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High elevation plant populations, such as those found in sub-alpine meadows, are
at the forefront of climate change and likely to experience novel interactions with
migrating plants from lower elevations, including non-native species. Some of these non-
native plants, particularly members of the Brassicaceae, produce secondary metabolites
that have been shown to inhibit root fungi in other ecosystems. We conducted a
growth experiment with plant leachates in order to evaluate the degree to which
the dominant high elevation grass species, Festuca thurberi would be affected by
future novel interactions with the non-native mustard, Thlaspi arvense, relative to a
native mustard (Noccaea fendleri). We assessed growth, chlorophyll content, biomass,
mortality, and percent colonization of arbuscular mycorrhizal fungi (AMF) and dark
septate endophytes (DSE) in different genotypes of F. thurberi exposed to leachates
from native and non-native mustards as well as F. thurberi leachate and a deionized (DI)
water control. New growth and mortality varied more by genotype than by treatment
with leachate of F. thurberi, T. arvense, and N. fendleri. Treatment, genotype, and
the treatment × genotype interaction all had significant effects on chlorophyll content,
with N. fendleri treatments demonstrating higher relative greenness levels than control
treatments. Percent of fine roots with dark septate endophytes was significantly affected
by individual genotype and treatment × genotype interaction, but there were no effects
of treatment, genotype, or their interaction on percent root colonization by arbuscules or
vesicles. Overall, we show that performance of a dominant high-altitude grass species
varies in its response to the presence of an expanding, non-native plant, which may
become increasingly common due to climate change.

Keywords: Festuca thurberi, Thlaspi arvense, Noccaea fendleri, sub-alpine meadows, arbuscular mycorrhizal
fungi, dark septate endophytes, intraspecific variation

INTRODUCTION

Plant invasions have historically been less common in high elevation ecosystems relative to low
elevation ecosystems, due to the harsh climate and low human population densities (Pauchard
et al., 2009). However, over the next 100 years, temperatures in the Rocky Mountains may increase
by as much as 5.5◦C (Funk et al., 2014). Several studies tracking plant range over elevation have
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found upward shifts in range over time across North America
(Kelly and Goulden, 2008; Kopp and Cleland, 2014; Savage and
Vellend, 2015), with species’ mean elevation shifting upwards in
our study area in the Gunnison basin of the Rocky Mountains,
CO., United States (Zorio et al., 2016). Using elevation-for-
time substitutions, Wasserman et al. (2012) found a consistent
relationship between increases in temperature and change in
elevation. Longer stretches of time between early summer snow
melt and summer monsoons may result in extended periods of
drought-like conditions (Sloat et al., 2015). In addition, using
data from direct manipulation studies some researchers have
theorized that plant communities will continue to shift under
future climate conditions (Harte et al., 2015). The combined
effects of shifts in temperature, snowmelt, and precipitation are
likely to impact plant community composition in the Rocky
Mountains. Given these trends in plant range expansion over
elevation, research must incorporate the effects of lowland
invasive and introduced plants on high-elevation naïve ecosystem
archetypes to determine what effects, if any, these novel
interactions are likely to produce.

Festuca thurberi is a clonal dominant perennial, high-
elevation grass typically found in dense stands in sub-alpine
meadows (Moir, 1967). In the southwestern United States, it
is endemic across the Rocky Mountain range from Wyoming
to New Mexico (Smith, 2019). Festuca thurberi stands consist
of dispersed individual ramets as well as many clumps, each
consisting of multiple individual clonal ramets. In experiments
investigating the potential effects of climate change on high-
elevation communities, F. thurberi flowering time showed an
extended duration of flowering in response to warmer soil,
decreased soil degree-days, and later snowmelt date in contrast
to all other plants studied (Dunne et al., 2003). Thus, in future
climate change scenarios, F. thurberi may become an even
more dominant component of the sub-alpine meadow landscape.
Festuca plants are also important reservoirs of fungal diversity.
A previous survey of high elevation foliar fungal associates
(Kivlin et al., 2019) found that the highest number of indicator
species belong to F. thurberi including Clonostachys rosea, a
potential beneficial endophyte, as well as Aspergillus niger and
Phaeosphaeria caricis, a generalist and saprotroph, respectively.
Festuca species are typically considered to be highly colonized by
arbuscular mycorrhizal fungi (AMF) compared to co-occurring
plant species in the Gunnison Basin (Molina et al., 1978).
Intraspecific variation in plant-microbe interactions (Rudgers
et al., 2020) and in plant responses to global change factors,
including plant invasions, is increasingly well documented (e.g.,
Gibson et al., 2014) but has not been extensively studied in
F. thurberi.

