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Many National Forest Inventory (NFI) stakeholders would benefit from accurate estimates
at finer geographic scales than most currently implemented in operational estimates
using NFI sample data. In the past decade small area estimation techniques have
been shown to increase precision in forest inventory estimates by combining field
observations and remote-sensing. We sought to demonstrate the potential for improving
the precision of forest inventory growing stock volume estimates for counties in
United States of North Carolina, Tennessee, and Virginia, by pairing canopy height
models from digital aerial photogrammetry (DAP) and field plot data from the
United States NFI. Area-level Fay-Herriot estimators were used to avoid the need for
precise (GPS) coordinates of field plots. Reductions in standard errors averaging 30%
for North Carolina county estimates were observed, with 19% average reductions in
standard errors in both Tennessee and Virginia. Accounting for spatial autocorrelation
among adjacent counties provided further gains in precision when the three states
were treated as a single forest land population; however, analyses conducted one state
at a time showed that good results could be achieved without accounting for spatial
autocorrelation. Apparent gains in sample sizes ranged from about 65% in Virginia to
128% in North Carolina, compared to the current number of inventory plots. Results
should allow for determining whether acquisition of statewide DAP would be cost-
effective as a means for increasing the accuracy of county-level forest volume estimates
in the United States NFI.

Keywords: spatial Fay-Herriot models, model-assisted analysis, model-based estimation, composite estimators,
forest inventory

INTRODUCTION

National Forest Inventories (NFI) are designed to produce estimates of forest attributes on
regional to national scales; however, many stakeholders would benefit from accurate estimates
at finer geographic scales using NFI sample data in a cost-effective manner (Reams et al., 1999;
Coulston et al., 2021). Even though the spatial extent of NFI surveys can be very large, sampling
intensities may be insufficient to reliably estimate attributes on small areas carved out from what
are often expansive target forest populations (Breidenbach and Astrup, 2012). As an example, in
the United States NFI, coordinated through the United States Department of Agriculture, Forest
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Service, Forest Inventory and Analysis (FIA) program, sampling
is conducted on a network of field plots with an average intensity
of one plot per 2,430 ha (6,000 acres) and a remeasurement
interval of 5 years (Bechtold and Patterson, 2005). The FIA survey
design provides sufficient sampling intensity to meet precision
requirements specified as ±5% (one standard error), in terms
of growing stock volume per billion cubic feet (28.3 million
m3) on commercial forest land (USDA Forest Service National
Headquarters, 2008). For estimates on large areas of forestland,
this standard can be readily met; however, individual county
subdivisions within states rarely contain timber volumes this
large. As such, the 5% precision standard for individual county
forest volume estimates is generally unattainable from the
survey as designed.

Survey designers have recognized this limitation for decades,
even to the degree of anticipating the example presented above,
as did W.A. Fuller in the following comment made over two
decades ago,

“the client will always require more than is specified at the
design stage. For example, the client will explain that they require
estimates only at the regional or national level and then, when
data are available, ask for county estimates,” (Fuller, 1999).

Estimating forest attributes for areas smaller than a single
state is typically done by making direct estimates from plots
sampled within an area of interest; however, it is difficult to obtain
acceptably reliable direct estimates within relatively small areas
that may contain few inventory plots, or when precise coordinates
of a sample unit may be unavailable to analysts due to regulatory
restrictions (Reich and Aguirre-Bravo, 2009; Mauro et al., 2016;
Magnussen et al., 2017). In solving the problem of insufficient
sample sizes, an inventory supported by auxiliary information is
an effective approach to predicting forest attributes at unsampled
locations. Remote sensing data sets often serve as sources of
auxiliary information (McRoberts, 2012; Brosofske et al., 2014).
Statistical methods, such as regression or generalized regression,
imputation, interpolation, and machine-learning algorithms have
been used to link remote sensing data to field observations
from NFI samples.

As a class of statistical estimators, small area estimation
(SAE) techniques combine survey sample data with auxiliary
information – often statistically-related to sample attributes of
interest – that will improve the precision of direct estimates. SAE
methods are often categorized as (1) domain-direct estimation,
(2) domain-indirect estimation, and (3) composite estimators
(Rao and Molina, 2015). In domain-direct estimation, parameters
for an area or domain of interest are estimated primarily from
sample data observed inside that domain. Domain-indirect,
estimation also makes use of sample information from outside
a domain of interest, with a goal of reducing the standard
error of the estimate within the small area domain. Indirect
estimators borrow strength from observed sample data (y)
outside the domain of interest by linking them to auxiliary
data (x) using a model y ∼ x, sometimes called a synthetic
estimator or shrinkage estimator, to increase the precision of
parameter estimates (Lehtonen and Veijanen, 2009). While direct
estimators are often unbiased based on their sampling design,
they may become unstable or subject to very large variances
when sample sizes are small. Further, while indirect estimators,

such as regression models, may be capable of generating precise
predictions, they may be subject to large biases when model
assumptions are violated. To preserve the unbiasedness of direct
estimators, while achieving greater precision afforded by indirect
(model-based) estimators, the two can be combined in a weighted
average. The resulting composite estimator can be optimized to
balance the unbiased property of their direct component and
the minimum variance property of the synthetic model. In two
common approaches, the optimization is achieved using a mixed
modeling framework that accounts for both the variation of
sample estimates within each small area domain and the variation
among domains not explained by the model (Fay and Herriot,
1979; Battese et al., 1988).

