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Small area estimation is a growing area of research for making inferences over

geographic, demographic, or temporal domains smaller than those in which a particular

survey data set was originally intended to be used. We aimed to review a body of

literature to summarize the breadth and depth of small area estimation and related

estimation strategies in forest inventory and management to-date, as well as the current

state of terminology, methods, concerns, data sources, research findings, challenges,

and opportunities for future work relevant to forestry and forest inventory research.

Estimation methodologies explored include direct, indirect, and composite estimation

within design-based and model-based inference bases. A variety of estimation methods

in forestry have been applied to extensive multi-resource inventory systems like national

forest inventories to increase the precision of estimates on small domains or subsets

of the overall populations of interest. To avoid instability and large variances associated

with small sample sizes when working with small area domains, forest inventory data

are often supplemented with information from auxiliary sources, especially from remote

sensing platforms and other geospatial, map-based products. Results frommany studies

show gains in precision compared to direct estimates based only on field inventory data.

Gains in precision have been demonstrated in both project-level applications and national

forest inventory systems. Potential gains are possible over varying geographic and

temporal scales, with the degree of success in reducing variance also dependent on the

types of auxiliary information, scale, strength of model relationships, and methodological

alternatives, leaving considerable opportunity for future research and growth in small area

applications for forest inventory.

Keywords: small area estimation, model-assisted estimation, forest sampling, geospatial data, design-based

inference, model-based inference

1. INTRODUCTION

The frequency and sophistication of statistical methods in forest inventory have grown steadily
since their earliest adoption by forest researchers, with an overall goal of providing information
of sufficiently high quality to inform decision-making (Schumacher, 1945). One ongoing trend
involves the use of data collected as a part of broad regional or national forest inventories
to produce estimates for areas smaller than the surveys were originally designed to address
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(Magnussen et al., 2014). This trend reflects a situation described
by W. A. Fuller in a plenary presentation delivered to a 1998
workshop on Environmental Monitoring Surveys Over Time
hosted by the University of Washington, Seattle (Fuller, 1999):

“The client will always require more than is specified at the

design stage. For example, the client will explain that they require

estimates only at the regional or national level and then, when

data are available, ask for county estimates.”

While the quotation cites a typical circumstance, many situations
arise in forest resource assessment where stakeholders recognize
that data from multiple sources and scales could be leveraged to
give improved estimates for increasingly small subsets of survey
populations—whether based on geographic areas, time periods,
or demographic subsets of larger populations from which sample
data were collected.

One means of addressing this need is through small area
estimation (SAE), a set of statistical methods aimed at providing
estimates of parameters of interest for population subsets known
as small area domains, typically by linking information from
auxiliary sources with sample observations gathered over a larger
population that encompasses multiple small area domains. A
small area in this case can be described as any geographic,
temporal, or categorical domain for which an established
approach for direct estimation does not provide adequate
precision (Rao and Molina, 2015). Usual quantities of interest
include finite population parameters such as area totals or means,
especially where tolerances for estimator accuracy have been
specified as a part of the sample design. Domains in SAE are
typically subsets of larger survey populations, such as those
found in regional or national economic, health, or agricultural
surveys focused on multiple attributes of interest (Schreuder
et al., 1993). These surveys may involve decades of repeated
sampling and data collection targeting dozens of attributes,
or be limited to a single attribute observed at just one point
in time.

SAE methods seek to improve the precision of estimates for
small area domains of interest (DOI) using data observed from
other domains to increase the amount of sample information
available, an approach often described as “borrowing strength.”
The indirect (i.e., outside-of-domain) data are generally linked
to small area DOI through one or more auxiliary variables and
a model relationship that holds across multiple domains. In this
sense, the domain (d) direct data (y ∈ d) are linked to the indirect
data (y /∈ d) via a model relationship involving the auxiliary data
(x) and corresponding observations of y. In the example Fuller
(1999) described, counties of interest are the small area domains,
with the sample data collected in a specific county serving
as its source of direct information. Sample observations from
surrounding areas—including other counties—are the source of
indirect data. In a national forest inventory (NFI) application
consistent with Fuller’s example both y ∈ d and y /∈ d
would be collected on observational units selected by statistical
sampling. Auxiliary information to construct a model for y ∼ x
might come from remote sensing or other geospatial data sets
separate from theNFI sample observations, or from other sources

including surveys of forest landowners, agencies, or enterprises
that keep records of timber harvesting, tree-planting, or other
management-related activities. Other arrangements and sources
of information are possible, but the overall pattern of direct,
indirect, and auxiliary information, and a model y ∼ x is present
in most SAE applications (Rao, 2008).

Methods now widely associated with SAE largely appeared
in technical literature beginning in the 1970s to address
needs for increased accuracy when estimating for small area
domains within population, social-economic, and public health
surveys (Federal Committee on Statistical Methodology, 1993).
Since then, SAE has been adopted in applications aimed at
estimating incomes (Fay and Herriot, 1979), census groupings,
and crop areas (Battese et al., 1988), among others. Methods
for SAE have continued to develop over time as new statistical
and computational tools have become available, together with
widespread availability and cost-effectiveness of modern data
sets. Remote sensing technologies such as satellite imagery or
aerial laser scanning (ALS) have played a key role in accelerating
the application of SAEmethodologies to forest inventory settings
(Pfeffermann, 2002, 2013; Sugasawa and Kubokawa, 2020;
Coulston et al., 2021).

Interest in applying SAE across disciplines has grown over
time but most applications in forest inventory began to appear
in published work over the past several decades (Burk and
Ek, 1982; Anderson and Breidenbach, 2007; Breidenbach et al.,
2010; Goerndt et al., 2011). SAE reduces forest inventory
estimator errors for small area domains, offering an efficient
and cost-effective option for reducing uncertainty compared
to increasing sampling intensity by installing additional forest-
inventory field plots (Magnussen et al., 2014). SAE techniques
have been used to enhance precision of NFI-derived estimates
(Breidenbach and Astrup, 2012; Frank et al., 2020), in forest
stand inventories (Ver Planck et al., 2018), and from surveys of
wood processors or commercial landowner inventories (Green
et al., 2020; Coulston et al., 2021), but are not limited to
those uses (Affleck and Gregoire, 2015). The ability of SAE
to increase estimator precision in small areas where data are
otherwise too sparse to satisfy tolerance specifications makes
it attractive for applications in forest inventory (Guldin, 2021).
For example, the Norwegian NFI has employed national canopy
height maps from aerial remote sensing as auxiliary data sources
since about 2010 to address needs for better local information
in producing municipal forest statistics and forest-management
related inventories (Astrup et al., 2019; Breidenbach et al., 2020).
SAE has been used with forest inventory data from the U.S.
Department of Agriculture Forest Service Forest Inventory and
Analysis (FIA) program to generate estimates of forest attributes
in small areas such as biofuel supply areas around co-firing power
plants (Goerndt et al., 2019). In forests where field plots can
be precisely referenced to high-quality geospatial auxiliary data
(e.g., ALS), SAE can provide increased precision of estimates for
arbitrarily small spatial areas—accounting for spatial correlations
in sample data when warranted—even where no direct sample
data lie within some DOI (Babcock et al., 2018; Pascual et al.,
2018). Current research aims to combine forest biomass data
from field plots with canopy-height measurements from the
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NASA GEDI spaceborne lidar platform and other remotely-
sensed auxiliary information in a SAE framework, signaling the
first efforts to obtain global scale forest biomass estimates in an
inferential framework (Patterson et al., 2019).