Members of the Brassicaceae (mustard family) are known to
produce a variety of secondary metabolites that protect against
disease and herbivory and may also facilitate invasion (Ahuja
et al., 2010; Schranz et al., 2011; Brolsma, 2014). Thlaspi arvense
is a Eurasian weed in the mustard family that has become widely
distributed in the United States and Canada and is known to
readily establish on disturbed soils (Best and McIntyre, 1975;
Warwick et al., 2002). Thlaspi arvense produces the alkenyl-
glucosinolate, sinigrin (Tolra et al., 2006), the same secondary

metabolite produced by the highly invasive, close relative Alliaria
petiolata. Sinigrin has been demonstrated to have allelopathic
effects (Vaughn and Berhow, 1999) and to suppress native
plant growth and their mycorrhizal fungi in deciduous forest
ecosystems of North America, but not in A. petiolata’s European
home range (Vierheilig and Ocampo, 1990; Schreiner and Koide,
1993). Another close relative to T. arvense, Noccaea fendleri, is
native to sub-alpine meadows in the Gunnison Basin and widely
distributed across the western US (Reeves et al., 1983). Contrary
to T. arvense, N. fendleri predominantly produces isopropyl
glucosinolate (Chew, 1979), occurs at low densities across its
native range, and has co-existed through evolutionary time with
our study species F. thurberi. Due to the recent encroachment of
T. arvense from lower to higher elevations in the Gunnison Valley
and the ecological dominance of F. thurberi at higher elevations,
we aimed to quantify the results of this novel interaction. We
hypothesized that secondary metabolites produced by T. arvense
would: (1) reduce new growth; (2) increase mortality; (3) reduce
chlorophyll content; (4) reduce plant biomass and; (5) reduce
root colonization by mycorrhizal fungi of F. thurberi in a potting
study. We also tested the hypothesis that (6) there would be
intraspecific variation in the impacts of. T. arvense on the growth,
survival, and fungal symbioses of F. thurberi.

MATERIALS AND METHODS

Experimental Design
Festuca thurberi plants were grown in a weatherport on site
at the Rocky Mountain Biological Laboratory (N 38.95807◦,
W 106.98853◦; 2,889 m). The experiment tested the effects of
leachate from an introduced member of the Brassicaceae (Thlaspi
arvense), a native member of the Brassicaceae that shares habitat
with our study species (Noccaea fendleri), a positive control
with leachate from additional Festuca thurberi, and a negative
control treatment [deionized (DI) water] on plant growth and
mortality of F. thurberi over time. We included the co-occurring
native mustard N. fendleri in this experiment to ensure that
any treatment effect observed by T. arvense was due to the
novel interaction with an introduced mustard and not simply
the effect of phytochemical interactions with any member of
the Brassicaceae.

