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Boreal forests across Canada and other geographic areas globally have vast networks
or densities of seismic lines, pipelines, access roads, utility corridors, and multipurpose
trails collectively termed “linear disturbances” or “linear features.” Additionally, large
areas of disturbances attributed to resource harvesting represent a major anthropogenic
impact on the global boreal forest ecosystem. Restoration of these disturbed areas is
currently a significant component of global boreal forest management strategies. A key
to successful restoration or re-vegetation of these disturbed sites is the availability
of highly adaptive native planting materials to grow and establish on the disturbed
sites, particularly in varying abiotic stressors or severe environmental conditions.
Abiotic stress includes non-living environmental factors, including salinity, drought,
waterlogging or extreme temperatures, adversely affecting plant growth, development,
and establishment on field sites. Herein, we present the concept of nanopriming native
boreal seeds with microgram concentrations of carbon nanoparticles (CNPs) as an
effective approach to improve the propagation and vigor of native boreal forest species.
Priming refers to the technique of hydrating seeds in solutions or in combination with
a solid matrix to enhance the rate at which they germinate and their germination
uniformity. Seed priming has been shown to increase seed vigor in many plant species.
In this mini-review, we will provide a brief overview of the effect of nanopriming on
seed germination and seed vigor in agricultural plants and native boreal forest species,
indicating the potential future applications of CNPs on native boreal species for use in
forest reclamation or restoration.

Keywords: seed nanopriming, carbon nanoparticles, seed germination, seed vigor, growth, native boreal tree
species

INTRODUCTION

Boreal forest, the world’s largest terrestrial biome, represents significant land areas in Canada,
China, Finland, Japan, Norway, Russia, Sweden, and the United States (Larsen, 1980). Boreal forest
ecosystems develop under several climate conditions, including a short growing season and freezing
winter temperatures (Sykes and Prentice, 1995). These environment factors result in relatively low
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tree species diversity, with only a few genera being dominant
across the biome, e.g., Larix, Pinus, Picea, Populus, Betula, and
Alnus (Johnston, 2017). Boreal forests represent the largest pool
of living biomass on the terrestrial surface. The aboveground net
primary productivity of boreal forest in North America ranges
from 25 to 675 g C m−2 y−1, with an annual mean of 296 g C
m−2 y−1 (Gower et al., 2001).

Seed germination constitutes a fundamental part of plant
growth and development. Some boreal forest species of the
Northern hemisphere exhibit deep dormancy, which prevents
seeds from germinating when environmental conditions are
unfavorable, thus, allowing more seedlings to survive over time
(Herranz et al., 2010; Baskin and Baskin, 2014; Hu et al., 2018).
Seed dormancy is a mechanism that ensures seeds are able to
germinate at times when environmental conditions are ideally
suited for germination and seedling establishment (Baskin and
Baskin, 2014). As such, germination is often synchronized with
appropriate environmental cues, such as temperature, moisture,
and photoperiod, to improve the establishment and survival of
the germinant (Baskin and Baskin, 2004; Bewley et al., 2013b).

Seeds are known to exhibit different types of dormancy,
including physical, morphological, or physiological (Bewley et al.,
2013a; Baskin and Baskin, 2014). Physical dormancy is often
associated with the inability of the seed to exchange gases
and imbibe water due to the presence of militating physical
barriers such as an impermeable seed coat. Morphological
dormancy is observed in seeds with an immature embryo.
Physiological dormancy is characterized by the release of
inhibiting hormones, preventing the initiation of germination
under different prevailing environmental conditions (Bewley
et al., 2013a; Baskin and Baskin, 2014). The hormonal balance of
endogenous abscisic acid and gibberellin compositions constitute
vital factors inducing the germination of dormant seeds (Finch-
Savage and Leubner-Metzger, 2006). A number of native boreal
tree species that have been identified as important for land
reclamation are challenging to propagate from seeds because of
seed dormancy or seedling vigor issues (Smreciu et al., 2013; Ali
et al., 2020a,b; Arnott et al., 2021).