While the potential value of SAE for use in forest inventory
and monitoring is high, the number of applications reported in
technical literature to date is relatively small. A main objective
of this work is to provide an overview of published findings
of small area applications in forest inventory including relevant
considerations for their implementation in other, perhaps novel,
settings. An underlying goal is to provide a backdrop of SAE-
related concepts and terminology, as the clear and consistent use
of statistical language is important to wider adoption of these
tools in future work. A further objective is to provide clarification,
without a heavy emphasis on mathematical statistics, where
ample terminology and notation can pose challenges to those
interested in pursuing small area applications, possibly for the
first time. We begin in Section 2 with background on relevant
statistical paradigms of design- and model-based inference
relevant to SAE, including an important extension of design-
based inference known as model-assisted estimation. Section 3
presents terminology for direct and indirect estimators along
with an overview of composite estimators used in a majority of
SAE methods classified as either unit-level or area-level methods.
In Section 4, we summarize key findings of published SAE
research in forestry, with synthesis and comparison to design-
based approaches including model-assisted estimation. Section 4
also includes some discussion of variance estimators in small-area
inventory applications along with emerging topics in SAE. We
conclude in Section 5 with some take-home findings of the work.

2. BACKGROUND

2.1. Design-Based Estimators
The design-based framework for inference from statistical
sampling is a pillar of many SAE procedures, especially area-
level estimators that will be discussed in Section 3.3 below.
Sampling is likely familiar to most forest inventory specialists
as it provides the basis for establishing statistical properties
of estimators in well-designed inventories (Shiver and Borders,
1996; Gregoire and Valentine, 2007; Thompson, 2012). The
sample design assigns probabilities to population units (e.g.,
plots, trees, etc.) in the sampling frame for being selected in a
particular random draw from a finite population, with the overall
probability of any unit being included in a sample determined
from its selection probability in the context of the sampling
scheme. While the attributes of each unit—whether sampled or
not—are treated as fixed quantities, randomness in design-based
methods arises through the process of sampling. Gregoire (1998)
explained this detail stating, “in the design-based framework,
the population is regarded as fixed whereas the sample is
regarded as a realization of a stochastic process.” Design-based
methods rely on the randomization distribution of sampling and
possible estimates that could be obtained by following the sample
design and its implementation in the sampling scheme. A key
consequence is the lack of reliance on mathematical assumptions
of how elements in the population are distributed, or of model

relationships assumed about how two or more variables in the
population are related (Sterba, 2009).

The usual goal of design-based sampling and subsequent
estimation is to obtain reliable estimates of finite population
parameters in an inferential framework. In forest inventories,
population totals, means, or proportions for various attributes
of interest are typical subjects of estimation. No assumptions
about the underlying structure or distributions of population
units being surveyed are required for valid inference in the
design-based framework. Design-based estimators compatible
with their sample designs are design-unbiased, meaning the
expected value of the estimator over all possible samples equals
the true population parameter being estimated. It follows that
design-based estimators are design consistent, such that, “both
the design bias and the variance go to zero as the sample size
increases” (Skinner and Wakefield, 2017).

The Horvitz-Thompson (H-T) estimator is a design-based
estimator widely used in forest inventory and introduced in
many texts starting with simple random sampling. Any finite
population total for attribute y can be estimated using the
H-T estimator

τ̂y =
∑

iǫs

yi

πi
(1)

where τ̂y is the estimated population total, s denotes the set
of observed values in the sample, yi is the observed value of
attribute y on the ith sample unit, and πi is the probability that
yi is included in s. In this form design-based estimators rely
entirely on observed sample data and sample design weights,
i.e., the inclusion probabilities in the denominator of Equation
(1), to estimate an attribute of interest. Standard errors of an
estimate require pairwise joint inclusion probabilities P(yi ∩
yj) (i 6= j), calculated as the product of πi and πj when
random sampling is from non-overlapping population units.
Thus, the inference base for H-T estimator makes use of
properties of the sample design such as a sampling scheme
that draws samples according to design weights, independence
of sample observations, and sampling distribution properties
including applicability of Student’s t-distribution and the Central
Limit Theorem (Sterba, 2009). Sampling methods relying on a
design-based framework do so largely for its desirable properties
of unbiasedness and asymptotic consistency, often sought in
inventory settings. These methods, however, rely on direct data—
values of y observed directly by sampling from the population
of interest—which can be expensive to obtain. Any need for
estimates on small subsets of the population will likely result in
a need for increased sampling intensity and additional expense
(Fuller, 1999).

2.2. Model-Assisted Estimators
Models can be used within a design-based framework to improve
estimates in what are often called model-assisted estimators
(Särndal et al., 1992; McConville et al., 2017, 2020). Like the H-
T estimator (Equation 1), model-assisted estimators are direct
estimators in that they rely on values of y only from population
DOI. One example is post-stratification which has formed the
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basis of forest inventory estimation strategies in the U.S. for many
decades (Bechtold and Patterson, 2005). Among the simplest
model-assisted estimators are linear combinations of auxiliary
variables x – either univariate or multivariate – available for all
sampled units and having known populationmeans (µx) or totals
(τx). Using the H-T estimator (1), the model-assisted estimator
can be written as in Stahl et al. (2016)

τ̂MA
y =

∑

i∈U

ŷi +
∑

i∈s

yi − ŷi

πi
(2)

where τ̂MA
y is the estimated model-assisted population total for

attribute y, U denotes the (universal) set of all population units,
and predicted values are obtained from a model, i.e., ŷi = m(xi),
oftentimes a linear regression model. The first term on the right-
hand side of Equation (2) requires at least that population totals
τx for all predictors are known, while the second summand is a
H-T estimator of sample deviations frommodel-predicted values,
which should be positive if the model underpredicts for y ∈ s and
negative if the model overpredicts.

Särndal et al. (1992) presented an unbiased estimator for the
variance of Equation (2) when the coefficients of a linear model
m are known constants, an application known as the difference
estimator. The difference estimator is design-based because both
the estimator τ̂MA

y and it’s estimated variance are unbiased over
all possible samples due to the sample design. Thus, although
τ̂MA is a design-based estimator, the phrase “model-assisted” is
used to indicate that a model relationship is involved in the
estimation of τ .

The regression estimator, or generalized regression estimator
(GREG) is based on the same form as Equation (2) in cases
where ŷ is predicted from a regression model. GREG has
been applied in forest inventory solutions that include post-
stratification, ratio estimators, LASSO, ridge, and elastic-net
regressions (Stehman, 2009; McConville et al., 2020). Extensions
using non-linear, semiparametric, and non-parametric predictive
modeling techniques have also been demonstrated in forest
inventory applications (Opsomer et al., 2007; Tipton et al., 2013;
Kangas et al., 2016). Although taking the same form as the
difference estimator, as distinguished by Särndal et al. (1992),
the linear predictor m(x) in GREG consists of a regression
model y = xβ fit to paired sample values of x and y. Some
authors distinguish between the difference estimator and GREG
as either external or internal, respectively, based on the sources
of information from which their coefficients are derived (Kangas
et al., 2016; Stahl et al., 2016). Still within the realm of direct,
model-assisted estimators, the term modified GREG is used to
distinguish models where coefficients are derived using data
outside the population of interest (Rao and Molina, 2015). For
GREG to be approximately design-unbiased, sample inclusion
probabilities for x and y are used in a weighted-least-squares fit
of the model to sample observations. Inclusion probabilities are
also used in an approximate variance formulation for the GREG
estimator detailed by Särndal et al. (1992, ch. 6). Confidence
intervals can be reliably constructed for these estimators, but
are usually used for major domains as their variance can be
large or unstable in domains having small sample sizes (Särndal,

1984; Lehtonen and Veijanen, 2009). We note that design-based
approaches including H-T and model-assisted estimation are
sometimes categorized as SAE (see Figure 2.1 in Rahman and
Harding, 2017; Hill et al., 2021); however, they are often used
where interest lies in only a single population domain, such as
in the methods demonstrated by McConville et al. (2020) for
estimating forest attributes in a single county in Utah, USA.

2.3. Model-Based Estimators
A second pillar of many SAE procedures is the model-based
framework for inference, which we introduce here as being
distinct from a purely design-based framework, includingmodel-
assisted estimators described in Section 2.2. In model-based
estimation, univariate or multivariate statistical models are
formulated to establish the basis for assigning probabilities
to observed data, for characterizing probabilistic relationships
between variables, or for both. Unlike the fixed-quantity
view of population units in design-based estimation, model-
based approaches treat observable units in a population as
realizations or instances of random variables that underlie the
observable population. For this reason these conceptual models
of population variables and their statistical distributions are
sometimes referred to as “superpopulation models” but are just
as often simply called models (Gregoire, 1998; Skinner and
Wakefield, 2017).

