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Synthetic aperture radar (SAR) backscatter based above-ground biomass (AGB)

estimates are limited by the saturation of the backscatter-AGB curve. This

work explores the potential of combining backscatter with polarimetric SAR

interferometry (PolInSAR) estimated forest stand height for improved AGB

estimation. The models combining L-band backscatter and TanDEM-X height

are compared with established backscatter based models. The models are

also temporally cross-validated, i.e., trained on one acquisition date and

validated for other dates. It is observed that with the input of height, the

combined models perform significantly better than backscatter based models,

with an improvement in root mean square error (RMSE) between 19% and

46%. The model utilizing HV-polarized backscatter and TanDEM-X PolInSAR

height provide the best case AGB inversion with an R2 = 0.78 and an RMSE of

27.1 Mg/ha or 22% of mean AGB. The results demonstrate the potential of the

synergistic combination of L-band PolSAR (backscatter) and X-band PolInSAR

(height) products for AGB mapping over a tropical forest range in India.
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1. Introduction

Synthetic Aperture Radar (SAR) is extensively utilized for forest above-ground

biomass (AGB) mapping due to its all-weather sensing capability and sensitivity to

complex forest structures. SAR backscatter has been extensively utilized for forest

AGB estimation using a wide variety of SAR data acquired in P-,L-,S-,C- and X- band

frequencies (Le Toan et al., 1992, 2011; Luckman et al., 1998; Englhart et al.,

2011; Schlund et al., 2015; Askne et al., 2017; Kumar et al., 2017b; Ningthoujam

et al., 2017, 2018; Schlund and Davidson, 2018; Quegan et al., 2019). Depending

on the wavelength, SAR signals interact with different components of the forest,

such as stem, branch, leaves, and ground (ULABY et al., 1990; Henderson and

Lewis, 1998; Fransson, 1999; Woodhouse, 2006; Ningthoujam et al., 2018). The

SAR backscatter signal strength increases with AGB up to a saturation level

Frontiers in Forests andGlobal Change 01 frontiersin.org

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2022.918408
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2022.918408&domain=pdf&date_stamp=2022-08-10
mailto:unmesh.khati@iiti.ac.in
https://doi.org/10.3389/ffgc.2022.918408
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/ffgc.2022.918408/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Khati and Singh 10.3389/�gc.2022.918408

(Schlund et al., 2015; Yu and Saatchi, 2016; Joshi et al., 2017),

which depends on the sensor properties, such as wavelength,

polarization, and site conditions including stand structure,

ground conditions, and moisture (Dobson et al., 1992; Le Toan

et al., 1992; Ghasemi et al., 2011; Qin et al., 2016; Joshi et al.,

2017; Ningthoujam et al., 2018). Lower frequency SAR data (P-

and L-bands) are generally more suitable for biomass estimation

due to higher saturation levels. For L-band SAR data, the

reported saturation levels vary from 40 to 150 Mg/ha (Mega-

gram per hectare) (Imhoff, 1993; Luckman et al., 1997; Kuplich

et al., 2005; Mitchard et al., 2009; Englhart et al., 2011; Neumann

et al., 2012; Mermoz et al., 2015; Ningthoujam et al., 2018).

Some studies have reported L-band saturation levels of above

200Mg/ha (Englhart et al., 2011; Sarker et al., 2012; Behera et al.,

2016). For the P-band, the saturation level is typically between

150 and 300 Mg/ha (Hoekman and Quiriones, 2000; Le Toan

et al., 2011; Sandberg et al., 2011; Schlund and Davidson, 2018;

Cartus et al., 2019; Liao et al., 2019), whereas for the X-band

backscatter, it is between 30 and 80Mg/ha (Englhart et al., 2011).

The saturation thresholds even in the L-band are insufficient

for estimation of AGB in tropical forests where the biomass

can range well over 500 Mg/ha. Improved AGB mapping can

be carried out by combining data from multiple SAR sensors.

Avtar et al. (2014) combined optical and L-band Advanced

Land Observing Satellite/Phased Array type L-band Synthetic

Aperture Radar (ALOS/PALSAR) data for AGB mapping over a

plantation forest. A combination of X-/L-band (Englhart et al.,

2011) and L-/P-band (Sandberg et al., 2011) backscatter were

utilized for AGB mapping. Englhart et al. (2011) showed that

while X- and L-band backscatter saturated individually at 80

and 126 Mg/ha, respectively, the forest AGB can be estimated

up to 307 Mg/ha by combining the two. Another approach for

improved AGB retrieval combines the height estimated from

Interferometric SAR (InSAR), Polarimetric SAR Interferometry

(PolInSAR) or Light Detection and Ranging (lidar), with radar

backscatter for AGB mapping (Soja et al., 2015; Torano Caicoya

et al., 2016). For AGB mapping in the boreal forest, Næsset et al.

(2011) combined SRTM InSAR derived height and Lidar digital

terrain model (DTM), while a two-level model (TLM) utilizing

multiple TanDEM-X InSAR acquisitions was demonstrated

by in Soja et al. (2015). Recently, a combination of P-band

PolInSAR height and P-band backscatter has been utilized for

tropical forest AGB mapping (Liao et al., 2019).

This study explores the potential of combining multiple

L-band ALOS-2/PALSAR-2 PolSAR backscatter measurements

and X-band TanDEM-X PolInSAR height for AGB estimation

over an Indian tropical forest. The TerraSAR-X/TanDEM-

X satellites (referred to as TanDEM in this article) provide

the most suitable platform for PolInSAR height inversion

due to their single-baseline acquisitions without temporal

decorrelation (Kugler et al., 2014). Our previous studies have

shown the potential of TanDEM-X data for accurate forest

height estimation (RMSE between 1.9 m and 5 m) over Indian

tropical test sites (Khati et al., 2017, 2018). Furthermore, 12 m

and 90 m TanDEM-X global digital elevation models (DEMs)

are used to generate DTM and obtain InSAR heights. The next

section provides a detailed description of the study area along

with the L-band PolSAR and X-band PolInSAR acquisitions and

field data. The regression models are developed and trained

to retrieve forest AGB using the SAR data sets in Section 2.

The results are analyzed and discussed in Section 3, and the

conclusions and future scope drawn up in Section 4.