For instance, green alder (Alnus viridis) is known to exhibit
physiological dormancy with germination rates of less than 55%
(Kaur et al., 2016). The embryos of these seeds are characterized
by an inability of the radicles to emerge from the seed. This
is considered to be a vital factor in this type of dormancy
(physiological), which may be influenced by the seed coat or
endosperm. Several strategies have been applied to successfully
overcome the challenges associated with different seed dormancy
of native forest species (e.g., Kaur et al., 2016; Mackenzie and
Naeth, 2019; Deng et al., 2021). These include scarification,
stratification, hormone treatments, and seed priming methods.
Recently, nanotechnology has been demonstrated to be an
effective approach to alleviate seed dormancy in several crop
species (e.g., Villagarcia et al., 2012; Tiwari et al., 2014; Javed
et al., 2021) and a few native boreal forest species (Ali et al.,
2020a,b). This mini-review focuses on current studies that have
examined the effect of carbon-based nanoparticles (CNPs) on
seed germination of crops and native boreal forest species.
Finally, the review provides an outlook on potential future

applications of CNPs on native boreal species for use in forest
reclamation or restoration.

NANOTECHNOLOGY IN THE CONTEXT
OF PLANT PROPAGATION

Nanotechnology has the potential to revolutionize the way
ecologists approach plant propagation to improve plant
regeneration during forest reclamation, food, and crop
production (Parisi et al., 2015; Servin et al., 2015). NPs used in
this sector are atomic or molecular aggregates with dimensions
between 1 and 100 nm (Ball, 2002; Roco, 2003). In fact, NPs are
prepared directly from natural compounds or synthetic materials
by grinding or milling, high-pressure homogenization, and
sonication to reduce the particle to nanometer scale (Podsiadlo
et al., 2007; Vasquez et al., 2008). The small size of the particles
can drastically modify the physicochemical properties of seeds
compared to the bulk material (Nel et al., 2006). NPs are also
observed to be present in the ecosystem and can originate from
a variety of sources. Origins of NPs include manufacturing
processes of different industries, treatment and disposal of
wastewater, and incorporation of biosolids into the soil (Morales-
Díaz et al., 2017). Engineered NPs can be grouped into four
primary groups based on the materials used: (1) carbon, (2)
metal, (3) dendrimers, and (4) composites (Majhi and Yadav,
2021). However, the ideal NPs used for plant propagation should
be economical, eco-friendly, biocompatible, and non-toxic (Liu
and Lal, 2015; Mahakham et al., 2016). Plant-based materials are
good candidates for synthesizing biocompatible NPs due to the
biochemical diversity of plant extracts, non-toxic phytochemical
constitutes, non-pathogenicity, low cost, and flexibility in
reaction parameters compared to chemically synthesized
nanoparticles (Mahakham et al., 2016; Singh et al., 2016).

In recent years, carbon-based NPs (CNPs) (fullerene and
carbon nanotubes) have been applied as seed pre-treatment
agents to promote seed germination, seedling vigor, and growth
in crops (e.g., Villagarcia et al., 2012; Tiwari et al., 2014;
Mahakham et al., 2017). CNPs were shown to enter the seed
and alter various biological pathways, which modified their
physicochemical properties and resulted in different effects on
plant growth (Nadiminti et al., 2013). Rapid and uniform seed
germination and seedling emergence are essential determinants
of successful stand establishment (Rajjou et al., 2012; Chen and
Arora, 2013). Seed germination begins with water uptake by the
mature dry seed (imbibition) and terminates with the elongation
of the embryonic axis, usually the radicle, through the seed
envelope, ultimately resulting in the protrusion of root and shoot
(Rajjou et al., 2012; Baskin and Baskin, 2014).