Model-based estimators can be useful when random sampling
is impractical, or when assigning inclusion probabilities to
sample observations requires some assumption about the
statistical or spatial distributions of population units (e.g, Radtke
and Bolstad, 2001). Sterba (2009) emphasized the utility of
model-based estimators in surveys where selection probabilities
were unknown, particularly in some forms of non-random
sampling. Perhaps most important in the context of this review,
models serve an important purpose in providing a statistical
link between sample observations of y and auxiliary data x, to
make use of auxiliary information in ways that increase the
precision of parameter estimates. The parameters of interest
in forest inventory likely include population totals or means;
additionally, parameters of the models themselves, such as
regression parameters or ratios linking auxiliary and sample data
may be of interest (Gregoire, 1998). Model-based methodology
includes many tools to assist with identifying best models to
fit data, to estimate parameters and standard errors for model
predictors, and to adopt complex models and analyze more
complex data structures than might be possible from sampling
alone (Rao and Molina, 2015). While the complex and expansive
nature of model-based methodologies leads to a wide array of
SAE techniques that make use of models, they place a somewhat
greater burden on analysts to adequately address model selection,
goodness of fit, or checking of model assumptions—all model
concepts that would not be required in design-based approaches.

3. TERMINOLOGY AND METHODS

In Sections 2.1–2.3, estimation was presented as a means of
obtaining reliable information about population parameters of
interest—either for fixed finite populations or underlying model
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superpopulations—along with rationale for making statistical
inferences under design-based and model-based paradigms. In
moving to settings where the goal involves making reliable
estimates for subsets or domains of interest within broader
populations, the presentation will be expanded to include ideas
and terminology better suited to the purposes and practice
of SAE.

3.1. Direct, Indirect, and Composite
Estimators
Apart from the design- and model-based modes of inference
introduced above, estimators in general can be described as being
either direct, indirect, or composite in nature, depending on
the sources of information they make use of. Domain-direct
estimates use observed values yi only from sample units in a
particular domain, i.e., i ∈ sd. Domain-specific totals can be
estimated directly as

τ̂DIRd =
∑

iǫsd

wiyi (3)

where DIR indicates that τ̂ is a direct estimator, and d denotes
the domain of interest. Substituting wi = 1/πi in Equation 3
shows how the H-T estimator (Equation 1) serves as the domain-
direct estimator when data are restricted to sample units selected
in domain d, i.e., when i ∈ sd. The benefit of direct domain
estimation is that no explicit model assumptions are required
(cf. Sterba, 2009), and sampling weights can be used, allowing
for design-unbiased estimates. A fundamental concern of SAE
is that direct estimation often leads to unacceptably large or
unstable standard errors for domains with small sample sizes
(nd). Additionally, no direct estimates are possible for domains
having no sampled units, i.e., when nd = 0.

Indirect domain estimation seeks to remedy the direct domain
estimator’s shortcoming of large variance when nd is small by
increasing the “effective sample size” using information outside
of the domain of interest together with a statistical model (Rao
and Molina, 2015, pg. 35). The indirect approach is manifest in
what is often called a synthetic estimator, e.g.,

τ̂ SYNd = τ ′
xdβ̂ (4)

which gives the indirect or synthetic estimate (Schaible, 1993) of
the total for the dth small area domain, with domain d auxiliary

total τ xd, and regression coefficients β̂ estimated from (x, y)
data sampled across the entire population to borrow strength
for estimating on d. Benefits of the synthetic estimator are that
it can allow for estimates to be made in non-sampled units,
and likely has a smaller variance than direct domain estimates,
especially where nd is small. However, Equation (4) as given does
not account for between-domain heterogeneity and thus can be
biased for specific domains. Additionally the indirect estimator
does not necessarily trend toward the unknown domain total τd
as nd increases.

Not all synthetic estimators are regression models, but the
example in Equation (4) was chosen to illustrate some additional
details. First, when the coefficients are estimated only from data

sampled in the domain of interest, i.e., when β̂ in Equation (4) is

replaced by β̂d, the estimator is considered to be a model-assisted
(GREG) estimator having design-based properties for inference.
The same is true when the regression model is fit using sample
observations weighted by their design weights using weighted
least squares (Särndal et al., 1992; McConville et al., 2020, Section
6.4). Second, a synthetic estimator’s inference base may depend
on assumptions about its model form being correct, and whether
its parameters estimated from one set of domains are suitable for
making predictions for other domains. As with any estimator,
care should be taken to verify what conditions must be met to
satisfy the inference base for GREG.

The synthetic estimator can be used in concert with the direct
domain estimator to create a composite estimator that balances
the strengths and weaknesses of direct and indirect estimators
(Rao and Molina, 2015):

τ̂COMP
d = γdτ̂

DIR
d + (1− γd)τ̂

SYN
d (5)

The weighted average of the direct and indirect estimators
comprises the composite estimator τ̂COMP

d
, where τ̂DIR

d
is

a direct estimator, e.g., (3), τ̂ SYN
d

is an indirect estimator,
e.g., (4), and γd ∈ [0, 1] is a domain-specific weighting
factor, also known as a shrinkage factor. An optimal solution
for minimum MSE(τ̂COMP

d
) can be formulated as γ̂d =

MSE(τ̂ SYN
d

)/
(

MSE(τ̂ SYN
d

)+MSE(τ̂DIR
d

)
)

(Rao and Molina, 2015,
Section 3.3.1). For the optimal solution, as nd gets large or
when MSE(τ̂DIR

d
) is small, γ̂d tends toward 1, moving the

composite estimator toward τ̂DIR
d

and its favorable properties of

unbiasedness and consistency. Similarly τ̂COMP
d

tends toward the

synthetic estimator when nd is small orMSE(τ̂DIR
d

) is large. Most
SAE approaches favor the composite estimator for its ability to
balance the unbiasedness and precision of direct and indirect
estimators, respectively, while allowing for flexibility in the choice
and formulation of direct estimators and synthetic models.

3.2. Unit Level SAE
Unit-level SAE employs synthetic models that operate at the scale
of observational or sample units in the population, typically field
plots in forest inventory applications. The synthetic model in a
unit-level estimator is used to predict ŷ on all population units in
a domain d, regardless of how many (or whether) sample data
for y were observed in that domain. Predictors from auxiliary
variables x and the model relationship y ∼ x provide the means
of generating predictions for ŷ ∈ d. Here x is either known
for every unit in d or known in aggregate, as in a case where
a domain-specific mean for x, denoted x̄d, is known. In either
case, paired values of (x, y) are observed on sampled units across
the broader population, i.e., the indirect data, and used to fit or
train a synthetic model. Errors in the synthetic model predictions
are partitioned into two components (see Rao and Molina, 2015,
model 4.3.1). A domain-specific error vd is attributed to synthetic
model variance that applies equally to all y ∈ d, and within-
domain residual errors edi—independent of vd—that apply to
individual sample units yi; i ∈ d.

The unit-level composite estimator developed by Battese et al.
(1988, hereafter BHF) is an excellent example from which to
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study unit-level SAE, as the data and models the authors used
to demonstrate the application are integrated into the R “sae”
package (Molina and Marhuenda, 2015). BHF used the nested-
error linear regression model

ydi = x
′
diβ + vd + edi; d = 1, . . . ,D; i = 1, . . . , nd.

to estimate crop areas for corn and soybeans in Iowa, using
USDA Statistical Reporting Service field survey data from 1978
as direct observations of y, and Landsat 2 multispectral scanner
(57 x 79 m) raster imagery as auxiliary information for x.
Unit-level approaches rely on matching individual sample unit
observations to the auxiliary data; thus, the satellite image pixels
in BHF were assigned to corresponding 250-ha (1 sq. mile) field
survey units (BHF called the units “segments”)—about 555 raster
cells per segment. The aggregated Landsat and field survey data
formed (x, y) pairs for 37 sampled segments in a population of
D = 12 counties, with each county treated as a small-area domain
of interest. The BHF synthetic model used a response y = sample
segment area (ha) growing corn, in a linear regressionmodel with
an intercept and two predictors x1 = Landsat pixels classified as
corn and x2 = pixels classified as soybeans, with

∑

d∈D nd = 37
observed segments.