Depending on the structural resolution of data available for
developing synthetic estimators, SAE models are commonly
distinguished as taking either an area-level or unit-level approach
(Rao and Molina, 2015). Area-level models operate by treating
each small area domain in a population as a single datum (x,
y) to be used for fitting a synthetic model. The models are then
useful for generating estimates on small area domains within
the same population. The domain-direct estimate and its sample
variance serve as the source of direct information, while the
indirect information – sample estimates and variances from other
domains – is then linked to the direct domain via the model y ∼
x, which leverages the relationship between sample and auxiliary
data sets. Area-based approaches are often synonymous with the
Fay and Herriot (1979) estimator, a well-recognized and widely
adopted model used in area-based SAE, including a number of
forest inventory applications (Green et al., 2020b).

Like area-based SAE, the unit-level approach also aims to
make composite estimates for small area domains; however, data
used to formulate the model relationship involve the population
observational units themselves, which, in NFI applications are
usually the field plot observations that comprise a sampling
frame (Battese et al., 1988; Breidenbach et al., 2018; Mauro
et al., 2019). While area-level SAE requires that sample units
can be explicitly tied to the domains on which they were
sampled, unit-level approaches require that each sample unit
is paired with corresponding data from the auxiliary source
(Rao and Molina, 2015). Unit-level analyses that pair field
sample observations with geospatial auxiliary information or
digital maps require precise coordinates of field sample plots,
most often obtained using global navigation satellite systems,
e.g., GPS, to facilitate geospatial pairing of field plot data with
co-occurring observations from remote sensing data layers.
In the forest inventory literature, both area-level and unit-
level SAE have been demonstrated to improve the precision of
estimates on small area domains while largely preserving their
unbiasedness (Wang et al., 2011; Breidenbach and Astrup, 2012;
Goerndt et al., 2013; Magnussen et al., 2017; Mauro et al., 2017;
Green et al., 2020a).

Our focus here is the Fay-Herriot (FH) area-level approach
to demonstrate an application of SAE that can be used with
publicly available observations from the FIA database, which
do not include precise coordinates for field sample plots that
would otherwise be required in unit-level analyses (Goerndt et al.,
2011). The application builds on the situation exemplified by
Fuller (1999), where our objective was to make use of sample
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data from several eastern states surveyed in the national FIA
inventory to produce county-level estimates having enhanced
precision over what can be achieved by direct estimation
alone. Working with the publicly available FIA data for the
three states—North Carolina, Tennessee, and Virginia—the FH
approach was chosen for SAE. Magnussen et al. (2017) found
that accounting for spatial autocorrelations in an area-level
model augmented for that purpose increased SAE precision
over non-spatial FH. We also examined the potential for
adopting the spatial Fay-Herriot (SFH) approach to further
increase precision of area-level SAE (Petrucci and Salvati, 2006).
A somewhat novel aspect of the work involves the source
of the auxiliary information, namely, digital canopy height
models (CHM) derived from 3D digital aerial photogrammetry
(DAP) acquired for entire states through the USDA National
Agriculture Imagery Program (NAIP; Strunk et al., 2020). To
demonstrate the potential for using area-level SAE techniques
in estimating county-level total forest volume from FIA in
single or multiple state settings, we identified the following
four research questions to be addressed: (1) To what degree
does area-level SAE using NAIP photogrammetrically-derived
CHMs improve the precision of FIA direct county-level estimates
of forest volume in the three states; (2) Does accounting
for spatial correlation among neighboring counties provide
additional gains in precision; (3) What effective gains in sampling
intensity can be achieved using CHM auxiliary information
in the FH modeling framework; and (4) To what degree
are SAE results dependent on treating the states as distinct
populations, compared to the alternative of treating them as a
single multistate population for purpose of estimating county-
level volumes?

MATERIALS AND METHODS

Study Area and Forest Inventory and
Analysis Data
The study area included states of North Carolina (NC), Tennessee
(TN), and Virginia (VA) in the southeastern United States
(Table 1). States were chosen based on the availability of remote
sensing data from USDA NAIP enhanced aerial acquisitions
that produced 3d surface point clouds from DAP. The states
possess significant forest resources, ranking second (NC), fifth
(VA), and eleventh (TN) in total forestland volume of 37 states
that lie entirely east of the North American Rocky Mountain
Range. Political subdivisions within the states divide them into 95
counties in TN, and 100 counties in each of the other two states,
for an average county land area of 1,220 km2 for the 295 counties
in the study area.

