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Logged forests cover four million square kilometers of the tropics, capturing

carbon more rapidly than temperate forests and harboring rich biodiversity.

Restoring these forests is essential to help avoid the worst impacts of climate

change. Yet monitoring tropical forest recovery is challenging. We track the

abundance of early-successional species in a forest restoration concession

in Indonesia. If the species are carefully chosen, they can be used as an

indicator of restoration progress. We present SLIC-UAV, a new pipeline for

processing Unoccupied Aerial Vehicle (UAV) imagery using simple linear

iterative clustering (SLIC)to map early-successional species in tropical forests.

The pipeline comprises: (a) a field verified approach for manually labeling

species; (b) automatic segmentation of imagery into “superpixels” and (c)

machine learning classification of species based on both spectral and textural

features. Creating superpixels massively reduces the dataset’s dimensionality

and enables the use of textural features, which improve classification accuracy.

In addition, this approach is flexible with regards to the spatial distribution of

training data. This allowed us to be flexible in the field and collect high-quality

training data with the help of local experts. The accuracy ranged from 74.3%

for a four-species classification task to 91.7% when focusing only on the

key early-succesional species. We then extended these models across 100

hectares of forest, mapping species dominance and forest condition across

the entire restoration project.
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forest restoration, tropical forest recovery, unoccupied aerial vehicles, texture,

multispectral imagery, simple linear iterative clustering
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1. Introduction

Tropical forest restoration is central to mitigating the worst

impacts of global climate breakdown while simultaneously

protecting vast swathes of terrestrial biodiversity (Palmer et al.,

1997; Myers et al., 2000; Duffy, 2009; Thompson et al., 2009;

Isbell et al., 2011; Joppa et al., 2011; Bastin et al., 2019). The IPCC

have called for “unprecedented changes in all aspects of society,”

including reversing the forecast loss of 2.5 million km2 of forest

to a 9.5million km2 increase in forest cover by 2050 (Zhongming

et al., 2021). Logged-over tropical forests are particularly

important carbon sinks because they are widespread, covering 4

million km2 (Cerullo and Edwards, 2019), and capture carbon

rapidly as they recover lost biomass (Edwards et al., 2014).

Natural tropical forests, such as these, are more likely to be

successfully restored and persist (Crouzeilles et al., 2017), and

host vastly more biodiversity value than actively managed forests

(Edwards et al., 2014). But natural tropical forests continue

to be threatened by agricultural expansion and the intention

of many countries to use fast-growing plantations to meet

international restoration commitments is a serious concern

(Lewis et al., 2019). It is therefore of critical importance to

develop remote sensingmethods capable of assessing restoration

performance in terms of biodiversity recovery to complement

the already advanced techniques for measuring above-ground

biomass (Asner et al., 2010; Aerts and Honnay, 2011; Melo et al.,

2013; Chave et al., 2014; Zahawi et al., 2015; Iglhaut et al., 2019).

Biodiversity recovery may correlate poorly with above-

ground biomass in regenerating tropical forests, and measuring

species richness is often intractable due to the thousands of

species involved, so developing reliable indicators of biodiversity

is necessary (Martin et al., 2015; Sullivan et al., 2017). Although

biodiversity typically increases as forests accumulate above-

ground biomass, the relationship is complicated by disturbance

history, fragmentation and active management, so that forests

of equivalent biomass harbor very different levels of biodiversity

(Slik et al., 2002, 2008; Sullivan et al., 2017). For example, a

single round of logging removing 100m3 of wood per hectare

may result in a 40% reduction in biomass but only a 10%

reduction in biodiversity (Martin et al., 2015), whereas a fast-

growing plantation can rapidly accumulate biomass without

a corresponding increase in biodiversity (Bernal et al., 2018).

To properly account the benefits of forest restoration it is

therefore important to assess biodiversity, but tropical forests

may host more than 1,000 species per hectare (Myers et al.,

2000; Joppa et al., 2011). This makes direct measurements of

species richness in restoration projects prohibitively costly using

field measurements potentially hampering direct estimation by

remote sensing (Turner et al., 2003; Sullivan et al., 2017).

Instead it may be possible to assess biodiversity by assessing

the abundance and composition of early-successional species:

following disturbance, early-successional species including

grasses, shrubs, lianas, and fast-growing trees become abundant,

often representingmore than 30% of the canopy (Slik et al., 2002,

2008; Slik and Eichhorn, 2003). These species have adaptations

that make them competitive in high light environments,

including large, thin leaves (e.g., low leaf mass per area), long

petioles, open canopies and high foliar nutrient concentrations,

which also make them visually distinct and easy to identify (Slik,

2009). If disturbance ceases, early-successional species gradually

become less frequent, through their mortality and failure

to recruit in the shaded-understory, making them valuable

indicators of both historic disturbance and subsequent recovery

(Slik et al., 2003, 2008).

Quantifying recovery of secondary tropical forest in

terms of indicative early-successional species still requires

methods which scale to enable cost-effective application across

management units and remote sensing approaches are able

to offer this (Petrou et al., 2015; Fassnacht et al., 2016;

de Almeida et al., 2020). Traditional approaches to biodiversity

or species occurrence monitoring rely on field observations

that sample only a tiny fraction of the landscape (Turner

et al., 2003), which is also true for newer approaches, including

environmental DNA and functional trait measurements, each

allowing diversity to be viewed from a different lens (Asner and

Martin, 2009; Zhang et al., 2016; Bush et al., 2017; Colkesen

and Kavzoglu, 2018). Remotely-sensed satellite imagery can be

used to interpolate data from field plots based upon variability

of spectral signatures, estimating variation and approximating

species composition across landscapes (Adelabu et al., 2013),

but the spatial and temporal resolution of most satellite imagery

remains a constraint (Carleer and Wolff, 2004), and higher

resolution data, such as those collected from aircraft, are needed

tomonitor individual trees (Bergseng et al., 2015). By combining

of aerial laser scans with hyperspectral or multispectral imagery

species can be mapped (Zhang and Qiu, 2012; Alonzo et al.,

2013; Dalponte et al., 2014; Maschler et al., 2018; Marconi

et al., 2019), with crown-level precision if the resolution of

the sensors is sufficient (Ballanti et al., 2016; Fassnacht et al.,

2016). However, these sensors are often custom-designed or

prohibitively expensive where commercially available, which

limits the accessibility of these surveys (Surový and Kuželka,

2019). Finding a balance between feasibility, cost and utility is

key to seeing methods adopted and approaches must adapt to

emerging technologies (Turner et al., 2003; Toth and Józków,

2016; Kitzes and Schricker, 2019).