Experimental plants were collected as individual ramets
from eight distinct clumps of F. thurberi and an arbitrary
selection of dispersed individuals at the beginning of the growing
season on 6/24/2018 from a sub-alpine meadow (∼3,826 m;
Supplementary Table 1). This collection site was selected due
to the absence of the introduced mustard T. arvense and the
presence of N. fendleri. For the purposes of this study, we
assumed that ramets from the same clump were replicates of
the same genotype, given the clonal growth form of the species.
We assigned a separate category (D) to replicates of dispersed
ramets growing individually in the same meadow. Following
soaking, each ramet was manually sorted and separated from
the larger root mass. Ramets, composed of an individual shoot
and root mass, were harvested from each individual clump
(genotype) and yielded between 18 and 44 clones. Ramets
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were then cleaned, air-dried, weighed and planted into 38-cell
propagation trays (Greenhouse Megastore; item CN-PRT 38-10)
within 24-h. Ramets of each clone were planted in peat moss
mixture, augmented with field soil collected from beneath mature
F. thurberi individuals at a 6:1 ratio, in order to expose clones to
microbial communities associated with F. thurberi. One ramet of
F. thurberi (N = 276; Supplementary Table 1) was grown in each
cell of 10 38-cell propagation trays in a randomized experimental
array. Experimental plants were watered with tap water for
7 days and allowed to settle in propagation sheets to minimize
transplant stress. Each plant was then randomly assigned a
treatment (leacheate of T. arvense, N. fendleri, F. thurberi, or
a water control) with approximately 70 Festuca plants in each
treatment (Supplementary Table 2).

Treatment plants (T. arvense, N. fendleri, and F. thurberi) were
also collected at the beginning of the experiment, with three
replicates of three plants per pot transplanted into 5 L pots for
each treatment. Treatment plants were collected from a similar
elevation to the field station (∼2,889 m), with the exception
of F. thurberi for which treatment plants were collected from
the same site as experimental plants (∼3,826 m). Leachate was
collected separately for each replicate of each species, following
design by Hagan et al. (2013) by running 1.3 L of DI water
through a pot until roughly 1 L of leachate had been collected.
In order to determine if root exudates are responsible for any
treatment effect, as has been established in A. petiolata (Stinson
et al., 2006), we used leachate rather than entire plants. Each of
the three, 5 L treatment plant pots, was used to extract leachate
successively to water the experimental plants.

Experimental plants were watered with treatment
leachate or control DI until liquid started to pool at
the surface of individual cells every other day or every
third day depending on how long plants took to dry out.
Plants were harvested over the course of 5 days, 51 days
after transplant into the experimental array. Root sub-
samples (5 fine roots) were collected from a subset of
experimental plants (n = 106) and stored in 70% ethanol
and whole individual plants were stored in brown paper
bags until processing for biomass at the University of
Massachusetts, Amherst.

Data Collection
New growth was assessed on every experimental plant in the
array every 10 days starting 10 days after the first leachate
treatment was applied (7/10/2018, 7/20/2018, and 7/30/2018)
and marked as either new growth (i.e., new sprouts from
the base of the plant) present (1) or absent (0). Similarly,
mortality was evaluated twice, 15 and 30 days after transplant
(7/15/2018 and 7/30/2018) and marked as either above ground
green biomass absent (1) or present (0). Relative measure of
greenness linked to chlorophyll content was measured using Spad
technology (Spad 502; Minolta) every 2 days from 7/10/2018–
7/20/2018. Only plants that produced new growth since the start
of treatment application as assessed on 7/10/2018 were evaluated
for relative greenness. Once harvested, plants were separated into
above ground biomass (shoots and blades) and belowground
biomass (roots).

Colonization by arbuscules, vesicles, and dark septate
endophytes (DSE) were quantified in fine roots using staining
followed protocols established in Ranelli et al. (2015). Samples
were rinsed in tap water to remove ethanol and then partitioned
into tissue cassettes for clearing and staining. Cassettes were
cleared in a 10% KOH solution for 5–7 days, with variations of
up to 2 days in clearing time due to individual thickness of roots.
Potassium hydroxide was rinsed from cassettes and transferred
to acidified water. Roots were then stained with a 5% Schaffer
ink/white vinegar solution for 15–20 min and then de-stained
in 10% KOH for several days. Quantification was performed
using the magnified intersection method at 450 × magnification,
spanning the upper and lower limit of each root piece in order to
satisfy the requirements of the method (McGonigle et al., 1990).