Direct estimates of forest volume were obtained using the
USDA Forest Service FIA program’s database of field plot
measurements for the United States’ NFI (USDA Forest Service
FIA, 2021). Estimates were based on the FIA calendar year 2017
forest evaluation, so that full-panel estimates—those based on
complete sample sets of field plot measurements collected over
5 years (2015–2019)—were available for estimation (Bechtold
and Patterson, 2005). Sampled plot-level data were processed to

TABLE 1 | Forest volume and land area statistics for states in the study area, with
the number of forested FIA sample plots (n) in each state.

Net volume Land area (total) Forest
area %

State ft3 × 106 m3 × 106 mi2 km2 n plots

North Carolina 43,691 1,237 53,800 139,400 54 3,662

Tennessee 32,072 908 42,100 109,200 52 2,932

Virginia 40,573 1,149 42,800 110,800 62 3,298

produce timber volume estimates and standard errors for each
county in the three states. The estimated volumes and their
standard errors provided direct estimates of forest inventory to
be tested for possible precision gains using SAE techniques. The
attribute of interest estimated for each county was the total (net)
wood volume in live tree main stems having diameters at breast
height ≥12.7 cm (i.e., 5.0 inches). The volume attribute excluded
wood contents in stumps below a 30.5 cm (1 foot) height, and
topwood above a 10.2 cm (4 inch) upper stem diameter.

Auxiliary Data
Digital data in the form of CHM acquired through USDA NAIP
served as source of auxiliary information for the SAE analyses.
The data were delivered as digital surface model (DSM) raster
files having grid cells of approximately 1 × 1 m (TN) and
5× 5 m (NC and VA) produced from aerial imagery and 3d DAP
methods (Strunk et al., 2020). The DSM data were resampled at
10 m × 10 m resolution for overlay with United States National
Elevation Database Digital Elevation Model (DEM) data. CHMs
were calculated by subtracting DEM values from the NAIP DSMs,
setting any negative values to zero.

Land cover data from the National Land Cover Database were
used to remove CHM data for raster cells classified as open water.
No accounting was made for other land cover types, as the goal
was to use auxiliary information derived as much as possible
from the NAIP imagery, rather than depending on land cover or
vegetation type classifiers derived from other auxiliary sources.
The CHM raster layers were clipped to each county boundary
and aggregated into seven 5-m interval height classes spanning,
{(0, 5), (5, 10), . . ., (30–35) m}, with values >35 m omitted to
remove possible outliers, anomalies, or atmospheric interference,
assuming nearly all forest canopies in the study area were ≤35 m
in height. County areas covered by each of the seven height classes
were calculated as the product of grid cell counts and the cell
area in km2.

Area-Level Fay-Herriot Model
The area-level approach introduced by Fay and Herriot
(1979) and implemented in the R package “sae” (Molina and
Marhuenda, 2015) was adopted for conducting SAE analysis.
The FH approach uses a composite of two estimates that results
in empirically best linear unbiased predictions (EBLUP) of an
attribute of interest in each spatial domain. Counties were the
domains, and total volumes the attributes of interest here, with
the population attribute for a given county (d) denoted as (τd).
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The composite estimator averaged direct and synthetic estimates
to produce EBLUPS

τ̂EBLUPd = γ̂d̂τ
DIR
d +

(
1− γ̂d

)
XT
d β̂ (1)

where τ̂DIR
d is the direct inventory estimate of total volume for

the dth county, Xd is a vector of canopy height class areas for the
county, β̂ is a set of linear regression coefficients estimated from
all county-level observations, and the composite weighting factor,
i.e., shrinkage γ̂d is defined as

γ̂d =
σ̂2
a

(̂σ2
a + v̂(̂τDIR

d ))
(2)

where v denotes the direct estimator variance and σ̂2
a is the

estimated variance among the county totals, formulated as mixed
effects in the FH model. A basic idea of the FH estimator
and composite estimators used in SAE in general is that the
weighting factor provides a way to balance the information
between the direct τ̂DIR

d and regression-synthetic XT
d β̂ estimators.

In (1) the weighting factor (2) accounts for relative sizes
of the domain-direct variance v̂(̂τDIR

d ) and variance among
counties measured by the random effect variance σ̂2

a. Parameter
estimation, including mixed-effects coefficients and variances
approximated by a polynomial expansion, were estimated using
restricted maximum likelihood in the “sae” package. Additional
details of the estimation procedure are given by Molina and
Marhuenda (2015).

Spatial Fay-Herriot Model
A spatial FH model (SFH) was also used to account for possible
spatial correlation among estimates from adjacent pairs of
counties (Petrucci and Salvati, 2006). The SFH model is built on a
FH model with simultaneously autoregressive spatial correlation
structure specified by a single parameter ρ and (d × d) proximity
matrix W having zero diagonals and ones in off-diagonal
elements indexing pairs of adjacent counties, i.e., those that share
a common border (Molina and Marhuenda, 2015). The advantage
of this spatial model in settings where forest conditions are more
alike among adjacent counties than for counties separated by
some distance is that it should provide additional precision gains
beyond those of the non-spatial FH model.