Unoccupied Aerial Vehicles (UAVs) offer a cheap remote

sensing methodology which increases the temporal and spatial

resolution of imagery available and are increasingly adopted in

forest research (Saari et al., 2011; Anderson and Gaston, 2013;

Bergseng et al., 2015; Rokhmana, 2015; Surový and Kuželka,

2019). UAVs are being deployed to map insect damage (Näsi

et al., 2015), post-logging stumps (Samiappan et al., 2017),

flowering events (López-Granados et al., 2019), leaf phenology

(Park et al., 2019), and forest biomass (Dandois and Ellis, 2013;

Zahawi et al., 2015) but analytical methods to evaluate forest
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recovery in terms of species composition or biodiversity with

UAVs are lacking (Messinger et al., 2016; Goodbody et al.,

2018a). Even approaches to detect tree species from UAV

imagery remain scarce and are often limited to classifying species

for manually delineated crowns (Lisein et al., 2015; Tuominen

et al., 2018) or else work in other ecological contexts such as

high latitude (Puliti et al., 2017; Alonzo et al., 2018; Franklin

and Ahmed, 2018), riparian strips (Michez et al., 2016) or

managed nurseries (Gini et al., 2018). All of these methods

require manual field data collection, either in the form of

complete plot inventory (Puliti et al., 2017) or crown delineation

with GPS (Alonzo et al., 2018), taking time and access to

trees, which is tricky in the tropics and approaches to collect

reference data should take advantage of new technologies to

improve efficiency. Further, detailed mapping of species across

management units from UAV imagery requires methods that

can extend knowledge of species for a sample of crowns to

a whole region. Object-based image analysis on UAV imagery

offers promise for mapping tree species in this way, allowing use

of textural information computed over adjacent pixels, rather

than simply evaluating the pixel values individually (Giannetti

et al., 2018; Gini et al., 2018; Lu et al., 2019; Puliti et al.,

2019). Typically, regions of interest aremanually-defined such as

pre-defined management units, inventory plots or tree crowns,

for which statistics are generated (Lisein et al., 2015; Michez

et al., 2016; Alonzo et al., 2018; Franklin and Ahmed, 2018;

Tuominen et al., 2018), meaning models can only apply to

other similarly created objects. Extending these approaches to

all imagery across a site requires automated partitioning of

imagery into groups of neighboring pixels (superpixels) (Ren

and Malik, 2003). Superpixels labeled with species identities are

used to build and validate models that can then be applied to

all superpixels, covering the whole landscape (Feduck et al.,

2018; Wu et al., 2019). This approach has yielded promising

results in limited settings, such as conifer seedling mapping

in logged 50 m2 plots and mapping a single invasive species

across an island in Japan (Feduck et al., 2018), but the approach

has not been applied to detect early-successional species in

recovering tropical forests. Developing and applying UAV

technologies to tropical forest restoration settings to map key

species indicative of disturbance and recovery trajectory will

help improve efficiency of management of forest restoration:

knowing where interventions are most likely to work or most

needed can reduce labor costs (Rose et al., 2015).

Our contribution: This study presents, SLIC-UAV, a novel

and complete workflow for mapping early-successional species

in degraded tropical forests. We developed this end-to-end

pipeline combining UAV data collection with an object-based

approach to learn species from the textural and spectral

properties of superpixel clusters, enabling extension of data from

a sample of crowns to map indicative species occurrence across

100 ha of forest. In contrast to existing methods, SLIC-UAV

enables wall-to-wall mapping of multiple early-successional

species, so that forest recovery and successional status can

be evaluated. The UAVs that were are rapidly deployed,

commercially available, and can map approximately 100 ha

per day, enabling small sites to be mapped in their entirety,

large sites to be sampled, and repeat surveys to track recovery

through time. We evaluate the performance of conventional

red-green-blue (RGB) and multispectral (RGB+NIR; using a

$3,000 camera) imagery, comparing the accuracy of both types

of data.We develop an integratedUAV-based approach to collect

species identity data, greatly reducing time and effort in the

field, and use oil palm to show that additional categories can be

added through desk-based mapping. Finally, we produced heat-

maps across 100 ha of forest to reveal the spatial signature of

disturbance, created by logging, which can be used as a baseline

for tracking recovery and directing restoration management.

2. Materials and methods

This section introduces the simple linear iterative clustering

on unoccupied aerial vehicle data (SLIC-UAV) method. This

section explains the steps of superpixel extraction, feature

generation and subsequent classification comparing three

options: Lasso Regression, Support Vector Machines and

Random Forests. This section also introduce our study data used

to illustrate the use of SLIC-UAV, including the development of

a data collection pipeline using a UAV in place of traditional

field survey to reduce the time needed to curate a reference

set of crowns used for classification of key species of interest,

focusing on early-successional species indicative of disturbance

and typical long-lived species.

2.1. Data collection

2.1.1. Study site

Data for this study were collected at Hutan Harapan (“forest

of hope”) on the island of Sumatra, Indonesia (Figure 1).

Hutan Harapan is an Ecosystem Restoration Concession

where 98,455ha of ex-logging concessions are now leased

for restoration (Harrison and Swinfield, 2015). Heavy logging

occurred since the 1970s, resulting in a heterogeneous secondary

lowland dipterocarp forest in various stages of recovery.

Harapan has a weakly seasonal climate with monthly mean

rainfall varying from 79 to 285 mm, with a dry season with

less than 100 mm of rain for three consecutive months between

June and August. The terrain at Harapan is undulating, however

elevation remain low in the range 30–120 m above sea level.

Despite heavy logging since the 1970s, Harapan supports a large

amount of biodiversity, with 302 bird species and over 600

tree species from 107 plant families recorded (Harrison and

Swinfield, 2015).
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Our study site comprised a 100 ha area close at the boundary

of Hutan Harapan West of the main camp. The site was

characterized by a closed-canopy forest with pre-disturbance

remnant trees emerging from dense regrowth of early-

successional trees including Macaranga spp. (Euphorbiaceae)

and the invasive pioneer Bellucia pentamera (Melastomataceae)

from South America (de Kok et al., 2015). These species are

common in across the entire landscape and within disturbed

forest more generally in Southeast Asia (Slik et al., 2003, 2008;

Dillis et al., 2018). The study area also included oil palm within

the adjacent concession. Data were collected in two survey

periods in 2017 and 2018.

2.1.2. UAV imagery

We collected UAV data for 100 ha of forest in Hutan

Harapan. Multispectral (MS) imagery were collected in April

2017. For this a 3DR Solo UAV (3DR, Berkeley, USA) was

equipped with a Parrot Sequoia (Parrot, Paris, France) camera

held in a fixed mount angled close to nadir when flying at

mission speed. The camera records four bands of MS imagery

with centers and approximate response widths (both in nm): Red

(550, 40), Green (660, 40), Red Edge (735, 10) and Near Infrared

(790, 40). Images in these bands are recorded at 1.2 megapixel

resolution, giving a ground sampling distance of 14.8 cm per

pixel at an altitude of 120 m. Additionally, a sensor atop the

UAV records illumination in each band at the time of exposure

allowing radiometric correction of illumination to reflectance

values, reducing the effect of varying solar illumination. UAV

flights were flown by autopilot. Each flight covered a 10.75 ha

footprint in a grid designed in QGIS (QGIS Development Team,

2019). Mission Planner (ArduPilot Dev Team, 2017) was used

to design the flight path, in a snaking pattern with 80% in-line

and 70% between-line overlap between images, also referred to

as front-lap and side-lap.