Using their synthetic model, similar to Equation (4), BHF
were able to predict domain means for corn area per segment in
counties as

µ̂d = x̄
′
dβ̂ + v̂d (6)

with x̄d calculated from all segments in county d, using Landsat
pixel class counts of a given crop in each segment (see Table

1, Battese et al., 1988). By estimating β̂ as fixed effects and v̂d
as random effects using mixed linear regression modeling, BHF
obtained the empirical best linear unbiased predictor (EBLUP) of

domain-specific means µ̂EBLUP
d

= x̄
′
dβ̂ + v̂d, a key contribution

of their work because of the favorable properties of the EBLUP.
Goerndt et al. (2013, Equation 5) and Costa et al. (2009,

Equation 13) presented the BHF unit-level nested error EBLUP in
the form of a composite estimator with domain-level, i.e., county-
level estimates obtained from direct and synthetic regression
estimates weighted as

µ̂EBLUP
d =





σ̂ 2
v

σ̂ 2
v +

σ̂ 2e
nd



 µ̂DIR
d +



1−
σ̂ 2
v

σ̂ 2
v +

σ̂ 2e
nd



 x̄
′
dβ̂ (7)

where µ̂DIR
d

is a sample-direct estimate of the mean y for small

area domain d and β̂ is the vector of fixed effects regression
coefficients obtained by linear mixed modeling with domain-
specific random effects. The term σ 2

v in Equation (7) denotes
the variance among domain random effects vd ∼ N (0, σ 2

v ), and
σ 2
e as the residual variance of population units—the variance

unaccounted for by the EBLUP—within domains, i.e., edi ∼

N (0, σ 2
e ). This assumption assigns a single residual variance to all

domains, with σ 2
e estimated from the full set of sample residuals.

As when using optimal shrinkage weights γ̂d in Equation (5), the
weights in Equation (7) ensure that as the domain-specific direct

estimator variance gets small, such as when nd is large, the EBLUP
tends toward µ̂DIR

d
.

Unit-level paired (x, y) data typically provide an information-
rich means of linking indirect data from broad and extensive
populations to specific domains of interest. Further, when
y is observed by non-random sampling, the model-based
properties of the composite estimator support approximate
and asymptotic inference bases where direct estimation alone
would not. Efforts should be made to verify the veracity
of the underlying statistical model and stochastic processes,
especially when data collection employs stratification, clustering,
or disproportionate sampling among some elements of the
population (Sterba, 2009). In applications involving large data
sets the computational requirements of unit-level analyses can
be demanding, especially when objectives include the validation
of variance estimates approximated by Taylor series linearization
or when using resampling procedures to estimate variance
components (Prasad and Rao, 1990; González-Manteiga and
Morales, 2008). Computationally demanding synthetic models
can also pose challenges for SAE, but software advances have
made steady gains in providing tools to address such challenges
(McRoberts et al., 2007). As with any model-based inference
approach, customary steps involving model selection, goodness-
of-fit, and checking other assumptions are important in unit-
level SAE. In cases where influential points, heteroscedastic error
variances, or non-independence of residuals present problems,
developments have been made to help overcome limitations of
the BHF approach (Babcock et al., 2015; Breidenbach et al., 2018).

3.3. Area Level SAE
Unlike unit-level approaches, area-level SAE employs synthetic
models that operate at the scale of subpopulation domains,
rather than individual sample or observational units. As a
consequence, auxiliary data do not need to be paired one-to-
one with individual sample observations. Instead, domain-direct
estimates (e.g., τ̂DIR

d
or µ̂DIR

d
) are paired with domain-specific

observations, such as domain means or totals of x ∈ d, which
we denote as xd. The paired domain data (ŷDIR

d
, xd) are then used

to develop regression models or train other types of synthetic
models for use in SAE. Rao and Molina (2015, model 4.2.5)
presented a regression-based area-level model

ŷDIRd = x
′

dβ + bdψd + ǫd (8)

where ψd are domain-specific model errors and ǫd are errors due
to sampling on the domain-direct estimates that appear on the
left-hand side in Equation (8). In the basic area-level model, Rao
and Molina (2015) explain that bd are domain specific positive
constants set to bd = 1 in the model presented by Fay and
Herriot (1979), which, for direct estimates of domain totals can
be expressed as

τ̂FHd = x
′

dβ + ψd + ǫd (9)

Fay-Herriot (F-H) models (Fay and Herriot, 1979) like the one
shown in Equation (9) are often synonymous with area-level
SAE, as they have seen considerable use in area-level applications
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since their introduction. An EBLUP derived from the F-Hmodel,
expressed as a composite estimator having a form similar to
Equation (5) shows the roles of direct and synthetic estimators

τ̂FHd =
(

γ̂d
)

τ̂DIRd +
(

1− γ̂d
)

xd
′β̂ (10)

with weights γ̂d = σ̂ 2
ψd
/(σ̂ 2

ψd
+ σ 2

ǫd
) composed as the model

variance relative to the total variance. A difference in the
shrinkage weights’ formulations for Equations (7) and (10) is
that σ 2

ǫd
in Equation (10) is assumed to be known, but typically

specified as the variance estimated from sample observations
y ∈ d. Wang and Fuller (2003) developed a modified area-level
estimator that accounts for the empirical estimation of domain-
direct variances, which has been demonstrated in forest inventory
applications (Magnussen et al., 2017). Similar to the unit-level

model, β̂ in Equation (10) is a vector of fixed-effects coefficients
from a linear mixed model having domain-specific random
effects. As in Equation (7) the F-H EBLUP tends toward the
direct estimator when the direct variance is low, and toward the
synthetic estimator when the direct variance is high. Because the
synthetic estimator in the F-H model operates on subpopulation
domains, the same aggregated measures xd from the auxiliary
data that were used in estimating the regression coefficients are
also used in predicting τ̂FH

d
in Equation (10). In contrast, the unit-

level EBLUP uses an aggregated measure such as x̄d in Equation
(7), despite the model coefficients having been estimated using
observed x (and y) values from individual sample units.

In applications framed in a geographic context, such as
forest inventories, where field plot observations are often paired
to auxiliary data from remote sensing, area level modeling
obviates the need for highly accurate plot coordinates, and
can be used when there is a degree of misalignment between
plots and auxiliary data (Goerndt et al., 2011). This concern is
highly relevant when the protection of confidential information
prevents the release of exact coordinates of sampled locations to
unauthorized personnel. Instead, only direct linkage to a specific
domain is needed for each plot. This also facilitates using sample
units that possess indistinct sampling boundaries, such as where
linear transects or variable-radius plots are used in field sampling
(Ver Planck et al., 2018). This method also tends to require
less processing time which lends itself to analysis involving very
large datasets.

3.4. Other SAE Methods
In addition to the aforementioned model forms, there are other
methods which serve as alterations or variations of the above
model types and as such are not mutually exclusive from them.
Such methods include Bayes methods, and nearest neighbor
models which are worthy of particular mention due to their
use in forestry SAE (McRoberts, 2012; Babcock et al., 2018;
Ver Planck et al., 2018). Bayesian methods, both empirical
Bayes (EB) and hierarchical Bayes (HB) offer some advantages
over their frequentest counterparts such as being able to model
different target variable types such as binary or count data (He
and Sun, 2000). HB also gives posterior distributions of the small
area parameters, and can therefore avoid relying on unrealistic
asymptotic assumptions (Pfeffermann, 2013). Bayesian methods

offer flexibility in specifying spatial structures such as spatially
correlated random effects (Wang et al., 2018).