2. Materials and methods

2.1. Haldwani forest range

Haldwani forest (29o 10’ N and 79o 05’ E) is a managed

forest spread over 405 km2 at the foothills of the Himalayas in

Uttarakhand State, India. Figure 1 shows the ALOS-2/PALSAR-

2 HH-polarized coherence amplitude image of the Haldwani

forest along with the location of field plots and the extent of

TanDEM acquisition. The Haldwani forest range is fairly flat

with ground slopes at plot level < 5o and a mean ground slope

of 2.39o (measured from 12 m × 12 m TanDEM-X DEM). This

forest range has been studied for forest height (Khati et al., 2017),

logging detection (Khati et al., 2018), and tomography (Kumar

et al., 2017a; Khati et al., 2019) in our earlier work. The forest

is divided into compartments that have one of the following

plantation species: teak (Tectona grandis), eucalyptus sp.,

poplar (Poplus sp.), gutel (Trema orientalis), kanju (Holoptelia

Integrifolia), and mixed plantations comprising of species such

as: gutel, kanju, amaltas (Cassia fistula), and shisham (Dalbergia

sissoo). Teak, poplar, and gutel are deciduous species while

eucalyptus is evergreen. The phenological cycle and its effect on

PolInSAR height were discussed at length in Khati et al. (2017).

The forest department office maintains a record of all the forest

management activities, such as logging, clear-cuts, planting year,

and maturity age of each compartment.

2.2. Field campaign

The field campaign in Haldwani was carried out for two

major objectives - forest height and forest AGB estimation. The

survey for forest height estimation was carried out in November

2015 and is explained in detail in Khati et al. (2017). The H100

height is the mean of the tallest 100 trees in a 1 hectare (ha)

plot, also called Lorey’s height. For forest AGBmapping, the field

campaign was carried out in March 2017 and November 2018.

Field inventory data was collected for 60 field plots. Each plot is

of 0.1 ha area (31.6 m × 31.6 m) and are generally established

in homogeneous uni-species plantation compartments or mixed

species compartments. For each plot, the trees with a diameter

at breast height (dbh, 1.3 m above ground level) above 15 cm

were considered for measurement. The dbh, height, species,

and approximate age of each tree within a plot were measured
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FIGURE 1

The ALOS-2/PALSAR-2 HH coherence amplitude image (scaled black for amplitude 0 and white for amplitude 1) of the Haldwani forest range is

shown with the location of the field validation plots during field surveys in 2017-18. The extent of the TanDEM-X PolInSAR height is overlaid

showing the common overlap region between ALOS-2/PALSAR-2 and TanDEM-X.

with technical support from the State Forest Department. A

total of 4,150 individual trees were surveyed during the two

campaigns. Please note that the field measured AGB collected

during campaigns in 2017 and 2018 (60 plots) is used in

this study.

The AGB is defined “as the dry mass of live or dead matter

from tree or shrub (woody plant) life forms, typically expressed

as a per area density (e.g., Mg of aboveground biomass per

hectare)” (Duncanson et al., 2022). The following steps detail the

process used to estimate the field measured biomass.

1. The volume of each tree is computed using the site- and

species-specific volumetric equations given by the Forest

Survey of India (1996). The input to these equations is the

dbh of the tree.

2. Next, using the wood density information from the Forest

Survey of India, the volume is converted to biomass for each

tree.

3. Finally, the biomass is aggregated for the 0.1 ha plot to obtain

the AGB for the plot. This is then scaled accordingly to get

the AGB in Mg/ha.
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Following are the volumetric equations for the major species in

the Haldwani test site as provided in the Forest Survey of India

(1996). In these equations, V is the volume of the tree and D

is the dbh of the tree. Using these equations, the tree volume

is computed. The wood density is 0.4 for Poplus sp., 0.697 for

Eucalyptus sp., 0.825 forAcacia catechu, 0.57 for Tectona grandis,

0.825 for Senegalia catechu, and 0.692 for Dalbergia sisoo.

V = (−0.143393+ (3.040067 ∗ D))2

Poplus sp.

V = 0.02894− (0.89284 ∗ D)+ (8.72416 ∗ D2)

Eucalyptus sp.

V = 0.02384− (0.72161 ∗ D)+ (7.46888 ∗ D2)

Acacia catechu

V = (0.08847− (1.46936 ∗ D)+ (11.98979 ∗ D2)

+ (1.97056 ∗ D3)) ∗ 1.34

Tectona grandis

V = (0.02384− (0.72161 ∗ D)+ (7.46888 ∗ D2))

Senegalia catechu

V = (−0.3238+ (3.0077 ∗ D))2

Dalbergia sisoo

It is to be noted that the field AGB calculations utilize volumetric

equations which do not involve stand height (H100) but only

dbh. The potential for accurate field AGB measurement using

allometric equations which use field measured H100 and dbh

have been highlighted in many studies (Feldpausch et al., 2011,

2012; Chave et al., 2014). However, for the Haldwani test site,

allometric equations are not available for many species. Hence,

volumetric equations are utilized.

The field measured AGB varies from 3.76 to 310 Mg/ha with

a mean of 123 Mg/ha. The measured height at plot level was

converted to H100 height using the tallest 10 trees in a 0.1 ha

area (see Khati et al., 2017, 2018). Figure 2 shows the field AGB

as a function of H100, the number of trees per plot, and average

age of each plot. The coefficient of determination (R2) and mean

squared error (MSE) for a logarithmic regression fit are also

shown in Figure 2. As expected, the height and age are positively

correlated with field measured AGB, while the number of trees

decreases for high AGB plots.

2.3. Satellite data

2.3.1. ALOS-2/PALSAR-2 SAR data

Over Haldwani, L-band ALOS-2/PALSAR-2 fully

polarimetric SAR data was acquired on five different dates

in 2017: 19 March, 02 April, 16 April, 30 April, and 11 June.

All the data were acquired in ascending pass at midnight (18:39

h UTC or 00:09 h local time) during the Indian summer. The

range and azimuth spacing for all the acquisitions are 2.8 m

and 3.2 m, respectively. The temperature and precipitation

data are available from the nearest weather station at Pantnagar

airport (located at the southern border of the Haldwani forest).

The acquisition and weather details for the five acquisitions

are detailed in Table 1. The cumulative precipitation at 3 h

intervals before the acquisitions show that light rains were

measured for two acquisitions (19 April and 30 April) while the

weather for the remaining three acquisitions remains dry. Field

work was carried out during the acquisition on 19/20 March

2017, which also confirms light moisture observed during

the acquisition.

2.3.2. TanDEM-X data, DEM, and Forest height

Three TerraSAR-X/TanDEM-X fully polarimetric PolInSAR

data sets were acquired between December 2014 and March

2015. These data acquisition details are shown in Table 1 and

have been discussed in detail in Khati et al. (2017). In this

work, the PolInSAR inverted forest stand height from three

PolInSAR acquisitions are used as a data product. Here, we

briefly present the process followed. For detailed methodology,

process work-flow, and analysis of the TanDEM-X PolInSAR

data, refer to Khati et al. (2017, 2018). The PolInSAR data is

radiometrically calibrated and corrected for SNR decorrelation.