Model Fitting
In the “sae” package, FH EBLUPS and their mean-squared errors
are estimated by functions named eblupFH and mseFH with
the response variable specified as the vector of county-level
direct estimates of forest volume from FIA sample data, i.e.,
τ̂DIR
d (106 m3). County-level estimator variances v̂(̂τDIR

d ) were
given as inputs to the fitting procedure for use in calculating
domain weights for use in the composite estimator (1). County-
level area coverage (km2) for each canopy height class were
specified as predictors, with the full set of predictors including
all seven height classes. A zero intercept was found to be
supported for the base fixed-effects model based on increased
AIC by >2 units when a global intercept was included, with
additive random effects estimated for counties. The same inputs

were used in fitting the SFH model, but with the proximity
matrix also specified.

Both FH and SFH models were fitted with the response
formulated as µ̂DIR

d , where µ = county volume per unit land
area (m3 km−2) along with a suitable set of predictors that
gave roughly equivalent model results, but on a per area basis
rather than for county totals. Scaling the predictors to the same
per area basis as µ was necessary to preserve the strength of
the relationship between response and predictors. Preliminary
analyses indicated no meaningful differences in any of the
results or hypotheses tested, including comparison of spatial
autocorrelations with the SFH method. As a result, only results
for totals are reported here.

As in any multiple regression analysis, the correct specification
of predictors was investigated, in part to reduce any effects of co-
varying predictors that might inflate the estimated variances of
regression coefficients. Using a backward elimination procedure
based on the greatest reduction in the Akaike Information
Criterion (AIC) predictors were sequentially removed from a
reference model having a full set of p = 7 predictors, dropping
one predictor at a time until AIC was no longer reduced upon
removing another predictor. As a further restriction to address
a tendency of AIC to select models that are overspecified, we
adopted a type-I error rate α = 0.01 for model coefficients to
be included in final models. Predictors that did not meet this
criterion were dropped from final models.

Apparent Sample Size
A simple formulation for the standard error of a population
total estimated from sample observations of the total y, assuming
random sampling and ignoring any finite population correction,
is σ̂̂τ = σ̂y/

√
n. Using this formula and comparing domain-

direct estimated standard errors to RMSEs of EBLUPS obtained
from a FH or SFH estimation gave the apparent sample size
formula

napp = nfor ×

[
σ̂DIRτ̂

σ̂EBLUPτ̂

]2

(3)

where nfor is the sample size for the number of forested plots
involved in the direct estimate of the total, σ̂DIR

τ̂ is the standard
error of the direct estimate, and σ̂EBLUP

τ̂ is the RMSE of the
EBLUP estimated FH or SHF total. Although FIA volume
estimates include observed zeros on non-forested plots, the same
formulation as (3) can be used to calculate apparent sample sizes
for both forest and non-forest plots. To avoid redundancy, only
the results for napp of forested plots are presented here.

Single vs. Multiple State Analyses
In both FH and SFH approaches, composite estimators were
first developed using data from NC, TN, and VA fitted
separately as “individual states,” effectively treating them as
distinct populations for purposes of county-level forest volume
estimation. Second, estimators were developed using data from
all three states in a single model-fitting procedure, i.e, treating
the three “combined states” as a single population divided into
county domains. Both approaches produced EBLUP estimates for
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all counties having at least two FIA sample plots—the minimum
needed to estimate the direct estimator variance; however,
nothing in the two analyses explicitly constrained the resulting
estimates to agree between individual and combined state
approaches. Performing separate analyses for each state would
lead to three sets of fixed effects coefficients, and three separate
random effects variances σ̂2

a, one for each state, compared to just
one for the analysis combining the three states. Similarly, the SFH
approach gave separate state estimates of ρ for each state, while a
single value was estimated in the combined approach.

Evaluation of Spatial Autocorrelation
To compare the FH models to the SFH models we used
Likelihood ratio tests (LRT)

LRT = 2(lnL1 − lnL2)

where L1 and L2 are the restricted likelihoods calculated for SFH
(L1) and FH (L2) models, identical except for the correlation
parameter ρ. Under the null hypothesis SFH does not improve
on the fit of the non-spatial FH model, and large values of the test
statistic LRT ∼ χ2 (1) provide evidence for concluding that the
SFH model improves on the fit over the FH model.