Plant responses to treatments with CNPs were observed to
vary depending on the chemical composition of the CNPs,
concentration, aggregation state (Liu et al., 2009), metabolic
abilities of the treated plant species, plant growth environmental
conditions (Schultz et al., 2015), and exposure time (Mrakovcic
et al., 2013). However, a thorough understanding of the effects
induced by CNPs on plant physiology at the molecular level is
still lacking. In addition, the methods used for detecting such
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nanostructures in plant tissues are not well established, and
most of them are time-consuming and labor-intensive. Existing
detection methods for NPs usually lead to the destruction of
samples in the process of detecting the presence of nanomaterials.
As a result, the same plant samples cannot be assessed for
genomic/proteomic analysis (Khodakovskaya et al., 2011).

Effect of Nanoparticles on the
Germination of Agricultural Species
Several studies have demonstrated the beneficial effects of
different nanomaterials in improving germination and growth
in many agricultural plant species (e.g., Mondal et al., 2011;
Smirnova et al., 2012; Javed et al., 2021). CNTs are either
single (0.1 µm in length and 1–2 nm in diameter) or multiple
(1 mm long and 20 nm in diameter) layers of carbon in
a cylindrical arrangement (Li et al., 1996; Lin et al., 2002;
Hata et al., 2004; Aslani et al., 2014; Liu et al., 2014). Single-
walled carbon nanotubes (SWCNTs) were shown to stimulate
germination and enhance the growth of tomato and onion plants.
This result was linked to improved gas exchange and water
uptake, possibly facilitated by the cylindrical shape of SWCNTs
(Haghighi and Teixeira da Silva, 2014). Multi-walled carbon
nanotubes (MWCNTs) were also shown to induce water and
essential nutrient uptake, thereby enhancing seed germination
and plant growth (e.g., Villagarcia et al., 2012; Lahiani et al.,
2013; Tiwari et al., 2014). For instance, MWCNTs application by
air spray significantly increased the seed germination of valuable
crops, such as barley, soybean, and corn, penetrating the seed
coat and facilitating the water absorption (Lahiani et al., 2013).

While many positive impacts of CNTs on seed germination,
seedling vigor, and growth have been reported, several studies
have suggested potential negative effects of CNTs due to their
toxicity (Pourkhaloee et al., 2011). Pourkhaloee et al. (2011)
found the highest concentration (40 mg L−1) of SWCNT in
growth medium decreased in Salvia macrosiphon Boiss., and
Capsicum annuum L. seedling growth, suggesting the possible
toxicity threshold. These negative impacts may be avoided by
choosing the best concentrations of CNTs for each species. In
fact, the effects of CNTs vary depending on the concentration
of CNTs, and more importantly, the plant species used. For
instance, Zhang et al. (2017) reported that lower concentration
(5 mg L−1) of MWCNTs in growth medium did not show any
effect on rice seedlings, whereas 20 mg L−1 of MWCNTs showed
the highest average sprout length. Tiwari et al. (2014) found
that high concentration (>20 mg L−1) in growth medium could
depress the growth of maize. On the other hand, the exposure
of maize plants to 50 mg L−1 of Carboxylic acid-functionalized
MWCNTs (COOH-MWCNTs) resulted in increases in dry
biomass (Zhai et al., 2015).

Effect of Nanoparticles on Seed
Germination of Native Boreal Forest
Species
Though nanotechnology has been used extensively on crops,
to date, this has not been widely tested on native boreal
forest species, particularly in the context of improving seed
germination, vigor, and growth performance for application in
forest reclamation or restoration.