A modified three-stage inversion technique is utilized (Cloude,

2006) for forest height inversion. The retrieved forest stand

height is validated using field measured H100 heights from 0.1

ha plots. The PolInSAR height estimated from the acquisitions

on 09 December 2014, 02 Feb 2015 and 13 Feb 2015 are used in

this analysis. These are chosen as they show the best correlation

with field measured H100. The PolInSAR height maps (HTDXn

where n = 1, 2, 3) represent the stand height in meters above the

local ground level.

The major objective of the TanDEM-X mission was to

generate high-resolution global DEMs (Krieger et al., 2007).

Recently, 90 m TanDEM-X DEM was released and is freely

accessible. Furthermore, we have access to higher resolution of

12 m DEM as well. The DEMs are generated using multiple

TanDEM-X VV-pol InSAR acquisitions. The InSAR phase

centers are converted to elevations for DEM generation. For X-

band, the microwave penetration through the vegetation canopy

is limited and the phase center lies above the true ground.

This introduces a vegetation bias in the generated DEM. We

utilized the 12 m and 90 m DEM to generate a DTM. The

DTM removes the vegetation bias from the DEM giving true-

ground elevation. Amask of the non-forest region was generated

using vegetation-free points obtained from multiple sources—

field campaign, road and rail network, urban and agricultural

fields, and non-forest pixels inside the forest range. The state

forest department provided a non-forest region mask inside the

forest range which includes small hamlets, roads, dirt tracks, and

grasslands. Care was taken to ensure that the generated mask
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FIGURE 2

Field campaign statistics: Forest mensuration height H100, trees per plot, and the average age of the plot are shown as a function of field

measured AGB. The coe�cient of determination (R2) and Mean Squared Error (MSE) for a logarithmic regression between field measured AGB

and the parameters on the ordinate are also shown in the plots.

TABLE 1 The ALOS-2/PALSAR-2 and TanDEM-X SAR data utilized over the test site.

Sr.No Date Scene ID Incidence Precipitation [mm] Temperature

angle before acquisition [hours] oC

0 3 6 9

ALOS-2/PALSAR-2 Data

1 19-March-2017 ALOS2152390570-170319 32.34o 0 0.3 0.5 0.5 9

2 02-April-2017 ALOS2154460570-170402 32.32o 0 0 0 0 12

3 16-April-2017 ALOS2156530570-170416 32.35o 0 0 0 0 18

4 30-April-2017 ALOS2158600570-170430 32.33o 1.95 5 9.1 11.9 13

5 11-June-2017 ALOS2164810570-170611 32.32o 0 0 1.4 1.4 19

Sr.No Date kz[m−1] Incidence Precipitation [mm] Temperature

angle before acquisition [hours] oC

0 3 6 9

TanDEM-X Data

1 09-December-2014 –0.14 44.2o 0 0 0 0 11

2 02-February-2015 0.24 44.2o 0 0 0 0 10

3 13-February-2015 –0.16 44.2o 0 0 0 0 13

included well distributed points covering the entire forest range

and surroundings. This mask was used with the 12 m DEM to

generate the DTM using interpolation. The same set of points

was also used to generate a 90 mDTM using the 90 mDEM. The

difference in elevations between DTM and DEM provides the

vegetation bias height for X-band SAR data. This vegetation bias

is considered here as a pseudo-forest stand height, denoted in the

text as HTDM12 and HTDM90 for the height estimated using the

12 m DEM/DTM and 90 m DEM/DTM, respectively. Thus, five

different heights are used: three PolInSAR forest stand heights

and two TanDEM-X estimated pseudo heights.

To assess the PolInSAR and TanDEM heights, the H100

measured during the field campaign for 60 field plots are

used. Figures 3a–e show the validation plots for PolInSAR

heights HTDXn and TanDEM-X heights. It is seen that

the HTDXn has a high correlation with H100 (R2 between

0.78 and 0.90). The variation is due to different baselines

between the TerraSAR-X and TanDEM-X acquisitions. The

TanDEM PolInSAR acquisition on 09 Dec 2014 (HTDX2)

showed the highest correlation with H100. From Figures 3d,e,

it is seen that the vegetation bias height estimated from

12 m (HTDM12m) and 90 m (HTDM90m) TanDEM-X DEM

are positively correlated with H100. This is expected since

with increasing forest height, the vegetation bias should also

increase. The R2 is 0.68 and 0.63 for the 12 and 90 m

DEMs, respectively. It is interesting to see that the loss of
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FIGURE 3

Height validation plots: The field estimated forest stand height (H100) is plotted against PolInSAR estimated forest height for the three PolInSAR

acquisitions (a–c), and vegetation bias height estimated using TanDEM-X 12 m DEM (d) and TanDEM-X 90 m DEM (e). In (f) the vegetation bias

estimated from TanDEM-X 12 m DEM and TanDEM-X 90 m DEM are cross-validated. r2 represents the coe�cient of determination. The dotted

line is the linear-fit line.

resolution does not have a drastic impact on the vegetation

bias height estimation. The correlation between the HTDM12m

and HTDM90m is shown in Figure 3f. Furthermore, Figure 4

provides a qualitative estimate of the forest height estimated

using PolInSAR data (HTDX2) and the 12 m TanDEM-X DEM.

The variation of height in the forest range is well captured by the

HTDM12m.

2.4. Radar data processing

The ALOS-2/PALSAR-2 data is acquired in fine resolution

quad-polarized strip-map mode and provided in single look

complex (SLC) format. The data is radiometrically calibrated

(Shimada et al., 2009; Englhart et al., 2011) and co-registered

using the orbit parameters and the high resolution 12 m

TanDEM-X DEM. The co-registered data sets are georeferenced

and multi-looked to generate 30 m× 30 m pixels and to reduce

speckle. The backscatter measured here is σ 0 in slant range

geometry. Using the 12 m TanDEM-X DEM and acquisition

geometry, the local incidence angle (θi) for each pixel was

estimated. It is generally observed that for rough forested

regions, the σ 0 backscatter has residual dependence on the local

incidence angle (Soja et al., 2013) and therefore, backscatter in

ground range γ 0 is preferred. It is generated using

γ 0
PQ =

σ 0
PQ

cosθi
(1)

where, PQ is the polarization observed - HH, HV, VV, or its

Pauli combinations in HH+VV andHH-VV. The γ 0 backscatter

corrects the data for any topographic effects on the SAR signal.

2.5. Relating SAR data to forest AGB

2.5.1. ALOS-2/PALSAR-2 backscatter and AGB

The relation between SAR backscattering coefficients γ 0,

PolInSAR, and TanDEM-XDEM height with AGB are evaluated

in this section. Figure 5 shows the relation between γ 0

backscatter in HH, HV, and VV as a function of forest

AGB. The backscatter ratios (HH/VV, HV/HH, and HV/VV)

were evaluated and had a very weak relation with AGB.