Statistical Analysis
All analyses were conducted in R version 4.0.2. (R Core Team,
2020) with the significant p-value set to below or equal to 0.05.

To confirm that plants were effectively randomized across
the treatments we ran an ANOVA with treatment as the main
effect and fresh biomass measured prior to transplant into the
experimental array as the response variable.

Because we were interested in the role of intraspecific variation
in plant responses to invasion, we adapted a standard quantitative
genetics modeling approach (Falconer, 1960) to assess the relative
contributions of the leachate treatments (environment) and
intraspecific variation among F. thurberi clones (genotype). Our
models included main effects of leachate, genotype, and the
leachate × genotype interaction. We use “genotype” in this
study in the broadest sense, in that ramets within individual
clumps of the clonal study species, F. thurberi are assumed to
be genetic replicates of one another and that clonal clumps
separated by several meters may be genetically distinct. For the
purposes of this study, we interpret a leachate effect as evidence
of allelopathic effects of native and non-native mustard plants
on F. thurberi phenotypic traits (i.e., differences in the mean
response of F. thurberi plants to the leachate treatments), a
genotype effect as a test for evidence of intraspecific variation
in F. thurberi phenotypic responses to the leachate treatment
(visualized as the mean response of the genotypes in the figures),
and a significant GXE interaction as evidence for variance among
genotypes in the direction of the phenotypic response to the
treatments (visualized as lines that intersect in the figures).

To test our hypotheses that T. arvense leachate would
affect growth through time, we constructed binomial regression
models with treatment, genotype, and a treatment × genotype
interaction term as the main effects and observations of new
growth [0 (absent) or 1 (present)] as the response variable. We
included experiment days (i.e., days since experiment began) as
a covariate to account for changes in growth over time. We
also constructed linear models using treatment, genotype, and
a treatment × genotype interaction as the main effects with
mean growth as the response variable. For mortality, we used
a binomial regression with the same predictive variables and
mortality (live or dead) as the response variable.

To determine if T. arvense leachate reduced general greenness
linked to chlorophyll content we constructed linear models
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using experiment days, treatment, genotype, and a treatment
× genotype interaction term as predictive variables and Spad
reading as the response variable. We also constructed linear
models using treatment, genotype, and a treatment × genotype
interaction as the main effects with Spad reading as the
response variable.

To determine if T. arvense leachate affected F. thurberi growth
we constructed linear models using treatment, genotype, and
a treatment × genotype interaction for the predictive variable
related to final size (response variable): whole plant dry biomass,
above ground biomass, belowground biomass, and root:shoot
ratio. Dry biomass was normalized through log transformation.
A constant was added to all values prior to log transformation to
correct for negative values resulting from the transformation.

To determine the effects of T. arvense leachate on fungal
root colonization we constructed a linear model with genotype,
treatment, and a treatment × genotype interaction as the
predictive variable and colonization of fine roots by arbuscules,
vesicles, and DSE as the response variable. These response
variables were normalized through an arcsin transformation.
Dark septate endophytes were analyzed with the same effects in
the model but with a Poisson distribution.

To visualize effects of the environmental treatments and
the potential for underlying genetic variation in each response
variable, we plotted reaction norms (Falconer, 1960; Via and
Lande, 1985) of the mean trait value for each genotype.

RESULTS

Fresh weight biomass was not significantly affected by treatment
(p = 0.652), indicating that we sufficiently randomized the subject
plants at the onset of the study.

New growth was significantly affected by individual genotype
and experiment days (p = 0.015, p < 0.001, respectively) in
the binomial regressions and mean growth was significantly
affected by genotype in the general linear model (Figure 1 and
Table 1). There were also significant effects of genotype and
the genotype × treatment interaction on mortality (Figure 2
and Table 1). Relative greenness was significantly affected by
experiment days, genotype, and treatment (p = 0.010, p < 0.001,
p < 0.001, respectively; Figure 3). Effects of genotype, treatment
and the genotype × treatment interaction were also present in
the general linear model (Table 1). Dry weight biomass and
root:shoot biomass ratio were significantly affected by genotype
(Figures 4A,B and Table 1).

