK variance estimates, which were

considerably smaller than GREG or HT variance estimates.
Previous examinations of the kNN synthetic estimator used in
this study indicated that kNN using NFI data can be unbiased
with respect to the sampling aspects of the estimator, but not
necessarily in terms of the bias associated with model mis-
specification (McRoberts et al., 2007; Magnussen et al., 2009;
McRoberts, 2012). Such bias, for example, motivates the use of
empirical best linear unbiased prediction (such as a Fay-Herriot
model) or composite estimators that minimize MSE by finding
the optimal balance between the low variance of a synthetic
estimator and the unbiasedness of a direct estimator (such as
a James-Stein estimator) (Breidenbach and Astrup, 2012; Rao
and Molina, 2015; Mauro et al., 2017; Coulston et al., 2021).
Thus, while the unadjusted SK estimator can produce variance
estimates far smaller than other methods (McRoberts et al., 2007;
Breidenbach et al., 2010), they reflect only model variance, not
bias. While model-based variance estimates can be useful for
many applications, focusing primarily on variance estimates
without accounting for model bias leads to an overly optimistic
view of uncertainty.

Still, it is interesting that the adjusted SK estimator RE
compared to HT and GREG support the use of synthetic
estimators at smaller scales where few plots were available. One
might speculate that improving model fit or accounting for biases
among AOIs would improve relative efficiencies and increase the
nominal area for which one would select SK vs. GREG estimators.
Our results imply that development or application of model-
based SAE should incorporate an assessment against GREG at
the scales relevant to the individual study to determine whether
estimates are improved in a practical sense.

k-Nearest Neighbors Variance Estimates
(250–64,800 ha)
In our study, the SK variance estimates relative to the mean
ALC was predictable (Table 3), indicating that land cover and
AOI area determine the precision of estimates derived from
the SK estimator. Relative standard error for ALC depended
almost entirely on forest area within the AOI, forest dominance,
and biogeographic variation at the scale of our 1,000,000-ha
subregions. Across forest dominance gradients, average predicted
relative standard errors ranged between 0.05 and 0.07 for the
largest forest areas (64,800 ha) and 0.08–0.11 for the smallest
forest areas (250 ha) (Figure 6A). However, geographic variation
in random effects imply that broad-scale variation in forest
conditions explains roughly one third of the relative standard
error (Figure 6B). This result is consistent with our previous
examination of lidar-based vs. Landsat-based maps of forest
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biomass which highlighted increasing differences and decreasing
correlation between the two products as one shifted from
coniferous to mixed broadleaf-coniferous forest landscapes (Bell
et al., 2018). It has also been shown that stratification by forest
type prior to lidar-based modeling improves biomass and carbon
mapping (Swatantran et al., 2011; Chen et al., 2012), implying
that variation in forest composition and structure influences
prediction and estimation approaches.

Our results support the general application of a subsampling
approach in this SK estimator using kNN, but the degree of
subsampling depends on the area of the AOI and the amount of
forest located within it. Variance estimates based on a subsample
of pixels converged on the estimate using all pixels as AOI
area increased (Figure 4), but that convergence appeared to be
delayed with lesser forest dominance (Figure 5). The convergence
still appears to be quite variable (R2 = 0.25), indicating other
factors may determine convergence for any given AOI. Based
on this uncertainty in convergence, we recommend a relatively
conservative approach to selecting proportion of pixels to sample.
In our case, we assumed that forest dominance (proportion of
pixels forested in AOI) was 0.25. Given that our results for
10,000 ha AOIs were similar to a previous study in Minnesota
(15% sampling threshold; McRoberts et al., 2007) and are
relatively consistent regardless of the area forested in within the
AOI (134–9,740 ha), these results may be broadly applicable
across landscapes. Still, further application of this method would
necessitate examination of convergence as a function of other
biophysical factors, such as forest type group, so that users could
easily identify the appropriate sub-sampling to apply for stable
variance estimation.

CONCLUSION

Forest managers increasingly rely upon spatially explicit, mapped
forest attribute data as central source of information for decision-
making, but assessments of uncertainty provide a much needed
characterization of variance and bias in estimates of stand-,
landscape-, and region-level forest attribute estimates (Tomppo
et al., 2008; McRoberts, 2012). Though the choice of inferential
mode, from design-based to model-based, will always depend
on the question being asked (Ståhl et al., 2016), the scale of
inference and characteristics of forest ecosystems appear to play
a dominant role in estimate uncertainty. This study (Table 3 and
Figure 6) and others (e.g., Bell et al., 2015, 2018) show that spatial
variation in estimated variance may be predictable as a function
of biophysical characteristics of the ecosystems being studied.
Advances in model-based estimation that properly account for
bias in estimation error (e.g., Mauro et al., 2017; Coulston
et al., 2021) could extend the scale at which these approaches
outperform model-assisted estimation (e.g., > 25,000 ha). Such
advances could be integrated into estimation procedures to
guide the selection of estimators to fully characterize both
model precision and bias, both of which impact the utility of
estimates for users.

We suggest that an improved understanding of synthetic
estimator uncertainty across a diversity of forest landscapes

could form the basis for a simple, yet transparent workflow
for forest attribute estimation. That platform could open the
use of regional or national forest inventory data to a broader
community of users. These improvements should, in part, aim
to incorporate a proper accounting of prediction bias in model-
based estimation for small areas. Furthermore, the identification
of nominal scales at which users should generally switch
from one estimation technique (e.g., GREG) to another (e.g.,
synthetic) could be incorporated into an integrated approach
that guides users on the appropriate estimator to use at the
scale of their AOI. However, both producers and users of
estimates should bear in mind potential biases in predictions
that, in the case of the SK, result in overly precise (i.e., lesser
variance) estimates of forest attributes. By exploring multiple
scales of application for an SAE procedure applied to NFI data
regarding carbon pools, this research lays the groundwork for a
multi-scale estimation framework in a simple and transparent
manner that guides users in developing defensible estimates
and educates users on the limits of inference at a variety
of spatial scales.
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