Estimator Errors
Uncertainty of area-level FH EBLUPs is assessed by mean
square error (MSE), calculated in the mseFH R function as
an additive combination of terms representing uncertainties
associated with (a) prediction of random effects, (b) estimation of
regression model coefficients, and (c) estimation of the random-
effect variance, i.e., the variance among small-area domains
(Prasad and Rao, 1990; Molina and Marhuenda, 2015). The
MSE calculation is an second-order approximation using Taylor
linearization, shown to be approximately unbiased for large
D. Approximate unbiasedness of the Prasad and Rao (1990)
MSE estimator holds when any of three estimation techniques
are used, including the package default restricted maximum
likelihood (REML) used here. A similar approximation for REML
estimation based on the findings of Singh et al. (2005) and
implemented in the R package function mseSFH was adopted
here for calculating MSE for SFH estimates. Both the FH and
SFH MSE estimates are known to be asymptotically unbiased,
i.e., any bias approaches zero as D→∞ (cf. Li and Lahiri, 2010;
Coulston et al., 2021).

Precision Gains
To evaluate gains in the precision of FH estimators, we used
the relative standard errors (RMSE%) for τ̂DIR

d and τ̂EBLUP
d from

FIA sample data and FH models, respectively. The RMSE% to be
compared for each county were calculated as

RMSE%EBLUP = 100 ∗
√

MSE(̂τEBLUP
d )/ τ̂DIR

d

RMSE%DIR = 100 ∗
√

Var(̂τDIR
d )/ τ̂DIR

d

and a unitless standard error ratio (SER) for each county was
calculated as

SER = RMSE%EBLUP/RMSE%DIR

RESULTS

Model Fitting
Model fixed effects coefficients values generally increased from
lowest to highest with CHM height class, consistent with higher
volumes per unit area as would be expected for taller forests
(Table 2). A notable exception to this increasing trend was the
(20, 25] m height class, which contributed less to predicted
volumes per km2 than lower height classes in the same models.
The (30, 35] m CHM height class was a significant predictor for
all states and models, including in the combined 3-state model,
and had the largest coefficient estimates in all the models tested.
The Virginia estimator was the only one to include a significant
fixed-effects coefficient for the lowest (0, 5] m height class, and
its small magnitude reflected the low potential for forest volumes
in such low canopy heights, being less than half the size of the
next smallest coefficient value estimated for any model or height
class (Table 2).

Best models for individual state estimators included between
2 and 4 predictors, with variable selection excluding predictors
for at least one 5-m height class between any two consecutive
height classes kept in the final models (Table 2). In the combined
three-state spatial model, predictors for two consecutive
height bins (15, 20] and (20, 25] were both found to
be significant (α = 0.01) despite a greater potential for
collinearity due to possible overlapping of information in
abutting measurement intervals (see Supplementary Material
for predictor scatterplot/correlation matrices).

Fixed effects for the FH estimators were generally in line with
those of the SFH models for the single-state analyses (Table 2).

TABLE 2 | Estimated coefficients (106 m3/km2) for best SAE area-level models
(p < 0.01 for reported model coefficients).

State Predictors Estimated coefficients

FH SFH

North Carolina CHM (10-15] 0.03786 0.03623

CHM (20-25] 0.02357 0.02605

CHM (30-35] 0.08277 0.07889

Tennessee CHM (15-20] 0.04241 0.04250

CHM (30-35] 0.10179 0.10090

Virginia CHM (0-5] 0.00500 0.00465

CHM (10-15] 0.03360 0.03290

CHM (20-25] 0.02864 0.03028

CHM (30-35] 0.07009 0.06837

Three-state region CHM (5-10] 0.01230 0.01315

CHM (15-20] 0.04357 0.03381

CHM (20-25] * 0.01261

CHM (30-35] 0.09240 0.07563

*CHM (20-25] was not statistically significant in FH model for three-state region.
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Differences between FH and SFH estimates for any predictor
diverged by less than 3% percent on average (8 of 9 single-state
FH to SFH pairwise comparisons), although a discrepancy of
about 11% in magnitude was noted for the NC (20, 25] m height
class predictor. Larger differences were noted between the FH
and SFH coefficients in the three-state analysis, with differences
greater than 18% observed for two height class parameters and
the (20, 25] m height class being significantly different from zero
in the SFH model but not in the three-state FH model (Table 2).
Positive signs on all coefficients suggested that the synthetic
models themselves would not produce negative volume estimates,
none of which were observed in any of the results produced
for the study data.

Spatial vs. Non-spatial Models
Positive spatial autocorrelation estimates for ρ in SFH models
(Table 3) indicated that geographically adjacent counties’ forest
volumes tended to vary together in the same direction (Griffith,
2005). While LRT did not support the need for the SFH
formulation in individual state FH models, the spatial model was
found to significantly improve upon the non-spatial FH model in
the combined 3-state analysis (Table 3).

Precision of Estimation
Comparison of county-level direct estimates to FH EBLUPS
showed no obvious inconsistencies that might point to biases
in any sets of estimates (Figure 1). Relative RMSE from SAE
estimators compared to direct estimate standard errors for
county estimates showed magnitudes of reduction in estimator
errors (Figure 2). Relative errors for two Virginia counties,
Hampton City and Newport News, were noticeably higher
(>100%) than the bulk of the state’s counties (Figure 2C).
A similarly, high relative error (>80%) was noted for Crockett
county, TN (Figure 2B). Volume estimates for all three of these
counties were below 28,300 m3 (1 million m3), the smallest three
volume estimates of any counties sampled by at least one FIA
forest plot in the study. The two Virginia counties—defined by
the United States Census Bureau as “county equivalents,” but by
the State of Virginia as “independent cities”—had just one FIA
forest plot record each, while Crockett County, TN had just two
FIA forest plots. No other counties in the study area had fewer
than 5 FIA forest sample plots within their boundaries.