Treatment, genotype, and a treatment by genotype interaction
did not have a significant effect on percent of fine root
with arbuscules present (Figure 4C). No significant effects
were present for percent of fine roots with arbuscules or
vesicles present (Figure 4C and Table 1). Treatment and
treatment × genotype interaction had significant effects on
percent of fine root with DSE present (Figure 4D and
Table 1).

FIGURE 1 | Reaction norms are presented from new growth of Festuca thurberi genotypes separated out by treatment: (A) control, (B) F. thurberi, (C) N. fendleri,
and (D) T. arvense; to show differential effect of treatment on genotype over time. Data points represent average number of plants in each genotype with new growth
present (1) or absent (0) during three points during the experiment 10 days apart. Error bars represent standard error.
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TABLE 1 | Results of generalized linear models are presented alongside distributions for each of the response variables (top row) and main effects (first column).

New growth Mortality SPAD Total dry-weight
biomass

Root:Shoot
biomass

Arbuscule percent
colonization

Vesicle percent
colonization

DSE percent
colonization

Genotype 0.015 <0.001 <0.001 <0.001 <0.001 0.740 0.993 <0.001

Treatment 0.190 0.146 <0.001 0.966 0.436 0.511 0.641 0.725

Genotype × Treatment 0.723 <0.007 <0.001 0.608 0.394 0.984 0.561 <0.001

Distribution Binomial Binomial Normal Log Transformed Normal ArcSin transformed ArcSin transformed Poisson

Significance is presented in Chi-squared values to determine significance at 0.05.

FIGURE 2 | Rate of mortality in Festuca thurberi is shown in a reaction norm averaged across treatment. Mortality was inferred from either: no above ground green
plant biomass (1); or plant surviving (0). Average mortality lines crossing indicate a different response, as measured by mortality, by a genotypes between treatments.
Error bars represent standard error.

DISCUSSION

The main goal of our study was to test the hypothesis that
secondary metabolites in leachate of the non-native plant, Thlaspi
arvense, affects the growth, mortality, and root colonization by
fungal associates of the sub-alpine grass Festuca thurberi. given
that T. arvense’s close relative, A. petiolata is known to alter
mycorrhizal association and growth of North American tree
seedlings (Stinson et al., 2006; Strauss et al., 2006; Wolfe et al.,
2008). We also tested for potential intraspecific variation in
F. thurberi responses to T. arvense, given evidence in the literature
that other species demonstrate variation within populations
in their responses to the presence of invasives (e.g., Strauss
et al., 2006). To differentiate potential effects of the introduced
mustard T. arvense from those of co-occurring native mustard
species, we also included leachates of the native member of
the Brassicaceae, N. fendleri. We found evidence for leachate
effects on relative greenness and genotype × treatment effects
on mortality, greenness, and DSE colonization. There was also
evidence for genotype effects on most of the observed traits.

We thus conclude that there is intraspecific variation in the
responses of F. thurberi to T. arvense as well as the native mustard
species. Overall, our study suggests that invasion by the non-
native T. arvense may have patchy effects on local populations of
this native grass species.

Examining the Effects of Intraspecific
Variation and Simulated Invasion on
Festuca thurberi
Effects of biological invasion on the recruitment and mortality
of native plant species are likely to affect the future composition
of vegetation communities around the world (Alvarez and
Cushman, 2002). Recruitment in clonal plants such as F.
thurberi is linked to new growth of ramets (Shumway, 1995).
Here we found that new growth of individual ramets varied
across genotypes regardless of exposure to leachates from
native and non-native mustards or to the control treatments.
Several genotypes lagged in new growth early after experiment
establishment but had new growth present 20 or 30 days into
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FIGURE 3 | Reaction norms were constructed from relative greenness surveys (Spad) of Festuca thurberi individuals. Treatments: (A) control, (B) F. thurberi,
(C) N. fendleri, (D) T. arvense; were separated to show differential effect of treatment on genotype over time. Relative greenness, linked to chlorophyll content, was
measured 6 times between the 10th and 20th day of treatment with only plants displaying new growth being measured. Error bars represent standard error.