FIGURE 1 | The germination percentage (%) of green alder seeds primed with three concentrations of carbon nanoparticles (control, 20, and 40 µg mL−1). Values
represent means ± SE of 4 replicates, consisting of 50 seeds. MWCNT, multi-wall carbon nanotube; MWCNT-COOH, multi-wall carbon nanotube functionalized with
the carboxylic group; Up-con. NP, Up-conversion nano phosphors or graphene; Control, seeds imbibed with de-ionized water. Adapted from Ali et al. (2020a),
CC-BY 4.0.
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A few studies have looked at the effect of nanoparticles on
seed germination of native boreal forest species. Recent studies
from the Northern Alberta Institute of Technology (Center for
Boreal Research) and the Memorial University (School of Science
and the Environment, Grenfell Campus) tested the effectiveness
of selected CNPs to improve seed germination and seedling
vigor in green alder (Alnus viridis), a native boreal forest species
commonly used in land reclamation (Ali et al., 2020a), as well as
their effect on two non-dormant boreal species, aspen (Populus
tremuloides) and fireweed (Chamerion angustifolium) (Sobze and
Thomas, 2022). In these native plant studies, the priming method
was used, with nanoparticles as the priming agent. Seed priming
is a technique to improve seed germination and seedling vigor
by rehydrating seeds and triggering metabolic process during
the early phase of germination (Paparella et al., 2015). This
technique is widely used because it is both highly effective and
inexpensive (Hasanuzzaman and Fotopoulos, 2019). Aspen and
fireweed seeds may lose viability quickly or develop into less

vigorous seedlings if seeds are not appropriately handled after
collection or during storage. Although aspen and fireweed seeds
do not require any form of pre-treatment for breaking dormancy,
treatment with CNTs may be beneficial in improving seedling
vigor, as well as the viability of older seed collections. Improved
seedling vigor is crucial because it increases the capacity of the
seed to germinate and establish on a range of sites with varying
environmental conditions.

Germination of Green Alder (Alnus viridis) Treated
With Nanoparticles
The effect of NPs on seed germination of green alder was tested by
nanopriming the seeds with various concentrations of graphene,
multi-walled carbon nanotube functionalized with COOH-
MWCNTs, and non-functionalized MWCNT (Ali et al., 2020a).
The authors found that seeds primed with NPs and germinated
without stratification had poor germination (less than 40%) but
performed better than the control seeds germinated without any

FIGURE 2 | The germination percentage (%) of fireweed seeds primed in different concentrations of carbon nanoparticles: (A) 40µg mL−1, (B) 20µg mL−1, (C)
10µg mL−1, and (D) 1µg mL−1. Values represent means ± SE of 4 replicates, each consisting of 50 seeds. MWCNT, multi-wall carbon nanotube; MWCNT-OH,
multi-wall carbon nanotube functionalized with a hydroxyl group; MWCNT-PEG, multi-wall carbon nanotube functionalized with polyethylene glycol. Control, seeds
imbibed with de-ionized water. *Represents significant difference at α = 0.05. Adapted from Sobze and Thomas (2022), with permission from Northern Alberta
Institute of Technology.
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form of treatment (10%). In contrast, stratified seeds treated with
functionalized COOH-MWCNT produced the best results (90%)
followed by those treated with non-functionalized MWCNT
(83%) and graphene (72%) (Figure 1). The germination of
stratified-control seeds was significantly lower (57%) than those
treated with any type of CNTs and stratification. These findings
demonstrated that CNTs could improve the germination of
dormant boreal seeds. Since stratified seeds treated with CNTs
germinated far better (90%) than non-stratified (35%), we assume
that NPs significantly contribute to breaking seed dormancy and
germination, but should not be used as the only treatment. As
reported by other authors (Villagarcia et al., 2012; Tiwari et al.,
2014), the NPs may have induced water uptake through the seed
coat to enhance breaking seed dormancy and seed germination.
Based on these results, cold stratification likely remains essential
for breaking the dormancy of green alder seeds. The research
team also found no difference between green alder seeds treated
with 20 and 40 mg mL−1 of CNTs (Figure 1). This indicates that
the effect of CNTs does not increase with their concentration in
the solution. However, it is difficult to conclude that 20 mg mL−1

is the optimum concentration since the team did not test the
effect of lower concentrations with green alder seeds in this study.