Nearest neighbor techniques offer a similar set of benefits
for SAE, for example, where estimators for categorical, binary,
or count variables are involved. They are non-parametric
in that no distributional assumptions regarding response or
predictor variables are necessary, which has proven useful when
multivariate auxiliary information is used to construct synthetic
models. Nearest neighbor models can also accommodate
correlated sample and auxiliary data that may arise in spatial or
temporal domains (McRoberts et al., 2007; McRoberts, 2012).

4. APPLICATIONS IN FOREST INVENTORY

We now turn to selected examples related to SAE in forest
inventory from published research (Table 1). Note that in
Table 1, we exclude a large body of literature employing post-
stratification, a widely-usedmodel-assisted estimation technique.
Instead we aim to focus on estimators less-commonly used in
existing forest inventory production processes. Post-stratification
notwithstanding, model-assisted estimators including GREG
were among the most widely-used and earliest-adopted methods
for increasing estimator precision using models to link auxiliary
information from remote-sensing with field sample data. As such,
we elected to include a number of model-assisted applications
in our example references, even though some of the selected
examples do not involve “small area” domains as the term is often
used in SAE (Table 1).

Among the reasons authors have given for adopting model-
assisted estimators was the need to ensure design-based inference
in large, multi-resource sample designs (Reich and Aguirre-
Bravo, 2009; Næsset et al., 2011). Others cited the need for
precise estimation in small area domains nested within broader
population surveys as a motivating factor (Goerndt et al.,
2011; McRoberts, 2012; Magnussen et al., 2014). A few noted
that consistency and additivity of estimates from small areas
nested within larger domains were motivating concerns (Reich
and Aguirre-Bravo, 2009; Nagle et al., 2019). Others noted
the need for sample survey organizations to conduct generic
inference, i.e., tomake compatible estimates of all forest attributes
simultaneously by using the same model to define survey weights
(Opsomer et al., 2007; Johnson et al., 2008; McConville et al.,
2020). Nearly all research referenced in Table 1 reported the
potential for increased efficiency in estimating forest inventory
attributes as a reason for pursuing the work, with the high
cost of increasing field sample sizes frequently noted as an
operational constraint.

Lidar and digital aerial photogrammetry (DAP) were major
data sources used as auxiliary information, with some authors
using lidar or DAP point cloud metrics, e.g., height percentiles or
pulse return densities aggregated to unit or area levels, and others
using canopy height models (CHM) processed from point cloud
data (Steinmann et al., 2013; Babcock et al., 2015). Field plots in
forest inventories were the primary source of directly-sampled
observations, with more than half of the selected studies using
NFI or other land-management agency field sample observations,
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TABLE 1 | Table of selected studies using SAE-related methods in forest inventory with methods and data used.

References Estimation method(s) Direct data Auxiliary data

Affleck and Gregoire (2015) GREG Tree crowns Tree Branch Attributes

Anderson and Breidenbach (2007) GREG FI lidar

Babcock et al. (2015) HB FI lidar

Babcock et al. (2018) HB FI lidar, Landsat

Breidenbach and Astrup (2012) GREG, U-EBLUP NFI DAP

Breidenbach et al. (2018) U-EBLUP, A-EBLUP NFI DAP

Coulston et al. (2021) A-EBLUP NFI Landsat, TPO

Frank et al. (2020) U-EBLUP FI lidar

Goerndt et al. (2011) GREG, A-EBLUP, NN FI lidar

Goerndt et al. (2013) GREG, U-EBLUP, NN NFI Landsat, NLCD

Goerndt et al. (2019) A-EBLUP, NN NFI Landsat, NLCD, MODIS, EDNA

Green et al. (2020) A-EBLUP, U-EBLUP FI lidar, management records

Magnussen et al. (2014) GREG, U-EBLUP NFI lidar, DAP

Magnussen et al. (2017) A-EBLUP, HB FI lidar, DAP

Mauro et al. (2017) A-EBLUP, U-EBLUP FI lidar

Mauro et al. (2019) U-EBLUP FI lidar, SRM

McConville et al. (2020) GREG, Other NFI Landsat

McRoberts (2012) NN NFI Landsat

McRoberts et al. (2007) NN NFI Landsat

McRoberts et al. (2013) GREG, A-EBLUP NFI lidar

Næsset et al. (2011) GREG FI lidar, InSAR

Næsset et al. (2013) GREG NFI lidar

Nagle et al. (2019) GREG NFI NLCD

Pascual et al. (2018) U-EBLUP FI lidar

Reich and Aguirre-Bravo (2009) GREG FI Landsat

Steinmann et al. (2013) GREG NFI lidar, DAP

Ver Planck et al. (2018) A-EBLUP, HB FI lidar

Methods included are generalized regression estimators (GREG), nearest neighbor (NN), unit-level empirical best linear unbiased predictor (U-EBLUP), area-level best linear unbiased

predictor (A-EBLUP), and hierarchical Bayes (HB). Direct data sources include national forest inventories (NFI), non-national based forest inventories (FI), plus directly sampled tree data.

Auxiliary data used include tree branch data, light detection and ranging (lidar), digital aerial photogrammetry (DAP), Landsat, timber products outputs (TPO) surveys, national land cover

database (NLCD), management records, solar radiation models (SRM), elevation derivatives for national applications (EDNA), moderate resolution imaging spectroradiometer (MODIS),

and interferometric synthetic aperture radar (InSAR).

and most others using plots installed for management or
research purposes, such as on state, university, private, or public
experimental and working forests (Anderson and Breidenbach,
2007; Mauro et al., 2017; Green et al., 2020).

Several studies aimed to examine and augment existing
estimation frameworks in forest inventory settings to address
potential violations in underlying assumptions. Examples include
accounting for heteroscedasticity of variance in synthetic
model residuals and spatial or temporal autocorrelation among
measurements on observational units or areas of interest
(Babcock et al., 2018; Breidenbach et al., 2018; Ver Planck
et al., 2018; Mauro et al., 2019). Estimating the change of
forest attributes over time with SAE methods was demonstrated
successfully by Mauro et al. (2019) and by Coulston et al. (2021),
both of which used repeatedmeasurements from forest field plots
in their work.

Multiple studies applying one or both unit-level and area-level
EBLUP-based SAE appear in Table 1. The choice of adopting

unit- or area-level SAE in forest inventory applications can
depend on limitations of sample or auxiliary data sets, for
instance, where georeferencing inaccuracies introduce significant
errors in pairing field observations to remotely-sensed or other
geospatial data sets, e.g., maps (Næsset et al., 2011; Green et al.,
2020). Similar challenges in pairing field data to remote-sensing
can occur where plot designs and raster layers are incompatible,
such as when variable radius field plots (i.e., angle gauge
sampling) are used, or when field plot sizes are small compared
to the pixel size in available auxiliary data sources (Goerndt
et al., 2011; Ver Planck et al., 2018; Temesgen et al., 2021).
Although area-level estimators are flexible to accommodate

situations where precise georeferencing is impractical, a trade-
off may arise due to the loss of information from aggregating
unit-level observations to domain- or area-level scales; further,

aggregating sample observations also reduces effective numbers
of observations available for synthetic model development
(Magnussen et al., 2017).
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When georeferencing enables pairing of auxiliary and sample
data, sampled units can all serve as (x, y) observations for fitting
or training synthetic models. The models can then be used
to make predictions on raster cells or other spatial units that
correspond to unobserved population units (Babcock et al., 2018;
Frank et al., 2020). It follows that unit-level SAE estimators
can be used to map predictions or estimates at finer spatial
resolutions than area-level methods, the latter of which allow
for mapping SAE predictions only at domain levels. Another
potential advantage of the unit-level approach is the ability
to define arbitrary spatial domains subsequent to sampling
without necessarily losing substantial power of inference (Pascual
et al., 2018). Gains in efficiency between unit-level and area-
level SAE methods have been compared in multiple studies,
generally confirming the potential for greater gains from unit-
level approaches (Mauro et al., 2017; Breidenbach et al., 2018).