FIGURE 4 | Reaction norms, constructed by treatment for each genotype across (A) dry weight biomass, (B) root:shoot ratio, (C) percent of fine root with
arbuscules present, (D) percent of fine root with dark septate endophytes. Average value lines crossing indicate a different response by a genotypes between
treatments. Error bars represent standard error.
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the experiment. We also noted an interaction between genotype
and time, as indicated by the intersecting trendlines in Figure 1.
Such plastic responses are likely to play an important role in
the persistence of plant populations as global change introduces
novel pressures, including the incursion of non-native plants
(Frei et al., 2014). This variation in recruitment may be amplified
in natural settings due to the natural fragmentation of high
elevation populations, similar to island habitats (Burkey, 1995).
Mortality in F. thurberi was similarly affected by individual
genotypes with some genotypes having little to no mortality and
others experiencing higher levels of mortality across the different
leachate treatments (1.3–30.7%; Figure 2). The interaction effect
of genotype and leachate treatment on mortality further suggests
genotypes within a population of F. thurberi may vary widely
in their ability to survive in the presence of leachate from
mustard species.

Contrary to our hypotheses, simulated invasion by T. arvense
with leachate application resulted in no significant effects on
mean phenotypic values for new growth, biomass, or percent
colonization with arbuscular mycorrhizal fungi of F. thurberi,
and the treatment effect on relative greenness was attributable
to the native mustard, N. fendleri as discussed below. The
lack of an effect of treatment on these traits was surprising,
given that leachates from T. arvense’s close relative, the invasive
plant Alliaria petiolata, were shown to prevent germination of
AMF, inhibit AMF symbioses, and reduce root lengths in native
North American tree seedlings (Roberts and Anderson, 2001).
Moreover, lower levels of AMF colonization in three native tree
species were observed in soils invaded by A. petiolata (Stinson
et al., 2006). Growth of AMF in pure culture was also completely
inhibited by application of an isothiocyanate associated with
sinigrin, one of the main glucosinolates found in both T. arvense
and A. petiolata (Wolfe et al., 2008). Despite the lack of effects of
T. arvense on F. thurberi in this experiment, further study may be
warranted to determine if future interactions between T. arvense
and endemic plants and soil microorganisms will result in more
significant disruption to normal ecosystem function. The fact
that we found evidence for genotype effects in many F. thurberi
traits and responses to our experimental treatments underscores
the importance of understanding intraspecific variation in plant
species’ responses to biological invasion and other global change
factors (Gibson et al., 2014; Johnson et al., 2015). In addition
to recruitment, mortality, and relative greenness, dry-weight
biomass allocation to roots and shoots had a high degree of
intraspecific variability (Figures 4A,B). Although heterogeneity
of the environment has been shown to be an important
component of invasive plant dynamics (Pyšek et al., 2012),
genetic diversity of endemic populations, as well as species
richness, is also an important variable in evaluating the effects
associated with novel interactions in a changing climate.

AMF colonization did not vary significantly between
genotypes or respond to synthetic invasion by T. arvense. Dark
septate endophytes were found less frequently than either
arbuscules or vesicles, but percent of fine roots with DSE present
varied in distribution across genotypes and showed a genotype
× treatment interaction (Figure 4C). Dark septate endophytes
are an enigmatic group of fungi that may play ecological roles