Germination and Seedling Vigor of Fireweed
(Chamerion angustifolium) and Aspen (Populus
tremuloides) Treated With Nanoparticles
Imbibing aspen and fireweed seeds in the presence of 0, 1, 10,
20, and 40 µg mL−1 of various CNPs (graphene, MWCNT,
and hydroxide (OH) functionalized MWCNT (OH-MWCNT),
or polyethylene glycol (PEG) was observed to be effective
in increasing germination (Figure 2) and seedling vigor in
fireweed. Concentrations of 1 or 10 µg mL−1 were found to be
most effective in improving fireweed growth and germination
performance. In aspen, polyethylenglycol (PEG) functionalized
MWCNT (PEG-MWCNT) was found to be the most effective in
enhancing germination and seedling vigor. The concentration of
40 µg mL−1 gave the best response in aspen seeds imbibed with
PEG-MWCNT (Sobze and Thomas, 2022).

Seed nanopriming with a low concentration of CNTs was an
effective technique to enhance germination, seedling vigor, or
biomass accumulation in fireweed and aspen. These findings have
potential applications in the development of novel seed treatment
techniques and plant products to improve the germination rate,
growth, and establishment of these species on disturbed boreal
forest sites. The data obtained indicate that there is the potential
to use CNPs at low concentrations (1–10 µg mL−1) to enhance
the establishment of fireweed on disturbed boreal forest sites
with varying adverse environmental conditions. For aspen, PEG-
MWCNT at 40 µg mL−1 should be used, while for fireweed, 1 or
10 µg mL−1 of either MWCNT, OH-MWCNT, PEG-MWCNT,
or graphene should be used.

DISCUSSION

The information presented indicates that selected CNPs
treatments significantly improved seed germination in several

plant species, including the native boreal forest species, green
alder, which has challenging seed dormancy issues with low
germination rates (Ali et al., 2020a; Sobze and Thomas, 2022).
Anthropogenic disturbance and fragmentation of global forest
ecosystems are recognized as major threats to biodiversity
and essential ecosystem services. To mitigate any potential
environmental and social impacts, it is important to achieve
forest establishment within the natural range of ecotypes found
in the forest seed zones, capable of supporting wildlife habitats
similar to pre-disturbance conditions (Rowland et al., 2009).
The challenges associated with native boreal species germination
and establishment must be considered for effective reclamation
purposes and biodiversity conservation. As such, we believe
nanoparticles (NPs) could be an excellent source of improving
the germination rate and propagation of many native boreal
forest species. General benefits of this technology include a
new approach to enhance plant propagation and efficient use of
limited native boreal seed resources through an improvement
in germination and seedling stock quality. Very low amounts
(microgram quantities) of NPs have been shown to confer
beneficial effects to the tested plants reported in our study (Ali
et al., 2020a; Sobze and Thomas, 2022) and the literature (e.g.,
Mondal et al., 2011; Smirnova et al., 2012; Javed et al., 2021),
indicating this is a very promising technology with low inputs
and cost. The ultimate benefit is that select CNPs could be
used to produce superior boreal planting materials (seeds and
stock plants) ideal for boreal forest reclamation across a range
of field sites following industrial disturbances. As a first step,
NPs imbibed seeds (aspen and fireweed) should be tested under
adverse conditions in greenhouse, growth chambers, and field
sites to determine the effectiveness of the improved seed vigor
on seed germination, growth, and establishment when exposed
to adverse fields or environmental conditions. The size and
concentrations of the NPs used to achieve the most effective
responses would be an appropriate direction for future work.
Moreover, further studies are required with other species not
only in boreal regions, but also in other geographical regions,
to confirm the effectiveness of NPs on both germination and
seedling vigor. For instance, a recent study from the tropics
found MWCNTs in the burned wood of native plants, Pinus
oocarpa, and P. pseudostrobus, following forest wildfire (Lara-
Romero et al., 2017). These MWCNTs produced by wildfire were
applied to other native plants such as Eysenhardtia polystachya
and found to be effective to speed up its germination time
(Juárez-Cisneros et al., 2020). Many fire-adapted plant species
are difficult to germinate due to their impermeable and hard-
coated seeds (Moreira and Pausas, 2012; Baskin and Baskin,
2014). Applying NPs could possibly increase water uptake during
seed imbibition by penetrating seed coat and cell wall, leading to
seed germination improvement, which can assist reforestation
process and biodiversity conservation.
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