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Tropical forests are essential for climate change mitigation. With growing

interest over the use of credits from reducing emissions from deforestation

and forest degradation (REDD+) and other natural climate solutions within

both voluntary and compliance carbon markets, key concerns about the long-

term durability of the reductions, or their permanence, arise for countries,

corporations, regulators, and policy makers. This paper seeks to analyze

the longevity of emissions reductions from different policies to slow down

and stop deforestation. To establish conditions of permanence, we conduct

numerical analyses using a model based on a cellular automata algorithm that

learns from historical deforestation patterns and other spatial features in the

Brazilian state of Mato Grosso. First, we simulate increased law enforcement

to curb deforestation at a jurisdictional scale from 2025 to 2034, followed by

potential policy rollbacks from 2035 to 2050. Second, we consider alternative

scenarios to avoid potentially legal deforestation coupled with reforestation.

We find spatial and path dependence – a successful policy intervention

may permanently change the deforestation trajectory even after potential

policy reversals. Hence, permanence depends both on the probability of

policy reversals and the risk of emissions overshooting. Our results are

important for advancing the understanding around the unsettled debate on

the permanence of avoided emissions. Further, this paper argues that as

policies to prevent deforestation or reduce emissions otherwise are reversible,

permanence should be understood and discussed in a probabilistic and

time-dependent framework.

KEYWORDS

deforestation, jurisdictional approach, machine learning, reducing emissions from
deforestation and forest degradation in developing countries (REDD+), permanence

Frontiers in Forests and Global Change 01 frontiersin.org

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2022.928518
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2022.928518&domain=pdf&date_stamp=2022-08-29
https://doi.org/10.3389/ffgc.2022.928518
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/ffgc.2022.928518/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-928518 September 1, 2022 Time: 8:30 # 2

McCallister et al. 10.3389/ffgc.2022.928518

Introduction

Deforestation accounts for roughly 14% of annual global
greenhouse gas emissions (Harris et al., 2021) and reducing it
is essential to any climate change mitigation strategy. Reducing
emissions from deforestation and forest degradation plus the
sustainable management of forests and the conservation and
enhancement of forest carbon stocks is integral to climate
change mitigation worldwide (REDD+).

Fuss et al. (2021) demonstrate significant macroeconomic
value of REDD+ at the global level under a policy to stabilize
emissions in line with the targets of the Paris Agreement. Their
study forecast REDD+ could save “up to 22% of the cost of
the global climate policy, generating $30.6 to $36.4 trillion in
risk-adjusted cost savings.” There are also significant ancillary
benefits of avoiding deforestation, but all of that could be gained
only if the reduction of emissions is “permanent.”

In order to materialize REDD+ gains, it is important
to understand the driving forces behind deforestation.
Many studies distinguish between proximate/direct causes
and underlying/indirect causes of deforestation and forest
degradation (e.g., Geist and Lambin, 2002; Kissinger et al.,
2012). Proximate causes are those resulting from human
activity, such as agricultural expansion or livestock grazing,
while underlying causes arise from the social, economic, and
political systems at work.

Many studies have identified a variety of proximate agents
of deforestation and forest degradation. These include livestock
production (Müller-Hansen et al., 2019), agricultural expansion
(Barbier, 2004; Acheampong et al., 2019), logging (Bowles et al.,
1998; Islam and Sato, 2012), mining (Sonter et al., 2017),
hydroelectric dams (Chen et al., 2015), and property rights
(Mendelsohn, 1994).

Each of these drivers can directly impact deforestation rates.
They are easily identifiable and can thus be controlled more
readily than some of the broader underlying institutional or
economic drivers of deforestation. For instance, Tumusiime
et al. (2018) found that institutional drivers of deforestation
in Uganda included “budgetary constraints, corruption, the
frequent trading of forests for political capital, and the
unfettered growth in the number of districts (stretching already
tight resources).” Certain studies have explicitly conceded that
while institutional factors are important, their actual influence
is difficult to quantify (Meyer et al., 2003).