4.1. Gains Over Direct Estimation
4.1.1. Model-Assisted Estimation

Model-assisted estimators have proven to reduce estimator errors
considerably, e.g., when measured by the relative efficiency
of a model-assisted estimator compared to its simplest direct
counterpart—often characterized as simple random sampling—
cf. Equations (2) and (3)

RE =
Var(τ̂MA

y )

Var(τ̂DIRy )
(11)

McRoberts et al. (2013) demonstrated substantial variance
reduction 100%(1 − RE) = 84% using a non-linear regression-
based model-assisted estimator of growing stock volume per unit
area in a 1,300 km2 study area in southeastern Norway. The
gains corresponded to over sixfold increase in apparent sample
size, calculated as RE−1. Aerial lidar (0.7 pulses m-2) served as
the auxiliary data, with direct observations from n = 145 NFI-
type (200 m2) field plots over the study area. They noted similar
variance reduction (82%) using the same method to estimate
growing stock volume over a one-half partition of the study area
represented by n = 69 field plots, thus demonstrating how sample
data from a larger area can be used to increase the precision of
estimates in a smaller area (McRoberts et al., 2013).

Model-assisted estimation has been demonstrated to
increasing precision in multiple population sub-domains
including Breidenbach and Astrup (2012), who tested GREG
as a model-assisted estimator in a similar sized study area in
Norway divided into 14 municipalities, each having from 1
to 35 NFI sample plots of a total n = 145. They noted gains
in precision were smaller and more variable than McRoberts
et al. (2013), with RE ranging from 0.35 to 0.87 in eight
municipalities having nd ≥ 6. They concluded that sample
sizes nd < 6 in the other six municipalities gave unstable
estimates, a finding similar to Næsset et al. (2011). Their data
revealed that despite GREG’s limitation in areas with small
nd, its estimates deviated from sample-direct design-based
estimates by less than half as much as synthetic model estimates
alone, a result consistent with the design-unbiased property of
GREG in the model-assisted framework. Næsset et al. (2013)

observed consistent improvement in precision of estimates
of aboveground forest biomass using GREG with aerial lidar
auxiliary data in model-assisted two-stage sampling. Their
gains were greatest (RE = 0.125) for all cover classes combined
(n = 632), and only slightly more modest 0.09 ≤ RE ≤ 0.20
for individual age and productivity classes, all of which had
class-specific sample sizes nc ≥ 46.

Reduced RMSE of synthetic model estimates when compared
to direct estimator variance has been demonstrated in a number
of applications involving the pairing of ALS and NFI-type
field sample data (Næsset et al., 2011; Järnstedt et al., 2012;
Nord-Larsen and Schumacher, 2012; Kotivuori et al., 2016;
Nilsson et al., 2017; Novo-Fernandez et al., 2019). A variety
of synthetic modeling approaches have been tested including
parametric and non-parametric regression modeling, Random
Forests and other ensemble predictive models, and nearest-
neighbor imputation, often with a goal of identifying suitable
auxiliary data sources for estimating forest biophysical attributes
(Latifi et al., 2010; Popescu et al., 2011; Bright et al., 2012;
Rahlf et al., 2014). A common theme in these studies is the
direct examination of synthetic model prediction errors (e.g.,
using cross validation) without formulating the models in a
design-based or composite modeling framework to mitigate
potential synthetic estimator bias (cf. McRoberts et al., 2013;
Irulappa-Pillai-Vijayakumar et al., 2019; McConville et al., 2020).
In model-assisted applications the usual goal is to increase
the precision of population-level estimates, and less often to
produce estimates for domains that divide a larger population
into small areas where direct estimator instability can be a
concern.Where investigated, model-assisted estimators were able
to reduce small area uncertainties considerably, within limits
of direct-data sampling intensity and the strength of model
relationships involving indirect and auxiliary data (Breidenbach
and Astrup, 2012).

4.1.2. Unit-Level SAE

Research comparing unit-level SAE to model-assisted estimators
has shown that gains in precision are generally greater for
unit-level EBLUPS than model-assisted estimates (e.g., GREG)
primarily when direct-domain sample sizes are small. In directly
comparing unit-level EBLUPs tomodel-assisted GREG estimates,
Breidenbach and Astrup (2012) noted an average RE = 0.86,
meaning unit-level SAE MSEs were lower than direct estimate
variances by an additional 14%, on average, compared to
GREG. Not all EBLUP MSEs were smaller than those computed
for GREG. Comparisons showed greatest gains in five of six
municipalities having 6 ≤ nd ≤ 17, but smaller—even
negative—gains (RE = 0.93 and 1.15) were noted in two
municipalities having nd ≥ 29. Such findings indicate that
unit-level EBLUPS may not have as clear of an advantage over
GREG in reducing estimator variance when domain sample sizes
are relatively large; nonetheless, even when nd was relatively
large, EBLUP performance was not much worse than model-
assisted regression estimates (Breidenbach and Astrup, 2012).
EBLUPS showed considerable stability across the range from
1 ≤ nd ≤ 35 compared to GREG, with unit-level SAE relative
errors ranging from just [7.0, 12.4] % compared to a range of
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[0.6, 25.4] % for GREG, even with three municipalities having
nd = 1 excluded for the GREG results since their errors could not
be calculated (Breidenbach and Astrup, 2012). Magnussen et al.
(2014) reported virtually identical gains for model-assisted and
unit-level EBLUP estimates (both RE = 0.49) when compared
to direct volume per hectare estimates for forest districts in
Switzerland. The near identical results may have been related
to comparatively large average sample sizes n̄d = 79 across the
D = 108 Swiss forest districts.

Of the studies listed in Table 1 that compared unit-
level EBLUPs to domain-direct estimates, the largest variance
reductions noted (RE = 0.03) were in a study of forest volume
in Burgos Province, Spain, made up of D = 54 stands in an
area covering about 13.65 km2 (Pascual et al., 2018). The same
authors reported more modest gains (RE = 0.50) in a 3 km2

management area having D = 6 stands near Cercedilla, Spain.
The authors attributed the greater gains at Burgos as being due to
the lower sampling intensity there (about 0.5 %) compared to a 4
% sampling intensity at the Cercedilla site (Pascual et al., 2018).
Large gains were reported for unit-level volume EBLUPs (RE =

0.09) tested by Mauro et al. (2017) in an area roughly 8 km2. A
high degree of positive skewness was evident in the distribution
of nd across domains, with roughly 30% of map unit domains
having nd ≤ 2 despite n̄d = 10.3 acrossD = 64 map units having
any sample observations (Mauro et al., 2017). In estimating
volume change in D = 24 stands experimentally manipulated
for three levels of forest structural diversity, Mauro et al. (2019)
reported unit-level gains (RE = 0.71) for 7-year volume change
estimates. The sample design relied on 1 remeasured plot per 8
ha on a systematic grid, for a sparse but narrow range of domain-
direct sample sizes, with 3 ≤ nd ≤ 10 and n̄d = 6.3 (Mauro
et al., 2019). Breidenbach et al. (2018) reported greater efficiencies
RE = 0.43 and RE = 0.28 compared to direct estimate variances,
with the latter result including a formulation that accounted for
heteroskedasticity of variance in synthetic model residuals.

By artificially reducing sample sizes from the available n
= 680 NFI plots across D = 12 county-sized domains for
estimating Oregon Coast Range forest volumes, Goerndt et al.
(2013) demonstrated diminishing efficiency gains with increasing
nd in unit-level EBLUPS from RE = 0.41 (n = 136), to
RE = 0.57 (n = 204), to RE = 0.71 (n = 272). They also
found that alternative unit-level composite estimators calculated
with smoothed variances performed well in terms of increased
precision and low apparent biases in unit-level SAE (Costa
et al., 2003; Goerndt et al., 2013). The alternative estimators
employed multiple linear regression, as well as nearest neighbor
and gradient-nearest-neighbor imputation in synthetic models to
achieve balances between bias and precision of SAE (Ohmann
and Gregory, 2002).