The backscatter-AGB relation is shown for the five ALOS-

2/PALSAR-2 acquisitions. As seen in Table 1, the weather

conditions differ between the acquisitions. To compensate

for any extreme weather conditions, a temporally averaged
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FIGURE 4

(A) TanDEM-X PolInSAR estimated height (in meters) map using the data acquired on 09 Dec 2014. (B) Vegetation bias height estimated from the

di�erence between 12 m TanDEM-X DEM and the interpolated DTM.

backscatter coefficient is generated (shown in Figure 5 by blue

squares) (Englhart et al., 2011). With multiple acquisitions, the

temporal stability and utility of temporally averaged backscatter

for AGB estimation can be evaluated.

The backscatter-AGB saturation is estimated based on

the method suggested by Watanabe et al. (2006) where the

saturation threshold is identified as the slope where the

backscatter-AGB slope approaches 0.01 dB per Mg/ha (for

every 1 Mg/ha increase of AGB, the backscatter change is 0.01

dB). Using this technique, the backscatter-AGB curve saturates

around 105 Mg/ha (for HH-polarization).

2.5.1.1. Forest height and AGB

In Figure 6, the variation of PolInSAR estimated height and

TanDEM-X DEM estimated height as a function of AGB is

plotted. Both the PolInSAR height and DEM/DTM height show

a good correlation with AGB; however, there is higher variance

in the case of DEM/DTM height.

FromFigures 5, 6, the following observations can bemade:

• All three polarizations (HH, HV, and VV) are well

correlated with AGB for all acquisitions (Figure 5).

• Ratios of HH/VV andHV/HH are not correlated with AGB

while HV/VV shows a weak relation (Figure 5).

• Temporal variation of backscatter is highest for HH-

polarization and lowest for HV-polarization backscatter

(Figure 5).

• PolInSAR and DEM estimated heights are related to AGB

although the variance is high (Figure 6).

2.6. Forest AGB retrieval methods

2.6.1. Regression models

We utilize simple linear regression models to relate γ 0

backscatter and estimated forest height with AGB. We first

define the convention used in this paper:

1. B̂Mn is the biomass measured in Mg/ha using theMnmodel

2. ŴMn = loge(B̂Mn) is the natural logarithm of AGB estimated
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FIGURE 5

Gamma nought γ0 backscatter for HH, HV, VV, and HV/VV backscatter ratio plotted (in dB) as a function of field measured AGB (Mg/ha). The

running average trend is also plotted to simplify the analysis. Di�erent colors correspond to the five ALOS-2/PALSAR-2 acquisitions and one

temporal average backscatter. The coe�cient of determination R2 for the temporal average bacskcatter plot is also shown.

3. γ 0
PQ is the ground range, terrain corrected backscatter in PQ

polarization measured in dB

4. HTDXn is the PolInSAR forest height in meters estimated

using one of the three TanDEM-X PolInSAR acquisitions

5. HTDM12m and HTDM90m is the forest height estimated using

the 12 m and 90 m TanDEM-X global DEM as explained in

Section 2.3.2.

Multiple combinations of backscatter in various polarizations

and with different forest heights were evaluated to estimate

forest AGB. A few among these which provide interesting

observations and are consistent in AGB estimation for all five

ALOS-2/PALSAR-2 data are discussed here. We start with a

simple model relating the cross-polarized backscatter to AGB

(Le Toan et al., 2011; Sandberg et al., 2011; Soja et al., 2013).

ŴM1 = a0 + a1[γ
0
HV ] (2)

where a0 and a1 are the model parameters. Following the

analysis in Section 2.5.1 and observations in Figure 5, co-polar

channels also have a good correlation with AGB. The next two

models add the co-polar channels to obtain a linear regression

model which utilizes the complete polarimetric information

(Rignot et al., 1995; Saatchi et al., 2007, 2011; Sandberg et al.,

2011).

ŴM2 = a0 + a1[γ
0
HV ]+ a2[γ

0
HH] (3)

ŴM3 = a0 + a1[γ
0
HV ]+ a2[γ

0
HH]+ a3[γ

0
VV ] (4)

These models utilize simple first order parameters of radar

backscatter. In Saatchi et al. (2007), the WCM model is

simplified into a quadratic form of the equation. The quadratic

model mimics the loss of sensitivity of backscatter for

higher biomass and is also used as a reference model by
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FIGURE 6

Relation between PolInSAR height (left) and DEM estimated height (right) as a function of AGB. The PolInSAR heights are estimated from three

TanDEM-X acquisitions and DEM estimated heights are from 12 and 90 m TanDEM-X Global DEM and interpolated DTM. Dashed lines are the

least-squares estimated best-fit lines.

Soja et al. (2013).We evaluate this model to assess it with respect

toM3. The model is given by

ŴM4 = a0 + a1[γ
0
HV ]+ a2[γ

0
HV ]

2 + a3[γ
0
HH]+ a4[γ

0
HH]

2

+ a5[γ
0
VV ]+ a6[γ

0
VV ]

2. (5)

M1 to M4 provide different linear models which estimate AGB

as a function of SAR backscatter. The estimated forest stand

height is next evaluated for its utility in AGB estimation. We

start with a simple linear model relating the estimated forest

stand height with AGB

ŴM5 = a0 + a1[HX] HX = HTDXn,HTDM12morHTDM90m

(6)

Next, the L-band backscatter is combined with height to assess

a combined model. The cross-pol and co-pol backscatter is

added in steps to assess any incremental improvement with

multi-polarimetric data.

ŴM6 = a0 + a1[HX]+ a2[γ
0
HV ] (7)

ŴM7 = a0 + a1[HX]+ a2[γ
0
HV ]+ a3[γ

0
HH] (8)

ŴM8 = a0 + a1[HX]+ a2[γ
0
HV ]+ a3[γ

0
HH]+ a4[γ

0
VV ] (9)

3. Results and discussion

In this section, the overall methodology followed is

explained, and the models are evaluated for their performance

and discussed. Figure 7 shows the overall methodology followed.

The training and validation samples are common across all

the acquisitions. Only those field plots which are covered by

ALOS-2/PALSAR-2 and TanDEM-X acquisitions are used.