Unfortunately, the RGB data collected by the Parrot Sequoia

was blurred due to the use of a rolling shutter. We therefore

collected additional RGB data in November 2018. For this a DJI

Phantom 4 UAV was used with its stock camera (DJI, Hong

Kong, China). This camera records standard RGB imagery at

12.4 megapixel resolution, which at a height of 100 m gives a

pixel size of 4.35 cm. We used the same flight pattern as in April

2017. The DJI GS Pro app was used to plan each flight, in a

snaking pattern with 90% in-line and 75% between-line overlap,

all flown at an altitude of 100 m.

Agisoft Photoscan Professional (Agisoft, St. Petersburg,

Russia) was used to process both datasets. For the MS imagery

the steps were to align photos, calibrate reflectance (using data

from the sunshine sensor to correct for illumination based

upon the data from the onboard sensor which is known to

improve reliability of classification methods Tuominen et al.,

2018), build a dense 3D point cloud, build a DSM (digital

surface model) and an orthomosaic. This allowed the algorithm

to refine estimates of camera location from initial GPS stamps,

correct for illumination, build a photogrammetric model for the

area and extract outputs of a rasterised DSM and orthomosaic

(OM) of the image mosaics after correcting for the surface

geometry. Parameters for each step are listed in Table 1. For

the MS imagery this process took approximately 34 h using a

workstation running Windows 7 equipped with an Intel Xeon

E3-1240 V2 CPU, comprising 8 cores running at 3.4 GHz with

16 GB RAM, though this included producing a dense point

cloud. Had we worked with only the sparse option, this process

would take 14 h 35 m. RGB imagery was treated in the same

way, with the exception of the reflectance calibration. The higher

resolution of the RGB data required the process be separated

into chunks to enable loading into the 16 GB of RAM on the

desktop used, taking a total of approximately 11 days to run,

though sticking to the sparse point reduced this to 17 h 59 m.

We chose to use the dense cloud for higher structural detail, but

all steps could be completed with only the sparse cloud.

We then split the data into overlapping chunks which

were then aligned and merged using the Agisoft marker-based

alignment. Markers were manually set for all flights with overlap

between the chunks, with a minimum of 4 clearly visible fixed

locations used for each pair of flights with overlap, taking

roughly 1 h of human input. The RGB and MS data co-

aligned using the Georeferencer tool in QGIS (version 3.4.5). Tie

points were generated as a random set of 100 points across the

region. We ensured good correspondence using clearly visible

features present in both datasets close to each random point

as the final tie point. A further 51 points were then plotted

by starting from the centroid of the largest remaining voronoi

polygons across the network of tie points. Drawing tie points

took roughly 4 h of human input. These points were then

used to transform the MS data to align with the RGB data

using a polynomial transformation (polynomial 3 in QGIS) with

nearest neighbor resampling. The final outputs used in this study

were a multispectral orthomosaic (MS), RGB-derived surface

elevation model (DSM) and RGB orthomosaic (RGB) with pixel

resolutions of 11.3, 8.01, and 4.01 cm, respectively (examples

shown in Figure 2).

2.1.3. Generating labeled tree crowns for
training and testing

The first signs of succession on damaged soils in this region

are usually ferns, ginger and bamboo. However, our aim is to

evaluate whether the forest is returning to a rain forest. We

therefore focused on tree species which are found in rain forests

nearby, and are considered indicative of forest recovery after

disturbance. We focused on two early-successional species and

two long-lived species, indicative of more established secondary

forest. The early-successional species were Macaranga gigantea

(Euphorbiaceae) and the non-native invasive Bellucia pentamera

(Melastomataceae) which are both prevalent across Harapan,
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FIGURE 1

Location of Hutan Harapan within Indonesia (green polygon). Imagery data courtesy of Google.

TABLE 1 Values of parameters used in agisoft photoscan.

Align photos Build dense cloud Build DEM

Parameter Value Parameter Value Parameter Value

Accuracy High Quality High Source data Dense cloud

Adaptive camera model fitting Off Calculate point colors On Interpolation Enabled

Generic pre-selection On Depth filtering Aggressive Build Orthomosaic

Reference pre-selection On Parameter Value

Key point limit 40,000 Surface DSM

Tie point limit 8,000 Blending mode Mosaic

especially in more degraded areas. We also chose two long-

lived (although still considered early-successional) species, with

less visually distinct crown and leaf traits: Alstonia scholaris

(Apocynaceae) is a tree that can reach to 60 m in height

and produces commercially valuable timber; Endospermum

malaccense (Euphorbiaceae), locally known as Sendok-sendok,

is a mid-canopy tree, reaching 34 m in height typical of

secondary regrowth (Slik, 2009). Examples of these species

are shown in Figure 3. Visually the “long-lived” species appear

more similar, both from the ground and from above, making

identification of these from each other, and other upper canopy

trees, difficult. The early-successional species are easy to spot

from the ground owing to their low height and distinctive

leaves. Their leaf arrangements also lead to striking patterns

and textures when visualized from above, making these easier

to identify by eye from UAV imagery. A set of georeferrenced

hand-drawn polygons were produced for the four species of

interest in November 2018.
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FIGURE 2

Examples of the three imagery types used in this work, standard Red-Green-Blue, Digital Surface Model and Multispectral (left to right). The

multispectral imagery is a false-color image with red, green and blue representing red, green and red edge channels.

FIGURE 3

Individuals of the four main species as photographed in Harapan: (A) Bellucia pentamera, (B) Macaranga gigantea, (C) Alstonia scholaris, and (D)

Endospermum malaccense.