4.1.3. Area-Level SAE

A number of studies have shown area-level SAE precision
gains for timber volume or biomass compared to sample-direct
estimates. Breidenbach et al. (2018), for example, reported a
reduction in overall standard error from 32.7 m3ha−1 for direct
volume estimates compared to F-H area-level RMSE of 23.1
m3ha−1 (RE = 0.50). A nearly identical gain in efficiency (RE =

0.50) was reported by Goerndt et al. (2011) for volume estimates
in forest stands treated as small area domains with intentionally-
reduced sample sizes between 2 ≤ nd ≤ 4. Relative gains
tended to be less when the simulated small nd were increased
by factors of two and three, with no gains for larger sample
size increases. Despite finding modest gains when nd was large,
area-level EBLUPS were demonstrably superior—in terms of RE
and lack of apparent biases—to two synthetic estimators and
two composite James-Stein type estimators tested (James and
Stein, 1961; Goerndt et al., 2011). In testing area-level SAE with
counties as small-area domains, a composite estimator similar
to F-H showed 0.43 ≤ RE ≤ 0.91 over a 20-state region
of the northeastern U.S. (Goerndt et al., 2019). In the same
study a composite estimator based on a non-parametric nearest-
neighbor (NN) synthetic model showed slightly less gain in
efficiency than the F-H type approach. Despite this, Goerndt
et al. (2019) indicated the NN approach may have lower model
bias and they cautioned against potential biases in model-based
estimators, pointing out the need for thorough checking of model
assumptions to ensure validity of model-based inferences.

The pattern of decreasing gains in efficiency with increasing
nd was also noted by Mauro et al. (2017), who reported an
average RE = 0.48 over D = 84 management areas (domains),
while no gain (RE = 1.13) was noted in 14 of the domains
having nd ≥ 25 sample plots (cf. Goerndt et al., 2011, 2019).
Green et al. (2020) noted average RE = 0.79 in F-H estimates of
timber volume across D = 40 stands, with little or no efficiency
gains in stands where direct estimates were already quite precise
(relative standard errors < 10%). Greater gains (RE ≈ 0.35)
were noted in stands having direct relative standard errors >
25%. Findings such as these indicate that where domain-direct
estimates are already quite precise, as in cases where nd is large or
variation within domains is inherently low, F-H type estimators
may exhibit a limited ability to further increase precision over
domain-direct estimates.

Magnussen et al. (2017) reported RE ranging from 0.44 to 0.77
in four study areas in Spain, Norway, Switzerland, and Germany,
using a modification of F-H that treats domain-specific variances
as estimates rather than known constants (Wang and Fuller,
2003). In the same study they found greater gains 0.28 ≤ RE ≤

0.34 by including a non-stationary spatial correlation process in
an area-level composite estimator which accounted for the spatial
covariance structure in model residuals (Chandra et al., 2012,
2015). In a third approach Magnussen et al. (2017) used the HB
approach of Datta and Mandal (2015) to obtain efficiency gains
intermediate (0.27 ≤ RE ≤ 0.81) compared to their baseline—
specifying empirically estimated variances—and non-stationary
spatial F-H approaches. The Bayesian approach demonstrated
several advantages related to estimated posterior distributions
for specific domains, especially when the random-effect variance
was largely attributable to a small number of domains from the
larger population (Magnussen et al., 2017). Coulston et al. (2021)
evaluated the performance of area-level F-H models including
a simultaneous autoregressive (SAR) model of residual spatial
correlation among domains in estimating forest removals, noting
the spatial model improved efficiency of estimates at scales of
individual counties, but not at the scale of larger survey regions
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encompassing groups of 12-20 counties each in the southeastearn
United States. Ver Planck et al. (2018) compared F-H gains
with no accounting for spatial autocorrelation (RE = 0.23)
to a conditionally-autoregressive (CAR) F-H model that further
reduced estimator variance (RE = 0.19), noting that the CAR
model performance was generally greater in domains (stands)
sharing boundaries with high numbers (> 10) of neighboring
stands. The non-stationary spatial process (Chandra et al., 2012)
may improve upon simpler CAR and SAR modeling approaches,
as it employs a distance-weighted measure of correlation among
domains rather than a simple binary model based on domain
adjacency. Spatial models provide a promising tool for future
applications of area-level SAE that account for non-trivial spatial
correlations among small area domains likely to be realistic
in many forest inventory applications (Finley et al., 2011;
Magnussen et al., 2017).

4.1.4. Unit Level vs. Area Level SAE

Although area-level EBLUPS have shown clear gains in efficiency
over direct estimates in forest inventory SAE applications,
still greater gains have been demonstrated using unit-level
approaches when suitable data are available and model
assumptions are met (Breidenbach et al., 2016, 2018). In
comparing both approaches to direct estimates of forest volume,
Mauro et al. (2017) observed halving of variance (RE = 0.48)
and ten-fold reduction (RE = 0.09) for area-level and unit-
level estimates, respectively. A notable feature in the study was
the large proportion—slightly more than half—of the 84 stand
groupings defined as small area domains containing nd ≤

6 field plots, linking greatest gains in efficiency to domains
having relatively small nd. Their unit-level results achieved
variance reductions among the largest of any reported in forest
inventory literature (Mauro et al., 2017; Pascual et al., 2018). By
comparison, Breidenbach et al. (2018) reported RE = 0.50 (see
Section 4.1.3) for area-level and RE = 0.28 (see Section 4.1.2)
for unit-level estimators applied to a common data set. Their
domain-direct sample sizes were also small [4 ≤ nd ≤ 7], so
the source of differential gains between the two studies’ unit-
level estimators may be related to other factors including the
strength of the synthetic model relationships, which we weren’t
able to compare between the two studies (Mauro et al., 2017;
Breidenbach et al., 2018). A distinct barrier to achieving large
gains in efficiency with unit-level SAE, especially compared to
area-level approaches, is the ability to accurately georeference
field plots and spatial auxiliary data sources. Green et al. (2020)
noted this as a possible reason for the lack of gains in their
unit-level models compared to area-level SAE.

4.2. Variance Estimation
Variances for model coefficients and estimates of finite-
population parameters for design-based direct or model-assisted
estimates (Sections 2.1 and 2.2) are in most cases calculable using
commercially available statistical software packages (Molina and
Marhuenda, 2015; Breidenbach, 2018; McConville et al., 2018;
Hill et al., 2021). Other variance estimators are documented in
research literature in sufficient detail to facilitate calculation with
scientific programming software (McRoberts, 2012; Mandallaz

et al., 2013; Babcock et al., 2015; Magnussen et al., 2017; Mauro
et al., 2017; Frank et al., 2020). In design-based model-assisted
estimators, variance calculations exist in closed form for some
estimators such as GREG, or as approximations for others
including ratio estimators (Särndal et al., 1992; Breidenbach
and Astrup, 2012; Mandallaz, 2013; Magnussen et al., 2018).
Because variance calculations often require accounting for non-
independence of observations or heteroskedasticity of residuals,
or where algorithmic synthetic models such as non-parametric or
nearest-neighbor modeling are employed, iterative methods can
be used to estimate approximate variances, even where closed-
form solutions exist when model assumptions allow for them
(McRoberts et al., 2007). Numerical approaches, such as leave-
one-out cross validation or parametric bootstrap estimation have
proven useful in variance estimation, although caremust be taken
to ensure that bootstrap data-generating mechanisms are aligned
with error correlation structures and distributional assumptions.

Standard errors of domain-direct estimates are required
inputs for FH and other area-based SAE, which can pose a
problem when nd is insufficient to give stable variance estimates
(Särndal, 1984; Breidenbach and Astrup, 2012). A solution for
such applications is the use of generalized variance estimators
(Valliant, 1987; Wolter, 2007; Goerndt et al., 2013; Coulston
et al., 2021). Generalized variance functions tend to give variance
estimates that are highly dependent on nd, e.g., Coulston et al.
(2021), which may differ from direct variance estimates in
domains having sufficient sampling intensity to produce stable
standard errors.