In regression modeling, the selection of training samples

with high accuracy and low bias is important (Soja et al.,

2013). The field campaign estimated forest AGB is accurate and

used for training and validation. These multivariate regression

models are trained on 24 randomly selected samples from the

60 field plots. The validation is carried out on the remaining

36 field plots. The training and validation plots represent the

complete range of AGB values from 4 to 310 Mg/ha. Further

to test cross-validity and temporal model stability, we train the

model using the backscatter of one acquisition and validated

using the backscatter of another (Soja et al., 2013). To verify

the model validation, two parameters are evaluated for each

model:

• Root mean square error (RMSE):

RMSE =

√

1

N

∑

i

R̂(i)2 (10)

where N is the number of observations. Note that i sweeps

through all the 36 validation plots for each acquisition.

• Coefficient of determination R2 is calculated for no-

intercept models and is given as

R2 = 1−

∑

i(B̂field(i)− B̂M(i))2
∑

i(B̂field(i)− B̄field)2
(11)

where B̂field is the biomass measured during the field

campaign, B̂M is the model estimated biomass, and B̄field

Frontiers in Forests andGlobal Change 09 frontiersin.org

https://doi.org/10.3389/ffgc.2022.918408
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Khati and Singh 10.3389/�gc.2022.918408

FIGURE 7

Relation between PolInSAR height (left) and DEM estimated height (right) as a function of AGB. The PolInSAR heights are estimated from three

TanDEM-X acquisitions and DEM estimated heights are from 12 m and 90 m TanDEM-X Global DEM and interpolated DTM.

represents the mean field measured biomass (i.e., mean

biomass of all plots).

3.1. Temporal model validation

The models are co-validated and cross-validated. In co-

validation, the model is trained and validated using backscatter

from the same acquisition (date) data set. Whereas in cross-

validation, the models are trained using one L-band acquisition

backscatter data set and validated using data from other dates.

Table 2 shows the training and validation dates for all models

except M5. Model M5 is not analyzed since it does not have

backscatter as input (see Equation 6). In Table 2, models M6 to

M8 have TDX2 height as a common input. TDX2 is chosen since

it has the highest accuracy withH100 (see Figure 3). From initial

analysis, it is observed that all the models consistently under-

estimated biomass for plots with AGB > 250Mg/ha. Since only

4 field plots have AGB above 250 Mg/ha we do not expect

significant performance deterioration.

In Table 2, all combinations of dates are examined and co-

and cross-validation results are presented. The R2 and RMSE are

evaluated for each date pair and model. The RMSE ranges from

a minimum of 27.2 Mg/ha (22% of mean AGB) to a maximum

of 163 Mg/ha (135% of mean AGB). Two extreme results for

cross-validation of M4 using 02-April data are excluded. For

ease of interpretation, the RMSE values are used to color-code

the validation table. The model dates for which RMSE is less

than 40 Mg/ha (30% of mean AGB) are white and the worst

performing model dates having RMSE greater than 80 Mg/ha

(65% of mean AGB) are darkened. The remaining model date

pairs are gray.

It is interesting to observe the performance of models

with subsequently higher polarimetric information content. The

polarimetric information content increases from M1 to M3.

Model M4 is evaluated and compared with M3 as both have

the same polarimetric inputs, but M4 has a quadratic form. On

the right side of Table 2, M6–M8 have a common TDX2 input

height. Overall, it is evident from Table 2 that the combined

models with L-band backscatter and X-band height (M6–M8)

input perform better than backscatter-only models.
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TABLE 2 Temporal validation: Results of validation carried out on ModelsM1 toM4 (backscatter based) andM6 toM8 (backscatter and height

based).

Backscatter based Backscatter and height based

Training Validation M1 M2 M3 M4 M6 M7 M8

19-Mar 19-Mar 0.69 0.71 0.7 0.74 0.78 0.79 0.79

44.5 41.4 41.7 37 27.1 27.5 29.2

02-Apr 0.62 0.64 0.64 0.67 0.75 0.76 0.76

55.6 52.5 53 48.7 33.7 33.5 32.9

16-Apr 0.59 0.61 0.61 0.65 0.73 0.74 0.74

58.4 56 56.7 52.5 43.3 43 44.2

30-Apr 0.67 0.68 0.68 0.72 0.77 0.77 0.77

52.9 48.5 49.6 44.1 37.6 34 36.2

11-Jun 0.71 0.72 0.73 0.77 0.81 0.81 0.81

54 51.3 51.8 48.2 42.9 43.3 44

02-Apr 19-Mar 0.69 0.72 0.72 0.1 0.79 0.8 0.79

44.5 40.7 40.9 163 27.4 35 38.2

02-Apr 0.62 0.68 0.68 0.64 0.76 0.77 0.78

55.9 48.5 48.4 63.1 33.7 33.6 32.7

16-Apr 0.59 0.65 0.65 0.43 0.74 0.76 0.76

59.4 53.5 54 1,020 43.4 44.6 46.5

30-Apr 0.67 0.69 0.69 0.2 0.77 0.77 0.78

53.9 40.6 41.4 117 36.9 30.1 31.4

11-Jun 0.71 0.73 0.73 0.33 0.81 0.8 0.81

54.2 52.5 52.7 1,733 42.3 49.7 51.1

16-Apr 19-Mar 0.69 0.72 0.72 0.75 0.79 0.8 0.8

43.4 41 41.2 35.2 29.6 39.2 40.7

02-Apr 0.62 0.68 0.68 0.7 0.77 0.78 0.78

55 47.2 48.2 46.3 34.2 34.2 33.7

16-Apr 0.59 0.65 0.65 0.68 0.75 0.76 0.76

58.4 52.7 51.9 47.6 44 46 46.8

30-Apr 0.67 0.69 0.68 0.66 0.78 0.77 0.78

53 38.7 37.5 39.9 36.9 31.5 31.3

11-Jun 0.71 0.73 0.72 0.78 0.81 0.8 0.8

53.6 53.8 53.2 44.7 43.4 52.5 53.7

30-Apr 19-Mar 0.69 0.71 0.71 0.67 0.78 0.79 0.78

45 40.9 41 46 28.3 28.3 30.2

02-Apr 0.62 0.65 0.65 0.51 0.75 0.75 0.75

55.4 49.9 49.7 46 33 32.7 32.1

16-Apr 0.59 0.62 0.62 0.54 0.73 0.74 0.74

57 52.8 52.5 54.6 43 42.7 43.8

30-Apr 0.67 0.68 0.68 0.66 0.77 0.77 0.77

51.8 43.5 43 41.4 37.5 36 36.9

11-Jun 0.71 0.73 0.72 0.71 0.81 0.81 0.81

54.5 51.8 51.3 58.9 44.3 44.5 46.2

11-Jun 19-Mar 0.69 0.72 0.7 0.7 0.79 0.79 0.79

46.6 44.7 52.2 37.5 27.7 32.7 34.1

02-Apr 0.62 0.67 0.66 0.65 0.76 0.77 0.76

57.6 54.9 55.5 50.3 34.4 37.5 40.7

16-Apr 0.59 0.64 0.62 0.6 0.74 0.75 0.74

60.7 59.2 55 50.7 44 46.3 45.8

30-Apr 0.67 0.69 0.63 0.55 0.77 0.77 0.75

55.3 49.4 42.5 40.7 37.7 33.9 33.6

11-Jun 0.71 0.73 0.67 0.64 0.81 0.81 0.79

55.3 52.3 54.9 48.9 42.6 46.1 46.8

Average 0.68 0.69 0.69 0.70 0.77 0.78 0.77

backscatter 44.2 41.3 42.1 38.6 31.2 30.9 31.9

Color coding based on RMSE (Mg/ha) ≤ 40 ↔ ≥ 40& ≤ 80 ↔ ≥80

ForM6 toM8 models, the height from TDX2 is the input. The first row represents R2 and the second row is RMSE (Mg/ha). Color coding by RMSE value: White for RMSE ≤ 40 Mg/ha