We used the Phantom 4 UAV to record the location of

trees, which has two significant advantages over the traditional

approach of mapping trees from the forest floor: (1) above-

canopy UAV-based GPS measurements are high precision

(<±3 m) when compared with sub-canopy hand-held GPS

measurements (±15 m); and (2) high quality images of tree

crowns are collected that facilitate the production of hand-

drawn tree crown polygons. We worked along roads and at

other locations from which we could launch the UAV and then

scanned the canopy at low altitude (typically 20–30 m above

the canopy) using the UAV flown in manual mode to identify

crowns and species from the live high resolution imagery; images

were reviewed by local experts to confirm identifications. Once

we were happy we had identified a crown of interest, two team

members would position themselves at right angles to each other

relative to the crown center. TheUAV operator would thenmove

the UAV horizontally until both team members agreed it was

above the crown. Here multiple images were captured at various

heights. Images from about 30 crowns were collected in this way

in a morning, and manually digitized in the afternoon (while

the trees were fresh in memories). The crown boundaries were

marked on the highest resolution image with reference to images

at multiple heights, and any crowns with unclear boundaries

were re-confirmed in the next batch of flights. Once RGB OM

and DSM rasters were produced from mapping surveys, the

crowns were converted to geospatial polygons using the initial

annotated images and GPS tags. The raw imagery was used as

the primary reference, whilst using contrast in the RGB OM and

boundaries in height in the DSM to refine any boundaries. In

total, data were collected for 328 crowns: B. pentamera (n = 120),

M. gigantea (n = 65), A. scholaris (n = 93) and E. malaccense (n

= 50); example digitisations shown in Figure 5.

In addition to the crowns mapped in the field, we also

digitally delineated three other classes to include in our model.

This gives us a “background” from which to distinguish our

species of interest. We digitized 105 oil palm crowns, drawn at

random locations across the plantations or (occasionally) within

the recovering forest. We also digitized 100 “other” crowns by

drawing points at random across our study site. We considered

each of these carefully, checking the original (higher resolution)
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imagery to ensure each crown was not in fact one of the four

target species. Finally, to allow our models to distinguish the

miscellaneous non-vegetation regions present in the data and

so map the complete area, we labeled non-vegetated regions

(including water bodies, roads, bare ground and buildings).

To ensure that crown shape didn’t confound our analysis, we

created our non-vegetated labels in the shape of tree crowns

using 100 existing crown outlines of varying species, size and

structure. Examples of the new labels are shown in Figure 4.

Overall this gave us 633 labeled regions across seven categories:

five focal species, one other tree class and a miscellaneous class.

2.2. Identifying species with SLIC-UAV

SLIC-UAV is an object-based image analysis workflow1. This

enables the context and texture of the imagery to be used in

modeling, in contrast to a pixel-based approach which focuses

only on the local spectral data for each pixel (Yu et al., 2006;

Colkesen and Kavzoglu, 2018). First, we created superpixels

(clusters of neighboring pixels) through simple linear iterative

clustering (SLIC) using the RGB imagery data from 2018

(detailed in Section 2.2.1). Second, we extracted both spectral

and textural features from the imagery data for each superpixel.

Third, we modeled species using the manual labels. We tested

lasso regression (LR), support vector machines (SVM) and

random forests (RF) models. Finally, after validation, the trained

models were used to classify species for automatically-created

segments across the 100 ha study site, eventually building

heatmaps of canopy dominance (proportion of area classified as

each species) to indicate forest condition.

2.2.1. Superpixel segmentation with SLIC

Within our approach, we classify the species for each

superpixel, combining many individual pixels to compare

then in their local context. Superpixel segmentation separates

imagery into groups of connected pixels, based on similarity

(Ren and Malik, 2003). We use this approach in our automated

landscape mapping, enabling extension of the pipeline to

complete coverage of any region where imagery exists.

Automated segmentation was completed within SLIC-UAV,

using the RGB imagery from 2018, by Simple Linear Iterative

Clustering (SLIC) (Achanta et al., 2010, 2012), see Figure 5 for

an example. This is similar to k-means clustering, but is designed

to produce superpixels of roughly similar area in a regular

spacing by starting with a regular grid of squares. These were

then iterated using k-means clustering in a local neighborhood,

four times the average superpixel size, using a weighted sum of

euclidean distance between pixel locations and distance in color

space as the distance metric. Once superpixel centers become

1 Available at: https://github.com/jonvw28/SLICUAV.

sufficiently stable (based on sequential changes) connectivity is

enforced, ensuring all pixels in a given superpixel are locally

connected. The algorithm adapts to contours of the image, like

k-means, but the regularity constraints ensure superpixels have

a similar size. The size is then mostly controlled by the number

of initial superpixels. For our work we used the implementation

of SLIC in the scikit-image Python library, using Python 3.7

(van der Walt et al., 2014; Python Core Team, 2018). We used

the default compactness of 10 and sigma of 1, and initialized

superpixels to have an average area of 0.5 m2 to ensure these

were smaller than all but the smallest crowns.

2.2.2. Feature extraction

Imagery for each superpixel was used to generate a set of

summary features to use for species classification. We generated

features for each of the three imagery types, treating the DSM as

a greyscale raster with floating point values. The features were

all scaled and centered to mean zero and variance one based on

training data.

We computed features in two broad classes: spectral and

textural. Spectral features are based on summary statistics of

the individual pixel values in the imagery, as is commonly

used in UAV mapping approaches (Ota et al., 2015; Kachamba

et al., 2016). In contrast, textural features were computed

by treating each superpixel as an image, computing statistics

based on repeating patterns and frequencies of pattern

motifs in the arrangement of pixels (Franklin and Ahmed,

2018). Example visualizations of these concepts are shown

in Figure 6. Vegetation indices were computed as stated in

Supplementary Table S1 based on the bands of the orthomosaics

and treated as extra spectral bands for the spectral analysis

such as in Fuentes-Peailillo et al. (2018) and Goodbody et al.

(2018b). Similarly, we converted the RGB imagery into HSV

space treating hue, saturation and value as additional spectral

bands (Smith, 1978). In an effort to focus on only illuminated

portions of each superpixel, we also filtered the top 50% brightest

pixels, defined by lightness in CIELAB color space (International

Commission on Illumination, 2019), and computed the RGB

spectral features for just these pixels. We computed the same

statistics on the RGB bands, the MS bands, the DSM float

imagery, the RGB and MS indices, the HSV channels and the

bands of the brightness filtered RGB imagery. Details of all the

spectral statistics computed for each the data types are listed in

Supplementary Table S2.

Textural features were produced from four approaches: the

greylevel co-occurrence matrix (GLCM) (Haralick et al., 1973),

local binary patterns (LBP) (He and Wang, 1990; Ojala et al.,

1996), Laws‚ features (Laws, 1980) and spatial autocorrelation.