Closed form solutions typically do not exist for variance
estimation for SAE composite estimators, e.g., when domain-
level estimates are obtained as EBLUPs (Fay and Herriot, 1979;
Battese et al., 1988; Rao and Molina, 2015). Variance of EBLUPs
is assessed by mean squared errors (MSE) rather than standard
errors to distinguish EBLUPS from design-unbiased estimators.
The MSEs are routinely calculated in SAE software as additive
combinations of terms representing uncertainties associated with
(a) prediction of random effects, (b) estimation of regression
model coefficients, and (c) estimation of the random-effect
variance, i.e., the variance among small-area domains (Prasad
and Rao, 1990). Alternatives involving parametric bootstrap
variance estimation are employed in some applications, as are
variances determined from posterior distributions in Bayesian
analyses (Prasad and Rao, 1990; Babcock et al., 2015; Molina and
Marhuenda, 2015).

4.3. Emerging Applications
Bayesian methods have been applied to SAE across disciplines
for several decades (Morris, 1983; Ghosh and Rao, 1994), with
recent applications in forest inventory settings as well (e.g.,
Finley et al., 2011). Babcock et al. (2018) used HB to estimate
aboveground biomass with coupled auxiliary data from Landsat
and lidar, to resolve incomplete coverage of remote sensing data.
Of the HB models they tested, one incorporating spatial random
effects with lidar as auxiliary data led to 0.33 ≤ RE ≤ 0.51
across their 4 areas of interest. By incorporating coregionalization
and adding tree cover derived from Landsat to complement
incomplete lidar coverage, the range of RE decreased to 0.16 ≤
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RE ≤ 0.35. Ver Planck et al. (2018) also saw success in
formulating the F-H approach in a HB framework to increase
precision of aboveground biomass SAE over direct estimates
(RE = 0.23). Further improvement was demonstrated by adding
conditional autoregressive random effects to account for spatial
correlation (RE = 0.80), with the autoregressive model giving
greater gains in precision in domains that shared boundaries with
larger numbers of neighbors (Ver Planck et al., 2018). Adding a
spatial random effect did not always lead to greater predictive
performance, however, as shown by Babcock et al. (2015), who
attributed modest to negative gains (0.83 ≤ RE ≤ 1.27) to
possible overfitting.

Estimating population parameters for multiple attributes of
interest is an important concern in forest inventory applications
ranging from local-scale stand assessments to regional and
national multi-resource inventories (Babcock et al., 2013;
Lochhead et al., 2018). Multivariate F-H and spatial F-H
approaches have been developed and incorporated into statistical
software, but their application to forest inventory has been
limited (Molina and Marhuenda, 2015; Benavent and Morales,
2016). While multiple domain-specific estimates can be obtained
using SAE in separate modeling procedures for each attribute,
doing so fails to maintain logical consistencies among estimates,
and overlooks potential gains in efficiency that may otherwise
be realized by accounting for cross-attribute correlations (Mauro
et al., 2017; Coulston et al., 2021). Generic inference in
model-assisted design-based estimation affords consistency in
multivariate estimates, but may come at a cost of increased
standard errors in attributes uncorrelated or weakly correlated
with selected auxiliary variables (McConville et al., 2020).
Nearest-neighbor approaches have been used successfully in
multivariate forest inventory settings, including multivariate
model-assisted estimation to improve estimator efficiencies while
preserving consistency among estimates (Chirici et al., 2016;
McRoberts et al., 2017). Hierarchical Bayesian multivariate
methods for SAE have been demonstrated for both unit-level
and area-level settings suitable for forest inventory applications
(Datta et al., 1998; Arima et al., 2017). Recent advances have also
increased computational efficiencies for Bayesian analyses that
can be applied to multivariate SAE involving very large data sets,
expanding opportunities for further advances in this area (Finley
et al., 2015, 2017; Datta et al., 2016; Babcock et al., 2018).

Another development in SAE applications for forest inventory
aims at modeling sample and observational units at a level
approaching that of individual trees rather than forest plots or
larger subpopulation domains (Næsset, 2002; Mauro et al., 2016).
Frank et al. (2020) tested a semi-individual tree (s-ITC) model
approach—analogous to a unit-level approach—by segmenting
tree crowns in lidar point clouds and delineating s-ITC units
around them. Compared to a unit-level approach the s-ITC
model showed a RE = 1.04 for volume, RE = 0.71 for basal
area, RE = 1.38 for stem density, and RE = 0.48 for quadratic
mean diameter. Despite attaining similar precision as plot-based
unit-level EBLUPs for volume estimates at the population level,
the s-ITC approach showed potential for its increased spatial
resolution and ability to estimate population parameters more
closely related to individual trees, such as mean diameter (Frank
et al., 2020).

Applications of enhanced estimators such as model-assisted
and SAE are not limited to cases where estimates per unit of
land area are needed. Affleck and Gregoire (2015) compared
estimation of crown biomass using randomized branch sampling
to provide sample data for GREG. In their examination
of a univariate estimator, model-assisted estimation led to
improvement in the precision of estimates across a range of
simulated sample sizes in randomized branch sampling (n = 5,
10, 20 and RE = 0.54, 0.71, and 0.97, respectively), although
the authors cautioned against the possible trade-off between
precision and design-unbiasedness (Affleck and Gregoire, 2015).
Gains in precision were not limited to one sampling scheme.
Increased precision was also seen for n = 5 based on other branch
sampling methods: probability proportional to size sampling
(RE = 0.94), simple random sampling (RE = 0.28), and stratified
random sampling (RE = 0.28). The potential gains in biomass
estimation at the tree level demonstrates how SAE may prove
a useful tool in other contexts than estimating forest inventory
attributes for small geographic areas.

5. CONCLUSIONS

Small area estimation (SAE) is a growing area of research in
forest inventory owing largely to its ability to support model-
based inference in small area domains lacking sufficient sample
data to provide stable estimates using purely design-based
estimation. A variety of modeling techniques can be employed
in the SAE framework with linear mixed modeling among
the most widely used to-date. A unifying requirement is the
use of auxiliary data that allows estimators to both borrow
strength from indirect sample data that co-vary with auxiliary
observations and to provide auxiliary population parameters as
predictors in synthetic models for composite estimation. The
availability of large data sets like those collected in NFIs, along
with increasingly available auxiliary data such as DAP, ALS,
satellite remote-sensing, or other digital map products has made
SAE of particular interest to forest inventory specialists. Increases
in precision from SAE can provide efficient alternatives to sample
intensification when insufficient sample data are available tomeet
needed tolerances for estimator error.

The examples summarized here demonstrate potential
benefits of SAE, along with some limitations researchers have
encountered in applying evolving model-assisted design-based
estimators or composite estimators that lie within unit-level or
area-level SAE frameworks. As with anymodel-based approaches
considerable attention should be paid to model assumptions
including distributional assumptions for residuals, correct model
form (e.g., linear vs. non-linear), careful selection of model
predictors, and accounting for correlation structures among
synthetic model residuals. Challenges may arise from a lack of
correspondence between sample and auxiliary data such as when
precise pairing of (x, y) observations is impractical, or when
auxiliary data are unavailable for specific areas or time periods
of interest. Consideration of alternative approaches including
design-based and model-assisted estimation, area-level, or unit-
level (model-based) SAE is needed to ensure suitability of
methods given inferential needs. Many topics for further research
have been identified in the literature reviewed here, pointing
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out opportunities for future improvement in forest inventory
applications of SAE. Although no tool can address needs in all
circumstances, methods like those reviewed here provide flexible,
efficient alternatives to reduce the need for sample intensification
in many cases and to meet tolerance specifications in others at
reduced cost by increasing estimator efficiency.
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