(30% of mean AGB), Gray for 40 < RMSE < 80 Mg/ha, and dark gray for RMSE ≥ 80 Mg/ha (60% mean AGB). The bold dates indicate co-validation.
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TABLE 3 Overall model performance for modelsM1 toM4 (backscatter based) andM6 toM8 (backscatter and height based).

Backscatter based Backscatter and height based

RMSE and (%RMSE) M1 M2 M3 M4 M6 M7 M8

Co-Validation 52.7± 7 46.6± 5 46.3± 6 47.3± 13 35.7±8 35.8± 9 36.5± 9

(42.8± 6) (37.9± 4) (37.7± 5) (38.5± 10) (29±7) (29.1± 7) (29.6± 7)

Cross-Validation 53.5± 9 49± 10 49± 10 71± 80 37.3±8 38.5± 12 39.6± 12

(43.5± 7) (39.9± 8) (39.9± 8) (58± 67) (30.3±7) (31.3± 10) (32.2± 10)

All 53.1± 9 48.5± 10 48.6± 9 49.6± 60 37±8 38.1± 12 39.1± 12

(43.2± 7) (39.4± 8) (39.5± 8) (40.3± 66) (30.1±7) (31± 10) (31.8± 10)

The Mean RMSE (in Mg/ha) and %RMSE (% of mean AGB) are shown in brackets with SD for all models.

FIGURE 8

Comparison of the eight models with training and validation carried out using L-band backscatter from 19-March data and TDX2 height. First

row represents models based on backscatter and second row represents combined models based on backscatter and height.

Table 3 depicts the overall performance of the models across

all L-band acquisitions. The mean RMSE and SD are calculated

for co- and cross-validation cases. The values in brackets are

%RMSE (% of mean AGB) for the models. M3 performs best

among backscatter based models with an RMSE of 46.3 ± 6

Mg/ha or 37.7% of mean AGB. With the addition of height,

the models with combined backscatter and height input (M6–

M8) perform significantly better than backscatter-only models.

The model inversion improves with RMSE reducing to 35.6

± 8 Mg/ha or 29% of mean AGB for the M6 model. With

the addition of HH-pol backscatter information in M7, the

performance remains similar, while with VV-pol backscatter

included inM8, the performance degrades.

For cross-validation, the performance varies for the models

with RMSE ranging from 37.3 to 71 Mg/ha. M4 has the highest

RMSE and has a very high variance. This is observed in Table 2

for model M4 trained with 02-April data and cross-validated

for other dates where RMSE > 163 Mg/ha are observed.

However, it seems to be an exception, since, for other training

dates, M4 performs reasonably well with a mean RMSE of 56

Mg/ha (excludes extremes for 02-April training data). If these

extreme results are ignored, then the cross-validation results

have similar trends to co-validation results with M2 and M3

providing similar validation results in backscatter only models.

In combined models, M6 has the best performance with an

RMSE of 37.3 ± 8 Mg/ha or 30.1% of mean AGB. The model

performance deteriorates forM7 andM8.

In summary, the cross-validation shows stable model

performance for all models except M4. Among co- and

cross-validation, the model performance does not deteriorate

significantly (see Table 3). Single-pol modelM1 performs poorly

across all validation scenarios (RMSE 53.1 Mg/ha) while
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addition of polarimetric information inM2 (RMSE 48.5 Mg/ha)

or PolInSAR information (height) in M6 (RMSE 37 Mg/ha)

improves the model performance. From Table 2, it is observed

that all models seem to perform better for the 19-March

acquisition irrespective of the training date selected. For other

training dates, the model performance is sensitive to what the

validation dates are. This might be due to the gradual change

of phenology from 19-March to April acquisitions. Although

not common to all regions of the forest, the teak plantations

gradually lose their leaves during March and are leaf-less during

April. This might be a reason for better model inversion for 19-

March data. The model performance for 19-March data with

TDX2 height input across all models is shown in Figure 8. The

validation plots show the improved accuracy with theM6 model

and gradual improvement fromM1 toM3.

3.1.1. Model stability

The linear regression coefficients (a0, a1...) are estimated

for the models at all L-band acquisition dates and all heights.

The stability of the model can be assessed from the variations

in these regression coefficients over time. A stable model is

characterized by lower variations in the estimated coefficients

over different acquisition times. Table 4 shows the mean and

standard deviation of themodel coefficients for the eight models.

The models are evaluated for all the five L-band acquisitions for

two height inputs of TDX2 and TDM90m. These two heights

are selected as they represent two distinct sources of heights

- TanDEM-X based PolInSAR height and TanDEM-X Global

DEM based height (open source). The models coefficients for

M5–M8 are tabulated for the two height inputs. Note that asM5

does not depend on backscatter input, only the mean is shown

here.

In Table 4, a0 is the intercept of the models. It is interesting

to observe that a0 is similar for M1 to M3 and M6 to M9

indicating a similar bias for bare ground regions (AGB≈ 0).

M4 has the highest variability of estimated coefficients among

all models indicating low model stability over a temporal span.

M4 has a quadratic form and in general there is a very high

variance for the squared components of the equation. Also, the

coefficient a4 ≈ 0 indicates the very low utility of the [γ 0
HH]

2

term in Equation (5).

Among the combined models (M6–M8), the variance of

coefficients is lower compared to backscatter based models

indicating higher stability over time. It is observed that both

TDX2 and TDM90m perform reliably across all models.

3.2. Combined model validation

In this section, we discuss the proposed combined models

where the backscatter (PolSAR) and height (PolInSAR) are

utilized as inputs. From the results in the earlier section, it

is clear that the addition of height leads to a better inversion

performance when compared with multiple backscatter-only

based models. Table 4 shows the validation performance of the

four combined models M5 to M8 based on RMSE and R2. The

table is color coded based on RMSE with the same criteria as

applied to Table 2 for ease of interpretation. For models M6

to M8, the inputs are height and backscatter. As M5 is based

only on height, it is independent of L-band acquisition dates.