GLCM statistics summarize patterns or frequently co-occurring

local pairs of pixel values, with both the mean and range of

scores when considering all directions with the distance of offset

reported. For the DSM data we converted the float values to 32
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FIGURE 4

Example manual digitisation of oil palm, other species and miscellaneous regions completed with UAV imagery.

integer values, defined as a linear spacing (and rounding) from

1 for heights below the 5th percentile within that superpixel to

32 for heights above the 95th percentile. GLCM statistics were

computed for offsets of 1, 2, and 3 pixels. LBPs quantifies the

frequency of patterns of relative pixel values for a neighborhood

of a given radius. We used a rotationally invariant form of LBPs

counting all motifs equivalent up to a rotation as one single

pattern. The DSM was treated the same way as for GLCM,

and again this was applied at radii of 1, 2 and 3 pixels. Laws‚

features compute convolutions of the imagery with particular

kernels constructed as a cross product of vectors designed to

identify spots, waves, lines, ripples and intensity. Imagery is first

modified by subtracting the mean value in a 15 x 15 window

for each pixel. Then each 5 x 5 kernel is convolved with the

resulting image and we report the mean and standard deviation

for resulting pixel values, using the float version of DSM imagery

in this case. Spatial autocorrelation scores the correlation of

the image with itself, and we recorded the mean correlation

across all directions for each offset, along with the range across

all directions. We computed this for 1, 2 and 3 pixel offsets,

again using float data when looking at the DSM. RGB data were

transformed into a greyscale image for all textural features and

each of the four MS bands were treated as a greyscale image

and had textural features computed independently. Details of all

textural features are listed in Supplementary Table S3.

2.2.3. Species classification models

We added labels to all superpixels with 50% or greater of

their area within a labeled crown, leading to multiple labeled

superpixels for most crowns. In total this produced 11,996

manually labeled superpixels. We trained the models on 75% of

these superpixels and reserved 25% for evaluation. Accuracies

stated in the results section (e.g., Figure 7) are for the 25%

evaluation data.Within the training data, we assessed themodels

using 10-fold cross-validation. Ten models were fitted on 90% of

the crowns, with the remaining 10% used for validation. Folds

were split in a random stratified way, to balance each species

label equally across all folds, with the validation sets forming a

complete covering of all crowns where each crown was used to

build nine of the models and test the tenth, independently built

model. This split was the same for all models. The splitting of the

training and test superpixels in each fold of cross-validation was

also based on the original crown split, keeping all superpixels for

a given crown in the same set to avoid inflation of accuracy from

training on superpixels within crowns which are included in the

test set. Accuracies stated in Figure 7A are mean accuracies for

each 10% of reserved data in the 10–fold validation process.

We considered three modeling approaches to classify the

species for each superpixel: lasso regression (LR), support vector

machine (SVM) and random forest (RF). LR is an extension

to least-squares regression which regularizes the coefficients of
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FIGURE 5

Example images of complete pipeline for the main four species recorded in the field. Each row includes imagery of one crown: (A) Alstonia

scholaris, (B) Bellucia pentamera, (C) Endospermum malaccense, and (D) Macaranga gigantea. Across the columns (left to right) are shown the

manual flight image marked up in the field for crown extent, the outline converted to a shapefile overlain on the RGB orthomosaic, the SLIC

superpixels laid over this orthomosaic and the labeling of these superpixels using the SVM approach for the model with all categories. We have

only included the outline and labeling for the crown in the center of each image, but the columns with superpixels are taken from the full

landscape map to show this crown in context and so include labels on other superpixels. Note that each row has a di�erent scale as indicated by

the scale bars. The purpose of this is to show the tree and its immediate surroundings in su�cient detail.

the resulting model. This both reduces the likelihood that the

model is heavily reliant on any one feature, but more critically,

restricts the number of predictors included in the model. This

gives a sparse model that can readily be interpreted (Tibshirani,

1996). We fitted models using the glmnet package in R Core

Team (2019). Here we used a multinomial logistic regression

to give relative confidence scores for each class label, with the

highest species being the final prediction. Data examples were

weighted inversely proportionally to the number of examples

with that species label to account for mismatching number.

We constructed our models to ensure that where a feature

was included for one class, it was included for all classes, and

restricted our models to be the best-fitting model (based on

overall accuracy on the training set) which had at most 25

features included in the model. SVM is a less restrictive but

harder to interpret model (Cortes and Vapnik, 1995). SVM

modeling was completed using the e1071 package in R. Here

the model was fitted to the training data using the default

radial basis function kernel with parameters tuned by the inbuilt

method and class weights set to balance the contribution of each

class, as for lasso regression. The model was allowed to use all

variables in contrast to the restriction applied in lasso regression.

Similarly, the RF models (Ho, 1995, 1998) were built on the

training data, using the R package randomForest, again
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applying weights to correct for varying class size. Here 500 trees

were used, with the default tree structure used (sampling sqrt(f )

variables at each node, where f features are supplied to the

model). All approaches used here have a built in within-sample

validation for model parameter selection.

We explored the contribution of different imagery and

feature types to the accuracy of our models. We chose to

focus on a sequential addition of imagery in line with the

additional processing or sensors that are required to see if these

steps are justified by performance. We considered two features

classes (spectral and textural) separately and also combined.

We explored the effect of using all valid combinations of

data sources combined with using either or both classes of

features. In total this gave us 21 possible model input options

in addition to the model using all variables. Given the number

of replicates, we chose to use a single training and test data

split, using 75% of crowns to train each model and 25% to

evaluate, keeping the split the same for all combinations. Owing

to issues with the MS sensor recording illumination, leading to

artifacts in the imagery produced (Supplementary Figure S3c),

we masked out all crowns which were within a 50 m radius of

any issue, marked by the orange hashing, leaving 409 crowns

for evaluation.

As noted previously, visually the difference between the

long-lived species, Endospermum malaccense and Alstonia

scholaris, and other canopy species was subtle. This was in

contrast to Bellucia pentamera and Macaranga gigantea, with

distinctive structure and leaf texture, whose occurrence is known

to be closely related to disturbance history. We also noted that

we had a small sample of E. malaccense crowns and that these

were often more difficult to confidently identify in the field. We

therefore considered modeling where these trees were included

with the other tree species category, keeping only Alstonia

scholaris as an indicative long-lived species example. Finally,

we also considered models where this was included with other

crowns to form a ‘lower management concern’ class, actively

seeking only the invasive Bellucia pentamera, early-successional

Macaranga gigantea and potentially encroaching palm oil tree

classes compared to species more indicative of progress beyond

initial stages of succession. We believe this final model, whilst

simpler, is potentially of more interest to forest managers.

2.3. Landscape mapping

We applied our SLIC-UAV superpixel approach to produce

labels across the whole study site for which we had imagery.

For this we used selected the best performing model, and then

retrained a classifier given all training data. This produced maps

of species occurrence, which were used to compute the area

and percentage of cover of each species. We also used these to

produce density maps by computing the percentage prevalence

of each species in a grid, where each cell was 0.25 ha in size. As

there was a region of clearance to establish agroforestry between

the UAV surveys, we masked regions where this had occurred

by the 2018 survey when computing the landscape models of

species occurrence, since the MS data would include trees no

longer present. This doesn‚t affect the model building phases:

of the labeled crowns only six ‘other’ species trees were in this

region, all of which were in small fragments of canopy left after

clearing and were verified to be of very similar extent in both

years of imagery, both in the processed imagery and original

source images. We expect the outputs from models across the

study site to be of direct value for measuring successional status

and directing active restoration toward areas highlighted as

being early-successional or dominated by low biodiversity value

species. The full pipeline for this approach is summarized in

Figure 8.