Using SER as a measure of the relative reduction in estimator
error for each county, North Carolina had the greatest gains
in precision at close to a 30% reduction using FH estimators
compared to sample domain-direct estimator errors (Table 4

TABLE 3 | Estimated spatial correlation coefficients in SFH models and likelihood
ratio tests (LRT) between FH and SFH models.

State Spatial autocorrelation
coefficient

LRT
(P-value)

North Carolina 0.4627 1.6622 (0.1973)

Tennessee 0.2880 0.7976 (0.3718)

Virginia 0.2204 0.3332 (0.5638)

Three-state region 0.6195 37.8980 (<0.00001)

and Figure 2A). Virginia and Tennessee exhibited comparatively
modest reductions in estimator errors at about 19% for FH versus
direct county estimates (Figures 2B,C).

Apparent Sample Size Gains
Apparent sample sizes for each county were calculated by
applying (3) to county domains in the study states (Figure 3).
Apparent sample size gains for the counties (ngain = napp – nfor)
attributable to the increased efficiencies of FH estimators were
summed for each state and the whole study area to determine
roughly how many additional FIA field plots would be required in
each state to achieve the county-level precisions afforded by FH
and SFH estimators (Table 4). In comparison to the FIA forested
plot sample sizes (Table 1), the gains under FH estimation ranged
from about 65% in Virginia to about 128% in NC, i.e., more
than an apparent doubling of the FIA sample size for forested
plots in that state.

DISCUSSION

Reductions in standard errors of direct estimates (volume
or biomass) from published studies of area-level SAE vary
considerably, from close to zero reduction (SER = 1) for planted
pine stands on which relative standard errors of direct estimates
were <10% (Green et al., 2020a) to reductions greater than
one-half (SER = 0.4) in small natural stands (average 6.1 ha)
studied by Ver Planck et al. (2018). Magnussen et al. (2017)
achieved considerable error reduction (SER = 0.53) in 25–
37 ha management units around Burgos, Spain and Rastatt,
Germany, and nearly as good (SER = 0.57) in forest districts
and municipalities in Jura canton, Switzerland (70,800 ha) and
Vestfold county, Norway (14,900 ha). Breidenbach et al. (2018)
attained error reductions (SER = 0.8) similar to what we achieved
for TN and VA working with a larger set of domains in
Vestfold county than the population studied by Magnussen et al.
(2017). While Green et al. (2020a) noted little reduction in
standard errors in stands where direct estimates were already
quite precise, they showed strong gains (SER = 0.65) in stands
having comparatively large uncertainties in direct estimates (up
to 30% relative SE). In the states studied here, most counties
having direct relative standard errors >30% for total volume
did not achieve precision gains as great as their corresponding
state averages, i.e., county SERs were not as small as the state
average SER (Figure 2). However, such counties comprised a
small proportion—about 13 of 295—of the counties studied.
Although Goerndt et al. (2013) focused more on domain-specific
biases than relative gains in precision, their results showed clearly
that gains depended a great deal on the attributes of interest being
studied, a consideration not pursued here as we only examined
FH model performance in estimating total forest volumes.

Several authors have examined the relationship between
sample size and precision gains such as those we measured by
SER, as well as the effect of direct estimator precision on SER
(Magnussen et al., 2014; Green et al., 2020a). By intentionally
reducing domain-specific sample sizes (nd), Goerndt et al.
(2011) demonstrated greatest precision gains (SER = 0.7) for
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FIGURE 1 | Fay Herriot composite estimates (EBLUP) of county forest volume totals compared to FIA direct estimates for three separate state-level analyses (A–C)
and the combined 3-state SFH analysis (D).

area-based SAE for 2 ≤ nd ≤ 4. They noted comparatively
modest gains (SER > 0.7) for nd > 4, with no appreciable
reduction in variances compared to direct estimates for large
samples (nd > 30). Area-level SAE over a twenty-state region
of the northeastern United States involving counties as small-
area domains showed gains comparable to those observed in
the three-state region studied here, with 0.65 ≤ SER ≤ 0.95
(Goerndt et al., 2019). Despite there being many large sample
sizes in the three states we studied—median nd = 31 (forested
plots) and median nd = 50 (all plots)—SERs for the 295 counties
studied here averaged 0.77 (Figure 2D) with SER 2.5th and
97.5th percentiles [0.58, 0.94] (Supplementary Table 1) showing
appreciable gains in precision for FH results across all domain-
specific (county) sample sizes. Precision gains observed here

across a range of forested plots’ sample sizes from 5 ≤ nd ≤ 96
differ from what other authors have shown, possibly because our
analysis did not rely on generalized variance functions, which
are known to convey mainly information on nd, rather than
directly estimated within-domain variation (Goerndt et al., 2011;
Coulston et al., 2021).