Another important aspect of forest conservation strategies is
ensuring that the mitigation attributed to avoided deforestation
is “permanent.” The emissions reductions from an avoided
deforestation project may not be “permanent” if those
reductions are exposed to certain risk factors. Risk factors can be
internal or external to the emissions reductions project (Verified
Carbon Standard, 2011). If these risk factors are realized, the
mitigation can be reversed, thereby offering only a temporary
climate benefit. Such a reversal makes the emissions reductions

associated with the project “non-permanent” as they do not
exist in perpetuity. Since it is virtually impossible to guarantee
the perpetuity of emissions reductions, most jurisdictional
or project-based crediting programs designate a specific time
period for which the avoided emissions must be maintained in
order to be considered permanent (e.g., 40 years, 100 years, etc.).

Internal project risks are inherent to project design and
management (Verified Carbon Standard, 2011). These types of
risks can be related to project management or financial viability.
They can also result from opportunity cost, in which there
is a profitable alternative land-use activity where the avoided
deforestation project is located. External project risks parallel
those underlying risks discussed above. They are externalities
outside the control of the project designer or manager, and
can take the form of a lack of community engagement or a
predisposition to natural disasters, such as wildfires.

With so many drivers of deforestation and risks of non-
permanence, it is essential that governments design effective
policies to both combat deforestation and ensure avoided
deforestation permanence. Policies are effective in ensuring the
permanence of avoided deforestation if they are continually
enforced. To envision the effectiveness or lack thereof of a
policy, we imagine alternative emissions pathways after the
implementation and subsequent rollback of a given policy (see
Schwartzman et al., 2021, Figure 1, p. 3). At time T0, the
policy is implemented and emissions from deforestation begin
to decline. However, after some time the policy is rolled back,
at which point we can envision four distinct potential paths
with varying associated emissions. Path 1 sees deforestation
and its associated emissions continue to decline. Path 2 sees
emissions rise slightly but remain below the business as usual
(BAU) trajectory pre-policy intervention. In Path 3, emissions
return to the BAU trajectory. Finally, in Path 4 emissions exceed
the BAU trajectory, with more emissions over time than in the
absence of the policy. These four pathways allow us to examine
the cumulative emissions associated with each counterfactual
scenario following the rollback of a policy.

For numerical analysis we calibrate the model using data
from the state of Mato Grosso, Brazil. For the permanence
analysis we consider two (carrots-and-sticks) jurisdictional
policies. The first simulates a jurisdictional command-and-
control effort (sticks) to reduce deforestation in private and
public lands. The second simulates a combination of return
to compliance with the 2012 Brazilian Forest Code — i.e.,
reforestation of all areas within private properties with native
vegetation deficits (sticks) coupled with an incentive mechanism
(carrots) to avoid legal deforestation in properties with
native vegetation surplus - i.e., beyond the Forest Code legal
requirements. Both policies are aimed at generating REDD+
credits with a time horizon out to 2050.

This paper seeks to analyze different conservation policies
to slow down and stop deforestation and explore the
longevity/permanence of associated emissions reductions via
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FIGURE 1

Study area: Mato Grosso and its biomes.

modeling. We use deforestation data for the state of Mato
Grosso, Brazil from 2001 to 2016, while controlling for
covariates that affect forest clearings —including roads,
conservation units and Indigenous lands, among others, to
calibrate our model and the algorithm it uses to replicate
historical deforestation. Further, we introduce mechanisms
to break trends of historical deforestation and project the
aforementioned scenarios. Our model investigates the spatial
dependence of deforestation, or how deforested cells impact
the behavior of their neighbors. Moreover, the model evaluates
spatial correlation to probe for a possible unobserved factor
that varies spatially, making it more likely that neighboring cells
become deforested. We model increased law enforcement to
curb deforestation at a jurisdictional scale to generate REDD+
credits from 2025 to 2034. From 2035 onward we simulate
different scenarios to better understand how potential policy
rollbacks would affect permanence of reduced deforestation and
emissions. We simulate a continuation of tight law enforcement
and different levels of law enforcement loosening by changing
the threshold cutoff probabilities at which forestlands are
cleared. However, results are applicable to any jurisdictional
policy that is limited in time.

The paper is organized as follows. Section “Methodology”
details the machine learning and cellular automata methodology
employed. Section “Modeling approach” describes how
we applied the cellular automata algorithm to learn from
past deforestation patterns and other spatial features (e.g.,
indigenous lands), datasets employed, how the model
was trained and calibrated, and how simulations were
performed. Section “Results” presents the simulation results.
In section “Discussion and conclusion,” we discuss our main
conclusions and, in section “Future research,” we discuss future
research possibilities.