M5, performs poorly with the RMSE ranging between 68.9

Mg/ha for TDX2 height and 134 Mg/ha for TDM90m height.

With the addition of polarimetric information (in M6 to M8),

the model performance improves. The improvement with the

addition of cross-pol backscatter in M6 is significant. However,

with further polarimetric parameters added, the improvement

is not consistent across all acquisitions. The models perform

best with the TDX2 height input (RMSE between 27.2 and 46.9

Mg/ha). The best inversion performance is observed for M6

model for 19-March backscatter data and TDX-2 height with

RMSE of 27.1 Mg/ha (22% of mean AGB). Among the five L-

band acquisitions, the acquisitions on 16-April and 11-June lead

to lower inversion performance. Such variations can be due to

weather parameters. However, no precipitation was recorded on

16-April while for 11-June data, light precipitation of 1.4 mm

was recorded 6 h prior to acquisition (see Table 1). Thus, any

change in soil moisture or dielectric properties does not explain

the reduced inversion performance for both dates.

Among the PolInSAR acquisitions, the model’s accuracy

and height inversion accuracy are correlated. For TDX1, TDX2,

and TDX3, the R2 of height inversion are 0.78, 0.90, and

0.82, respectively (see Figure 3). Similarly, the trend in Table 5

shows that the average RMSE across all model-date pairs is

50.1 Mg/ha, 39.2 Mg/ha, and 42.2 Mg/ha for TDX1, TDX2, and

TDX3, respectively. Thus, the accuracy of utilized height in the

proposed model is critical for accurate AGB modeling.

For the pseudo-heights (or vegetation bias heights)

estimated using the TanDEM-X DEM/DTM height difference,

we observe a rather interesting trend. The models with

TDM12m and TDM90m heights have higher RMSE compared

to PolInSAR height models as expected. However, among

the two DEMs, the pseudo-height estimated from TDM90m

performs better than TDM12m. For TDM90m, the mean RMSE

for M6 to M8 models across all dates is 55.5 Mg/ha, while

that for TDM12m is 56.4 Mg/ha. It seems that the 90 m DEM

estimated vegetation bias height is more reflective of the trend

in H100 height.

The temporal average backscatter from all the five L-band

acquisitions is also used to model the AGB. It is observed

that average backscatter leads to improved validation results

for all the models. Figure 9 shows the validation plots for

M5 to M8 with temporally averaged backscatter as input and

evaluated for TDX2 and TDM90m heights. These models have
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TABLE 4 Validation of combined models for all five heights and five L-band acquisitions.

Height Model 19-Mar 02-Apr 16-Apr 30-Apr 11-Jun Avg. backscatter

TDX1 M5 0.64

101

M6 0.82 0.81 0.79 0.81 0.84 0.82

50.9 40.9 55.7 42.6 62.7 40.2

M7 0.82 0.82 0.8 0.82 0.84 0.82

49.7 37.6 52.9 41.7 63.8 40.1

M8 0.82 0.82 0.8 0.82 0.84 0.83

49.9 36.7 52.9 43.3 61.7 39.6

TDX2 M5 0.69

68.9

M6 0.78 0.76 0.75 0.77 0.81 0.77

27.1 33.8 44 37.5 42.6 31.4

M7 0.79 0.77 0.76 0.77 0.81 0.78

27.5 33.6 46 36 46.1 31

M8 0.79 0.78 0.76 0.77 0.79 0.78

29.2 32.7 46.8 36.9 46.8 29.8

TDX3 M5 0.49

82.2

M6 0.73 0.69 0.67 0.71 0.77 0.72

40.6 42.9 49.6 40.7 43.8 35.8

M7 0.74 0.72 0.71 0.72 0.77 0.73

40.1 39.9 48.2 36.3 44.9 34.5

M8 0.74 0.72 0.71 0.72 0.75 0.74

40.2 39.8 47.2 36.6 42 30.1

TDM12m M5 0.33

134

M6 0.72 0.7 0.64 0.71 0.75 0.72

55.6 46.6 61.2 55 55.3 44.6

M7 0.74 0.72 0.68 0.72 0.76 0.73

59 48.1 62.5 45.1 54.2 37.8

M8 0.74 0.72 0.68 0.72 0.71 0.75

53.6 48.2 61.3 44.6 51.8 40.3

TDM90m M5 0.29

72.7

M6 0.7 0.66 0.61 0.69 0.73 0.69

46.2 42.8 51.3 50.4 54.3 40

M7 0.72 0.7 0.66 0.7 0.75 0.71

44 36 44.6 40.6 54.2 35.7

M8 0.72 0.7 0.66 0.69 0.69 0.73

42.4 36 44.3 40 57.1 32.7

Color coding based on RMSE (Mg/ha) ≤ 40 ↔ ≥ 40& ≤ 80 ↔ ≥80

The models M5 to M8 are evaluated where M5 has an input of only the height while M6 to M8 use backscatter with height as inputs. The average backscatter is the temporally averaged

backscatter data. The first row represents R2 and the second row is RMSE (Mg/ha). Color coding by RMSE value: White for RMSE ≤ 40 Mg/ha (30% of mean AGB), Gray for 40 <RMSE

< 80 Mg/ha and dark gray for RMSE ≥80 Mg/ha (65% mean AGB).

inversion results with RMSE below 40 Mg/ha. The best accuracy

is observed for the M8 model with TDX2 PolInSAR height

(29.8 Mg/ha or 24.3%) and TDM90m DEM/DTM height (32.7

Mg/ha or 26.6%). The variations in backscatter due to changes

in weather, soil moisture, and possibly phenology is reducedwith

temporal averaging, providing better AGB inversion.
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TABLE 5 Mean and standard deviation of model coe�cients for the eight models evaluated across multiple dates for TDX2 height and TDM90m

height inputs.