While precision gains were notable for estimating total
wood volume with FH EBLUPS compared to direct, design-
based estimates, a significant concern is that end-users often
require volume estimates disaggregated by forest type or species
groups (e.g., hardwoods or softwoods), or by product classes
such as pulpwood or sawtimber (Coulston et al., 2021). End-
users may also wish to preserve consistency among estimates
of multiple attributes for which NFI data provides estimates,
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FIGURE 2 | Fay Herriot estimates RMSE% compared to FIA direct estimate standard errors (percent of county total) for three state-level analyses (A–C) and the
combined 3-state analysis (D). Non-spatial FH estimators were used for data in panels (A–C), while the SFH estimator was used for panel (D). (note: SER = ratio of
standard errors).

including biomass, stem density, basal area, or any of dozens
to hundreds of other attributes. While not pursued here,
multivariate FH models have been developed and applied
to situations where multivariate estimates were sought from
repeated sampling (Ghosh et al., 1996; Benavent and Morales,
2016). Model-assisted methods may also allow for simultaneous
and compatible estimation of multiple attributes, or generic
inference, as distinguished from the focus on a single attribute
of interest, or specific inference, pursued here (McRoberts
et al., 2017; McConville et al., 2020). Expanding the analyses
conducted here to multivariate cases would constitute a
significant augmentation.

Accounting for spatial correlation among adjacent counties
had minimal effect in single-state analyses conducted here and
modest effect in the combined model involving all three states,
likely due to a mismatch between the scale at which the counties
in this study differed from scales of natural and anthropogenic
processes affecting total wood volumes in the states and counties
studied. We note that the mean land area of 295 counties
studied here was 1,218 km2, with a range of [107, 4,047]
km2 (Supplementary Table 1). The lack of spatial correlation
differed from other work that found substantial reductions in
SER when spatial autocorrelation was accounted for Magnussen
et al. (2014); Ver Planck et al. (2018). Observed gains may be
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TABLE 4 | Mean standard error ratios (SER) of EBLUP RMSE to direct standard
error, averaged over counties within state groupings.

Single state
results

Combined
state results

Apparent nd

gains

State FH SFH FH SFH FH SFH†

North Carolina 0.7044 0.6957 0.783 0.7363 4,692 3,921

Tennessee 0.8129 0.7984 0.8567 0.8166 1,937 1,746

Virginia 0.8128 0.8155 0.817 0.7729 2,137 2,893

Three states 0.7759 0.7694 0.8183 0.7746 8,766 8,560

Unshaded entries correspond to alternative FH or SFH results supported by
likelihood ratio tests (cf. Table 3).
†results from SFH analysis performed on three-states combined.

related to the areas of domains studied, such as in relatively
small stands studied by Ver Planck et al. (2018), which were
necessarily much closer in proximity (e.g., as could be measured

by centroid distances) due to their small land areas than the
county domains we studied. Closer proximities among domains
does not necessarily explain the gains achieved in accounting for
spatial correlation noted by Magnussen et al. (2014) in their study
of large Swiss forest districts spanning an area of 14,000 km2.
One result from our combined 3-state analysis that agreed with
results of Ver Planck et al. (2018) is that accounting for spatial
correlation can increase overall precision when averaged across
many small area domains. Our results were also consistent with
results presented by Ver Planck et al. (2018) that showed while
the SFH reduced relative errors in some domains, it led to
increased errors in others. When presented as maps of relative
standard errors for counties in the study region (Figures 4, 5),
it becomes evident that gains in precision for combining states
and using SFH reduced the errors in some counties in Virginia
while increasing errors in some counties in North Carolina and
Tennessee. Such tradeoffs should be considered when choosing
an approach for implementation.

FIGURE 3 | Apparent domain sample sizes (nd,app) for total forest volume of study area counties compared to FIA sample sizes from direct estimates. Non-spatial
FH estimators were used for results shown in panel (A–C), while the SFH estimator was used for panel (D).
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FIGURE 4 | Relative standard errors of non-spatial Fay-Herriot EBLUP estimates of county total forest volume, obtained from separate models for each of three
states, North Carolina, Tennessee, and Virginia.

FIGURE 5 | Relative standard errors of simultaneous autoregressive spatial Fay-Herriot EBLUP estimates of county total forest volume obtained from a single model
combining data for three states in the southeastern United States.