similar to mycorrhizal fungi. Additionally, DSE have been shown
to be more abundant in stressful environments (Mandyam
and Jumpponen, 2005). Mycorrhizal association is generally
understood to be a mutualistic symbiosis where plant C is
exchanged soil P, N, and water (Smith and Read, 2008), although
direct mineral cycling has recently been questioned and further
and tight coupling of AMF and decomposers may play a more
important role than historically understood (Bunn et al., 2019).
Abundance in our experiment, as indicated by the percentage
of fine roots with arbuscules present, also varied significant
across treatment when controlling for genotype (Figure 4D).
Arbuscules are specialized interfaces across which nutrients are
exchanged between a plant and fungal partner (Smith and Read,
2008), and therefore critical to understanding how F. thurberi
may respond to novel interactions. Future research on high
elevation populations of F. thurberi should take into account
questions regarding the consistency of mycorrhizal response to
non-native plants across the spectrum of life histories as well as
whether these responses will be consistent under future climate
change scenarios.

Comparison of the Native,
High-Elevation Mustard to the
Introduced, Low-Elevation Mustard
Interestingly, we found a significant effect of N. fendleri leachate,
but not T. arvense leachate on relative greenness (Figure 3).
Treatment with leachate from N. fendleri resulted in elevated
relative greenness that was not significantly different from
T. arvense but was significantly different from control and
F. thurberi treatments. While N. fendleri is a native mustard
present at the elevation of the source F. thurberi, T. arvense is
a non-native mustard that has become cosmopolitan at lower
elevations. We chose to include N. fendleri in this study in order
to compare the effects of a locally native Brassicaceae species to
that of the encroaching non-native, the latter of which contains
phytochemicals known to relax constraints on arbuscular
mycorrhizal fungal phylogenetic diversity (Trautwig et al., 2021).

Mycorrhizal fungi have been shown to interact with plant
hosts along a mutualism/parasitism continuum (Johnson et al.,
1997). No significant effects were found in our study between
final dry-weight biomass, root:shoot ratio, or percent of fine
root colonization with arbuscules by treatment. However, a
significant interaction between genotype and treatment on
mortality, general greenness linked to chlorophyll content, and
percent of fine root colonized by DSE indicated that evidence
for variance among genotypes in the direction of the phenotypic
response to the treatments is present (Figures 2, 3, 4D and Table
1). Further research could explore whether both members of
the Brassicaceae filter microorganisms (including carbon hungry
AMF whose abundance inversely correlates with plant biomass;
Lynn et al., 2019) out of a community. In addition, novel
microbes associated with T. arvense at lower elevations may
disrupt previously existing dynamics in high elevation meadows
(Trautwig et al., 2021). A co-culturing experiment that examines
prolonged plant-plant and plant-microbe interactions may add
additional context to our experiment.
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One reason for the interactions we observed may have
been that novel microorganism communities associated
with T. arvense may be more adapted to disturbance than
microorganisms associated with N. fendleri and therefore
recovered more quickly following transplanting. Arbuscular
mycorrhizal communities have been shown to be highly
influenced by mechanical disturbance (Schnoor et al., 2010)
and the presence of T. arvense may have selected for more
disturbance-tolerant species.

CONCLUSION

We found evidence that both native and non-native mustard
species can impact the biology and performance of a dominant
native grass in high altitude ecosystems, where the impacts
of global change are ongoing but biological invasions have
thus far been less common than in lowland ecosystems.
We tested whether allelopathy from a non-native mustard,
T. arvense, differentially impacts clones of the native grass,
Festuca thurberi. Our experiment demonstrated intraspecific
variation in F. thurberi’s responses to simulated invasion with
leachate, with evidence for variation among clones in the
effects of T. arvense leachate on mortality, relative greenness,
and percent colonization of roots by DSE. There was also
significant variation among clones in a number of phenotypic
traits regardless of leachate treatment. Interestingly, leachate
from the related native mustard, N. fendleri, increased relative
greenness in F. thurberi regardless of genotype, suggesting that
the presence of native mustards may have a positive rather
than negative effect on performance. Our research contributes
to the growing understanding that intraspecific variation is an

important variable to consider as climate change continues to
alter high-elevation ecosystems and facilitates invasions where
they have historically been absent.
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