3. Results

3.1. Automated species mapping with
SLIC-UAV

SVM modeling performed best on all species label options

(74.3% accuracy on all species labels rising to 91.7% for

the simplest version with long-lived species labels removed).

Random forests modeling performed slightly worse than SVM

and lasso regression performed markedly worse. Based on this,

as well the training scores on the superpixel classification, we

chose to proceed with SVM as our final model. Notably, the

test performance improved markedly for all three modeling

approaches when moving to combine all long-lived species and

to focus on early-successional species and oil palm (Figure 7C).

This reaffirms our observation that these species are visually

most distinctive, and given their significance as indicators of

disturbance, being able to identify these species well is a very

valuable advancement.

3.2. Contribution of imagery and feature
types

Adding structural data (DSM) improved accuracy for all

three species label sets. This was expected as these data add

more information on vertical structure, whereas RGB data

contain information on spectral response and two-dimensional

structure, from image contrasts. The addition of MS data

further improved model performance in the two more complex

models but actually decreased performance on in the simplest

model (Figures 7A,B). This improvement added more to the

model than adding DSM data, showing the additional value of

these data.

Comparing RGB and MS data directly suggested a similar

pattern (Supplementary Figure S2), where comparable models
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FIGURE 6

Illustration of the key features used in this work. On the left are example visualizations of distribution for parametric (A) and non-parametric

statistics (B) for RGB pixels in the central image. (C) Is an example of a filter used for Laws textural features, with the E5E5 kernel for detecting

edges. (D) Shows autocorrelation scores in four directions spaced by 45◦ with average score overlaid. (E) Is an example calculation of a

gray-level co-occurrence matrix and the filter given by the dissimilarity measure in a local 7 × 7 neighborhood. (F) Is an example of computing a

Local Binary Pattern, with a histogram of occurrences of each motif score across the inset imagery.

FIGURE 7

Accuracy of species classification with (A) model types, (B) imagery used, and (C) features used. Classification accuracy increases with

decreasing number of species (x-axes). The two species model classified the early-successional Bellucia pentamera and Macaranga gigantea

from an ’other’ class. The three species model additionally classified the long-lived Alstonia scholaris and the four species model also included

Endospermum malaccense.
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FIGURE 8

Schematic of the full SLIC-UAV pipeline.

using MS imagery in place of RGB performed better whenever

textural features were included, except in the case of the simplest

problem with only five species labels, as in Figure 7B. However,

when using only spectral features, MS imagery over RGB gave

better fit on data used to train at the cost of worse fit on held-

back data. This suggests the extra information in theMS imagery

may have led to overfitting when only the pixel values were

considered and not their textural context.

Including both spectral and textural features resulted in

the highest accuracies for the two models with a reduced

set of species. In these models the hierarchy was clear, with

textural features producing a slight improvement over spectral

features, with the combination doing best (Figure 7C). This

wasn‚t the case for the model with all species labels. Here

the best performance occurred for spectral features alone, with

textural features doing worst. Adding spectral features to these

improved performance, but this was still worse than using

spectral features alone.

3.3. Landscape species mapping with
SLIC-UAV

We used our best four species SLIC-UAV model to predict

species occurrence across the entire 100 ha landscape (Figure 9).

The confusion matrix of the final model used for landscape

mapping, assessed using the mapped crowns, is given in

Table 2. In particular, the model does best in identifying

Non-vegetation and oil palm, with both having precision

and recall greater than 95%. Amongst the species mapped,

the early-successional species were identified with highest

precision (Bellucia pentamera: 90.1%, Macaranga gigantea:

96.9%) whereas the longer-lived species are more commonly

confused with each other as well as the ‘other’ species

category, leading to lower precision (Alstonia scholaris: 86.4%,

Endospermum malaccense: 89.5% and “others”: 87.5%). Recall

values were generally lower, in most cases owing to miss-

classification of known species as the “other” category, being a

catch-all category this is unsurprising. The value of including

this label enables a “control” label for vegetation, ensuring

that superpixels identified as a species of interest are done so

with high precision, since the model is not forced to choose

between a limited set of species labels. This high precision is

of value to management as it gives high confidence in species

dominance maps.

The predicted species distribution corresponds precisely

with the site history, with oil palm, non-vegetation and forest

all well-identified. Notably, the oil palm plantation at the top

of the region, lying outside the Hutan Harapan boundary,

shows the specificity of our model, with regions of bare ground,

buildings and remaining vegetation clearly picked up in contrast

to the oil palm. After clipping the map to just the area

within Hutan Harapan, the early-successional species together

comprised 45.34% of the study site with oil palm and other

vegetation represented 7.21% and 41.81% of the site respectively

(Table 3). A. Scholaris represented 38.37% of the study area

most commonly occurring close to roads. The other species of

interest made up 6.97% of the cover, or 8.00% of the cover once

non-vegetation and oil palm are removed. The remaining forest

species covered the remaining 41.81%. Higher occurrence of B.

pentamera andM. gigantea was expected, but these species tend

to dominate the sub-canopy and appear more rarely as large ‘top

of canopy’ trees. These were often identified in canopy gaps and

near the edge of crowns. Gridded maps of canopy dominance

for the combination of long-lived species with ‘other’ vegetation,

Bellucia pentamera and Macaranga gigantea (Figure 9), reveal

increased occurrence of these early-successional species close to

roads, where disturbance is highest. Generally, there was also

a slight gradient for increased prevalence of long-lived species

further from the boundary of Hutan Harapan, owing in part to

reduced sporadic occurrences of oil palm moving further from

the plantation (Figure 9).

4. Discussion

The challenge in tracking biodiversity recovery during

forest restoration is producing species classification methods

that generalize over large contiguous areas without need for
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FIGURE 9

Map of the percentage occurrence by area of vegetation species in 0.25 ha cells across the study area as predicted by the superpixel SVM model

including all species. (A) Shows the combined occurrence for long-lived species for Alstonia scholaris, Endospermum malaccense and “other”

tree species, with (B) showing Bellucia pentamera alone, and (C) showing Macaranga gigantea alone.

exhaustive surveys. The SLIC-UAV approach was able to

distinguish four species of interest from among other vegetation

and non-vegetated superpixels with 74.3% accuracy, rising to

91.7% when focused only on early-succesional species indicative

of recent disturbance: Bellucia pentamera and Macaranga

gigantea. We used this approach to predict species distribution

across the rest of the 100 ha landscape.