Since county areas are treated as known, fixed quantities in
the FIA estimation framework, scaling of responses, predictors,
model coefficients, and estimated RMSEs to a per-area basis can
be accomplished post hoc by dividing quantities related to totals
by the corresponding county areas (Supplementary Table 1).
No recalculation of model parameter estimates, including the
spatial correlation parameters in SFH results is necessary. Future
work could look at how results generated per unit of forest

land might differ from the area totals (or totals scaled per
unit area of all land) presented here. Since forest land area is
an estimated quantity in the FIA inventory design, estimates
per unit of forest land area would consist of ratio estimates
with both numerator (volume) and denominator (forest land
area) being estimated quantities. It is possible that the spatial
correlation structure for such ratio estimates differs from
those noted here.
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Further gains in estimator efficiency should be possible
by including additional auxiliary information to reduce
likely inconsistencies in the largely unmodified NAIP CHM
information used here (Hansen et al., 2013; Potapov et al.,
2020). Apart from filtering CHMs to omit areas over water,
no efforts were made here to eliminate pixels in the CHMs
representing heights of vegetation or other structures lying
outside of areas that would typically be classified as forestland
in the FIA inventory. Features such as buildings or other raised
structures, urban forests, small patches of trees growing outside
of areas defined as forest (see Glossary of Terms, Bechtold and
Patterson, 2005), agricultural crops, or features in other land
types undoubtedly contributed to the summed canopy height
class metrics derived from CHM metrics used as predictors
in the synthetic models developed here (Hansen et al., 2016).
Although the current study was focused on gains to be realized
with minimal processing of NAIP CHMs as-delivered, exploring
the impact of non-forest features on forest volume estimates is a
topic of considerable interest (Potapov et al., 2021).

Cost Effectiveness
Results of this work demonstrated the magnitudes of gains
in efficiency possible by integrating NAIP-derived CHMs with
direct sample data from NFI field plots using the area-level FH
and SFH procedures. Such information can be used to evaluate
cost-effectiveness of implementing the approach to other states
or repeating a NAIP 3d acquisition at a future date, such as in
monitoring forest growing stock change over time. In considering
this, we defined the costs of collecting sample data from a single
survey plot (Cplot) and the cost of acquiring NAIP 3d DAP
coverage for a state (C NAIP).

The cost of additional forest plots needed in direct estimation
to attain the same level of precision that SAE analysis using NAIP
CHM data provided is Cplot × ngain, leading to the following cost
effectiveness (Ce) calculation

Ce =
CNAIP

Cplot × ngain

where values of Ce < < 1 should indicate some degree of
cost-effectiveness for acquiring NAIP 3d imagery. In the three
states studied here, the inequality Ce < 1 requires a cost ratio
CNAIP/Cplot < ngain, with values of ngain ranging from 1,937 to
4,692 (Table 4). From this basic calculation, it appears that NAIP
acquisition costs below about 2,000 times the cost of adding an
additional sample plot measurement would be worth considering
for states like North Carolina, Tennessee, or Virginia, at least
from the perspective of cost-effectiveness. In actual settings, cost
considerations would not likely be this simple. For instance, when
evaluating a decision to install new field plots, potential costs
would undoubtedly be different than the cost of remeasuring
existing plots. Other factors such as the number of plots and forest
acreage in states would also merit consideration.

Precision Standards
Direct and SAE estimates of precision in this study can shed
light on the degree to which the FIA standard for precision

FIGURE 6 | Relative standard errors of FIA direct and FH county forest
volume estimates (million m3) with 5% precision standard per 28.3 million m3.

could be met or exceeded using FH type estimators. Because
the estimates in this study are for all forest land, rather than
limited to commercial forest land, the 5% standard may not
be representative of FIA direct estimates’ precision, despite
approaching the 5% standard (Figure 6). Even so, gains achieved
using SAE demonstrate that the standard can be met at a
smaller volume threshold, perhaps 90% of the current 1 billion
ft3 by incorporating photogrammetric CHM information into
estimates (Figure 6).

CONCLUSION

Area-level SAE models using NAIP 3d DAP canopy heights
as auxiliary information provided precision gains averaging
between 19 and 30% for estimates of county-level forest volumes
in North Carolina, Tennessee, and Virginia, compared to
estimates made from FIA sample data alone. Choosing the
appropriate populations from which to generate county-level
FH estimates, i.e., using single states or combining data from
multiple states, should be given due consideration in operational
inventory settings. The applied research presented here is the first
example we know of that applied SAE techniques to FIA survey
data at state and county-level scales, which should make results
relevant to stakeholders concerned with increasing efficiencies
in FIA inventory estimation. Results suggest that the non-spatial
model seemed adequate in generating county-level estimates in
single-state settings, while the area-level model accounting for
spatial autocorrelation was better suited in the combined three-
state setting. Composite FH-type area-level estimators showed
high potential for increasing precision in county-level estimates
of growing stock volume with considerable gains in apparent
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sample sizes, a clear measure of cost-effectiveness, and seemingly
little or no added bias. Further examination of potential gains in
estimating other forest attributes in the FIA program—including
measuring change over time–seem warranted, as do the use of
other sources of auxiliary information and the application of
these methods to other states and regions in the United States.
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