Model a0 a1 a2 a3 a4 a5 a6

M1 11.662± 0.26 0.978± 0.03

M2 11.011± 0.53 0.278± 0.14 0.745± 0.14

M3 10.768± 0.53 0.369± 0.19 0.832± 0.21 –0.258± 0.38

M4 1.723± 4.05 –2.556± 3.13 –0.207± 0.20 –0.333± 1.66 –0.094± 0.23 2.305± 5.21 0.278± 0.56

T
D
X
2

M5 0.287 0.249

M6 6.999± 0.72 0.654± 0.06 0.124± 0.01

M7 6.936± 0.71 0.164± 0.11 0.539± 0.13 0.116± 0.01

M8 7.011± 0.77 0.172± 0.14 0.544± 0.17 –0.012± 0.21 0.112± 0.01

T
D
M
90

M5 3.078 0.159

M6 10.841± 0.48 0.902± 0.05 0.041± 0.02

M7 10.215± 0.67 0.274± 0.12 0.674± 0.14 0.039± 0.01

M8 10.040± 0.62 0.359± 0.18 0.765± 0.20 –0.249± 0.36 0.037± 0.01

FIGURE 9

Comparison of combined models based on backscatter and height. Training and validation carried out using temporally averaged backscatter

data. First row represents models with TDX2 PolInSAR height as input and second row represents models with TDM90m DEM estimated height

as input.

3.3. AGB mapping and model stability

3.3.1. Mapping the biomass of the Haldwani
forest

In this section, the models are applied to the data

and biomass maps are generated for qualitative analysis.

Figure 10 shows the AGB maps (Figures 10A–G) along with

a RGB map (Figure 10H) generated using the general four

component (G4U) decomposition (Singh et al., 2013) for ease of

interpretation. The G4U scattering power decomposition with

unitary transformation of coherency matrix utilizes 100% of the

scattering information content of the coherence matrix. Double

unitary transformations are implemented in the G4U method

that corrects polarization orientation shifts and subsequently

takes into account all the elements of the coherence matrix T for

decomposition. The input T is expanded into four sub-matrices:

T = fsTsurface + fdTdouble + fvTvolume + fcThelix

Tsurface,Tdouble,Tvolume, and Thelix represent the four types

of scattering mechanisms - surface, double-bounce, volume,

and helix, respectively. The volume scattering Tvolume can be

Frontiers in Forests andGlobal Change 15 frontiersin.org

https://doi.org/10.3389/ffgc.2022.918408
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Khati and Singh 10.3389/�gc.2022.918408

FIGURE 10

AGB maps generated for di�erent models. (A,B) are AGB maps generated using M3 and M4 models for L-band data acquisition on 19-March. (C)

utilizes the M5 model with the TDX2 height as input, whereas (D) shows the AGB map using the M6 model for 19-March data and TDX2 height.

(E–G) represents maps for M8 model which utilize the temporally averaged backscatter as input with TDX2, TDM12m and TDM90m heights

respectively. The G4U RGB image is shown in (H) for visual reference. Here the dihedral scattering, volume scattering and surface scattering are

represented by red, green and blue colors respectively.

expressed in either of the four volume scattering distributions

models, uniform distribution, cosine distribution, sine

distribution, and volume scattering caused by oriented dihedral

scatterers as explained in detail by Singh et al. (2013). The

nature of the volume matrix is optimized for each pixel. The

total power is divided into surface scattering power Ps, double-

bounce scattering power Pd, volume scattering power Pv, from

dipole and/or oriented dihedral, and helix Pc accordingly. In

Figure 10H, the RGB image is generated using the Pd, Pv, and

Ps for the red, green and blue channels, respectively.

The first row (Figures 10A–D) shows AGB maps generated

for different models based on 19-March L-band backscatter data.

The bottom row (Figures 10E–G) shows maps generated using

the M8 model with a common input of temporally averaged

backscatter and the height from TDX2 (e), TDM12m (f), and

TDM90m (g).

Among the seven models shown in Figure 10, M6

(Figure 10D) has the highest accuracy with an RMSE of 27.1

Mg/ha (22% of mean AGB) and an R2 of 0.78 (refer to Table 2).

Since the main objective of this paper is to explore the potential

of combining backscatter and height information for AGB

mapping this AGB map is utilized as a reference for qualitative

analysis. ModelsM3 andM4 utilize the backscatter information

of three polarimetric channels. However, M4 under-estimates

the forest AGB as seen in Figure 10B. The model performs

well for low-AGB plantations while under-estimating dense-

AGB regions. As M4 utilizes quadratic regression, a possible

explanation for under-estimation can be over-fitting. M5

(Figure 10C) and M6 (Figure 10D) utilize TDX2 height as a

common input. Height-based model M5 has poor inversion

performance (RMSE of 68.9 Mg/ha) and shows the low variance

in the AGB map. Comparatively, adding cross-pol backscatter

to TanDEM-X forest height shows improvement in AGB

modeling (see Figure 10D). For model M8 (Figures 10E–G),

the RMSE for the three height inputs TDX2, TDM12m, and

TDM90m are 29.8 Mg/ha, 40.3 Mg/ha, and 32.7 Mg/ha,
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respectively. The models with TDM12m and TDM90m heights

over-estimate the low-AGB forest regions. The forest AGB map

generated using TDM90m accurately represents the biomass

variation within the forest but loses out on finer details due to

coarse resolution.

4. Conclusions

In this paper, new biomass estimation models which

combine L-band polarimetric SAR backscatter from ALOS-

2/PALSAR-2 and PolInSAR height from TanDEM-X are

presented and validated over an Indian managed tropical forest.

The AGB maps generated from these models are shown in

Figure 10. The combined models perform significantly better

than previously published backscatter based models with a

19% to 46% improvement in accuracy. The combined models

can estimate AGB reliably up to 250 Mg/ha. Among the

models evaluated, a combination of temporally averaged L-

band backscatter and TDM90m height leads to accurate AGB

estimation (RMSE = 27% of mean AGB). These results are

motivating as the open source 90 m TanDEM DEM data

combined with ALOS-2/PALSAR-2 backscatter data has the

potential to be applied over extended regions. Furthermore,

the sensitivity of L-band SAR backscatter for low AGB (<100

Mg/ha) retrieval is shown in this study. This complements

the work done by Ningthoujam et al. (2018) using L-band

ALOS PALSAR data on another Indian tropical forest. The

combined models are temporally stable, which is necessary

for AGB-change mapping. The method of vegetation bias

height estimation using DEM/DTM needs to be explored

further.

The two upcoming SAR missions (L- and S-band NISAR

and P-band BIOMASS) have dedicated ecosystem objectives

for AGB retrieval. Some studies have predicted S-band

sensitivity to forest AGB<100 Mg/ha based on a modeling

framework across different tropical forests (Ningthoujam et al.,

2016, 2017). It seems that the NISAR mission would be

suitable for low AGB (<100 Mg/ha) mapping and the

BIOMASS mission for dense AGB (>100 Mg/ha) retrieval,

keeping view of temporal and ionospheric properties (Quegan

et al., 2019). The approach in this paper can be useful to

improve the potential of L- and S-band SAR data for AGB

mapping above 100 Mg/ha. As part of further work, an

automated process of identification of bare ground regions

using optical and SAR data should be developed and the

combined models should be tested across other tropical test

sites.
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