4.1. Accurately monitoring forest
restoration with SLIC-UAV

The output of our SLIC-UAV pipeline are dominance maps

for early-successional species (Figure 9). These maps could

be used to assess forest condition, according to successional

status, and enable recovery to be tracked through time. This
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TABLE 3 Abundance of species predicted across the Harapan

landscape, with the oil palm plantation in the North and regions of

forest clearance removed as shown in Supplementary Figure S3.

Class (Full model) Cover (%) Cover (ha)

Alstonia scholaris 38.4 36.0

Bellucia pentamera 4.3 4.0

Endospermum malaccense 2.4 2.3

Macaranga gigantea 0.30 0.3

Oil palm 7.2 6.8

Non-vegetation 5.6 5.3

Other vegetation 41.8 39.2

Total 100.00 93.70

complements approaches which focus primarily on carbon

content and changes in biomass. In addition, this tool could be

used to help focus active restoration toward areas toward more

degraded areas, where indicative early-successional species are

most prevalent, so that assisted natural regeneration techniques

such as release cutting, enrichment planting and selective

thinning can be implemented (Ansell et al., 2011; Swinfield

et al., 2016). These approaches have been shown to accelerate

carbon sequestration (Reynolds et al., 2011; Gourlet-Fleury et al.,

2013; Wheeler et al., 2016) and the development of suitable

habitats for forest specialist species (Ansell et al., 2011). This

application for guiding management illustrates the potential

value of SLIC-UAV. Our pipeline for species occurrence

mapping includes UAVs at all steps, making reference data

collection simpler, though care must be taken to ensure species

of interest are well represented. The mapping pipeline can

be applied to any orthorectified imagery of sufficiently high

resolution, where crowns are made up of at least 100 pixels or

so. With the increasing resolution of satellite data SLIC-UAV

could be applicable globally, provided sufficient training data

are available.

The high accuracy of our method on the indicative early-

successional species is a particular strength for it’s use in

operational settings. Models focusing on Macaranga gigantea

and Bellucia pentamera performed particularly well, both species

were identified with over 90% precision (Table 2). This is

comparable to Wu et al. (2019), which mapped an invasive

species on a Chinese island using eCognition to generate objects

from UAV RGB imagery, validated on a per-pixel basis with

95.6% overall accuracy and 94.4% precision for the invasive

species, though this focussed on only one species. Apostol

et al. (2020) also used object-based image analysis through

eCognition to identify regions as either spruce or birch in

Romanian forests with accuracy varying from 73.9 to 77.3%.

In Southeast Asian tropical forests, Macaranga gigantea is

one of several species whose presence is strongly linked to the
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severity and recency of disturbance, and Bellucia pentamera is

an invasive species, which is particularly prevalent at Hutan

Harapan (Slik et al., 2003, 2008). They are also most commonly

found in heavily degraded forest and so can act as a signature

species for degradation, while their absence is associated with

recovery. We chose these species based on perceived and

measured occurrence at Hutan Harapan. There are additional

species which could be used as proxies for disturbance and

including these would lead to a more complete picture of

degradation, as they may live in different microclimate niches.

Our work is an illustration of the SLIC-UAV pipeline, and the

flexibility of the method will allow other species of interest to

be added to models with data collection again possible using a

UAV. Knowledge of the relative rate of occurrence of our chosen

species can highlight regions within the project where the effects

of disturbance are strongest. It has been shown that structural

recovery is quick after fire disturbance, but that this has a longer

lasting effect on species composition (Slik et al., 2002). Managers

of projects like Hutan Harapan can use approaches like SLIC-

UAV to help distinguish this signature of prior disturbance,

based on indicative species occurrence in addition to simpler

structural metrics focusing on carbon (Sullivan et al., 2017).

This should improve understanding of forest history and current

recovery status based on aerial UAV survey, reducing the need

to access difficult terrain and the need to use sampling plots to

interpolate over management units.

4.2. Collecting high quality training data
with UAVs

The use of UAVs through the entire pipeline allowed us to

reduce the need for mapping by hand in the field, and is lower-

cost than arranging for aerial occupied aircraft survey. A key

step in our work which adds value is our pipeline for collecting

training data. Most comparable methods have manually mapped

crowns in the field with great effort (Lisein et al., 2015; Franklin

and Ahmed, 2018; Tuominen et al., 2018), or else have made

use of existing forest inventories (Alonzo et al., 2018; Fujimoto

et al., 2019). In contrast, Gini et al. (2018) work on the UAV

imagery, manually labeling individual points on the resulting

imagery, but this approach was only pixel-based, using a small

proportion of total data for training and testing in an already

small study area.Michez et al. (2016), manually delineated whole

crowns on orthomosaic imagery. However, this was completed

after processing and not compared to any reference in the field

at the time. Our approach combines the best of both approaches

by using field-verified UAV training data.

This study describes a clear pipeline for using UAVs to

enable generation of reference crown images, with attached GPS

location metadata. These can then be used in later digitisations

on processed UAV imagery. This not only allows a faster

approach to mapping crown locations, but also enables easier

access to harder to reach areas. The trade-off for this is focus

on only a few key species of restoration interest, enabling

production of occurrence maps for these to guide intervention,

such as the rule-based approach in Reis et al. (2019). This process

isn‚t perfect, and will only capture crowns visible from above the

canopy, but enables a quick way to construct reference datasets

for forest restoration projects, such as at our study site of Hutan

Harapan. This is traded-off with incomplete sampling.We chose

to focus on key species which are indicative of degradation and

recovery status. The manual mapping process efficiently built a

dataset for species of interest, which were then used to train a

model which was applied to 100 ha of data: something that isn‚t

commonly possible with other methods. This shows the power

of our approach to aid restoration management.

A simple and quickly deployable approach allows collection

of data for tree species of interest, which can then be used

to develop models that can generate heatmaps at the scale

of management units (Figure 9) to guide restoration. This

approach was tested in the structurally complex and biodiverse

tropical forest of Hutan Harapan. This is a key ecosystem for

global conservation.

4.3. Model selection

Support vector machines (SVM) had the highest out-of-

sample classification accuracy (Figure 7A) and was used for

the landscape mapping, ensuring that the output maps of

forest status are reliable and of use to project managers. Lasso

regression and random forests had a lower accuracy. The

superpixel boundaries generated using SLIC generally follow

image contrast boundaries, which naturally occur within crowns

owing to different components (leaves and branches). This

leads to superpixels with local homogeneity where differences

within a crown are split causing dilution of the boundaries

between each species. Correct labeling of superpixels requires

adaptability to this structure, without risk of overfitting

species boundaries. This presumably is why SVM did best, by

using a non-linear kernel for boundaries whilst regularizing

to control overfitting. In our study, lasso regression was

not flexible enough to adapt to this complex problem, and

random forests, being less regularized, struggled with the intra-

species variability of superpixels and overfitted. This is also

consistent with our observations that the early-successional

species have muchmore distinct textures than Alstonia scholaris

and Endospermum malaccense.

4.4. Value of structural information and
multispectral imagery

Unsurprisingly, progressively adding more imagery

generally improved the accuracy of resultingmodels (Figure 7B).
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However, this must be considered alongside the additional cost

and complexity involved in adding these data.

The DSM was derived from the RGB imagery and

provides additional structural information. It therefore did

not increase the cost of data acquisition but generating the

DSM was computationally intensive. The DSM only provided

marginal increase in accuracy and was therefore not worth the

additional complexity.

The MS data provides two additional bands of spectral

reflectance for which vegetation reflect a greater proportion of

incident light. We collected this data using a separate UAV

survey with a multi-spectral camera, which added substantial

cost to the data collection. Co-locating the RGB andMS imagery

added complexity to our processing pipeline. The MS data

substantially improved the accuracy of the model in the four

and three species models. This supports findings in existing

works such as Lisein et al. (2015) and Michez et al. (2016)

who found models worked best when including both RGB and

MS data. The exceptions to these broad trends were models

focusing only on the simplest problem, removing the distinction

of Alstonia scholaris and Endospermum malaccense from ‘other’

species. Here the addition of MS imagery led to a slightly lower

accuracy on held back data (Figure 7C). This may be due to the

greater variation in the MS data. This is supported by our full

multiplex analysis in Supplementary Figure S2. Here the models

which only use features based on the spectral properties of each

superpixel all show better fit on the training data for models

using MS imagery compared to RGB, but universally worse

performance on held back superpixels. This suggests models

using only the spectral response fromMS imagery may be prone

to overfitting.

The MS imagery was processed to correct for illumination,

without which performance is reduced, such as in Tuominen

et al. (2018). Addition of more advanced sensors, such as

for hyperspectral imagery, may further improve results, but

are often prohibitively expensive for this context or custom

made (Hruska et al., 2012; Colomina and Molina, 2014; Aasen

et al., 2015). Therefore, this imagery can add to performance in

species mapping models, but must be considered carefully, and

certainly a consideration of the benefits in accuracy compared

to the additional cost for such sensors is worth making for any

application of our work.

4.5. Value of textural and spectral
features

Using superpixels allows us to extract textural features based

on patterns within each superpixel. Textural features generally

allow better discrimination of training examples than spectral

features, but combining both is generally best (Figure 7). This

pattern is consistent for our two simpler models on held-

back data. For these models the early-successional species, with

distinctive textures, are increasingly important and so texture

is key. However, adding spectral information can still help

discrimination. This is not the case for our model with the

most species labels, where spectral data alone perform best,

and adding textural measures actually reduces performance.

This is surprising, suggesting the addition of textural features

to a spectral model alone makes the classification boundaries

less clear. This presumably follows from confusion with the

species Endospermum malaccense and the early-successional

species. The pattern of leaves for many crowns of this species

have a very ‘jagged’ appearance, very similar to that of Bellucia

pentamera. The spectral signature of the two aremore distinctive

using subsets of E. malaccense crowns as superpixels can appear

texturally similar to B. pentamera. This problem disappears once

the label of E. malaccense is removed. With more examples

of E. malaccense this boundary should be better defined, as

the increased weighting given to this label to balance training

examples may contribute to this confusion. Overall our results

justify the inclusion of textural information, with the noted

confusion in one case. This emphasizes the power of our

superpixel approach, taking local patterns as well as spectral

responses into consideration.

The current pipeline doesn’t consider the species of

neighboring superpixels, although a strong local correlation

would be expected, given few crowns are as small as our

superpixels. A processing step which then allows adjustment

based on confidence of classification relative to local superpixels

and their species label could improve robustness of the

classification. This approach has been shown to improve

accuracy by as much as 4% (Tong et al., 2019), but this hasn’t

been tested in the current study.

The classification accuracy of long-lived species with SLIC-

UAV was hindered by the visual similarities of these species.

This finer difference may be better picked up by more bespoke

features as opposed to our use of generic features based on

existing approaches in image analysis. An alternative approach

which may help with expanding available features leading to

better discrimination of these species are convolutional neural

networks. These are able to create complex features fully

automatically which may help discriminate the more visually

similar species. As a trade off, these approaches normally require

more training data in which all trees are labeled within a regular

input shape. This was not possible in the field and is usually

achieved by manually annotating images. This can be highly

accurate, but cannot be independently validated by local experts

in the field. Using this approach, Fujimoto et al. (2019) extracted

cedar and cypress crowns in a Japanese forest with an automated

method, before using neural networks to classify standardized

images using only the equivalent of our DSM imagery with an

accuracy of 83.6%, much higher than any approach using only

DSM imagery in Supplementary Figure S2. Kattenborn et al.
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(2019) used neural networks to map two species form RGB UAV

imagery across a successional gradient in Chile, with accuracies

of 87% and 84%. They extended this work in Kattenborn et al.

(2020) to instead map percentage species occurrence in cells of

a grid, which may be a more computationally feasible way to

build maps to guide management in such an approach. These

accuracies compare favorably for SLIC-UAV, but show the power

of a method with no explicitly computed features. A future step

for SLIC-UAV could be to work with training a neural network

to distinguish differences between the most hard to distinguish

species and to use this to help construct or learn features for

modeling to help this distinction.

5. Conclusions

Our approach to automated species mapping enables a

scaling up of local expertise to aid in guiding restoration project

managers to monitor and plan interventions. Our SLIC-UAV

pipeline centers on the use of UAVs, which are affordable within

the budget of most projects. The data these can collect are an

improvement in both temporal and spatial resolution relative to

other remote sensing approaches. This study demonstrates that

it is possible to map up to 100 ha of land a day with a single

UAV and operator team of two or three people. This scaling up

and deployability of UAV approaches can drastically improve

efficiency of human-power in these projects. Our approach

is particularly valuable in its ability to map early-successional

species of particular management concern. Within Harapan

there are already projects exploring the benefit to forest health of

selectively logging such species (Swinfield et al., 2016), and our

approach will allow more targeted application of such strategies

across the landscape. This study also describes how to collect

reference crown location data with UAVs, making use of their

high spatial detail combined with GPS information. With local

experts it is possible to rapidly collect information on any species

of interest, although we focused on four primary species of

restoration interest. It would be possible to extend our approach

to any species of interest, especially those of high value for

biodiversity or for non-timber forest products. This is something

which would need validation before deployment, within the

same framework. It is important to note that in our modeling,

the early-successional species were more visually distinct, thus

performance on the speciesAlstonia scholaris and Endospermum

malaccense are more indicative of expected application to later-

successional species. Overall, our work has shown and assessed

a full pipeline from field mapping to management occurrence

mapping (Figure 9) showing the power of this low-cost, easy to

implement approach to aid restoration project management.
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