Methodology

Our goal is to develop a simulation model of deforestation
across a landscape that takes into account spatial interactions.
The method we use is a particular form of cellular automata
(CA). These are spatially and temporally discrete computational
systems composed of cells, which evolve in parallel at time steps
following dynamic transition rules: the update of a cell state
depends on the states of cells in its local neighborhood.

Cellular automata is widely used for modeling spatial
dynamics, including interactions between neighboring cells.
Applications include modeling wildfire spread (Trucchia et al.,
2019), propagation of epidemics (Sirakoulis et al., 2000), land-
cover change and deforestation (Soares-Filho et al., 2002), and
surface water flow (Parsons and Fonstad, 2007).

Cellular automata can be continuous or discrete. For
example, Soares-Filho et al. (2002) uses continuous CA to model
the transition of spatial probabilities of deforestation in the
Amazon based on detailed input datasets, including information
on various land-cover classes. Discrete CA has been used for
modeling wildfire spread dynamics (e.g., Trucchia et al., 2019).

In CA, each cell can represent the state of several variables,
which in turn interact with one another and are simultaneously
subject to the states of other cells. Interaction between cells
can be approached in several ways, including implementation
of kernels and linear and non-linear functions. For instance,
in modeling epidemic propagation (Sirakoulis et al., 2000) each
cell represents a fraction of the total population in one of three
states: infected, immunized, and susceptible.

In our approach, we use ideas of CA combined with
the 2D convolution procedure and machine learning method.
Specifically, we introduce a regression model in which
neighborhood dynamics are included as a feature for model
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training. In addition, we define the state of each cell as
probabilities (i.e., values between 0 and 1) of deforestation.
Moreover, we modify the uniform influence of deforestation
in neighboring cells by weighting their impacts. The weights
are estimated using stationary features of neighboring cells.
This is achieved by the 2D convolution operation (see, e.g.,
Zhang, 2019) proposed in this study. In that way, we tailor
CA for our specific modeling purposes. We did not find
this particular formulation of CA in the literature. Further,
we find an advantage of our approach in that it captures
the main features of the model while allowing for acceptable
computational time.

Modeling approach

We employ a spatially explicit model of the evolution of
deforestation probabilities, considering the following:

• Local drivers of deforestation.
• Impact of ongoing deforestation in neighboring cells.
• Cells where deforestation is made impossible.
• Policy scenarios based on centralized and local thresholds

for deforestation.
• Random deforestation events (e.g., fires).

Our main hypothesis is that deforestation dynamics are
driven by the relationships between deforested cells and
cells that are not deforested. The assumption here is that
deforestation is driven by deforestation itself, as it facilitates
access to new sites. Thus, forested areas in the neighborhood
of deforested cells have a higher chance of undergoing
deforestation. In addition, there are local drivers of deforestation
that increase its probability depending on the proximity
of the area to roads, rivers and socioeconomic and other
factors characterizing the area. Therefore, the probability
of deforestation is predicated on interactions between two
main components: (1) the current and historical status and
probabilities of deforestation in the neighborhood; and (2)
local drivers of deforestation. Once we assess the probability
of deforestation of each cell, we can simulate the event of
deforestation that is determined by a threshold value (in terms
of probability). Then, we consider threshold values as policy
variables, allowing us to model various scenarios of future
deforestation depending on different threshold values set for the
entire study area or its local subareas. Random deforestation
events are considered by introducing the Monte Carlo scheme
to generate probabilistic thresholds.

In this section, we describe the dataset employed, the
algorithms and model assumptions. The structure of this section
is as follows. First, we describe the study area, the dataset,
and preprocessing. Second, we include the main parameters of

the algorithm. Third, we provide details about model training.
Finally, we describe assumptions for simulating scenarios.

Study area and time horizon

We consider the Brazilian state of Mato Grosso, located
in the center of Brazil, for our analyses. Figure 1 shows the
location of Mato Grosso in Brazil, as well as a detailed state
map and its biomes.

Technically, the area consists of 1,298 × 1,194 grid cells,
where each grid covers 1 km2. Our sample uses deforestation
data from the Secretary of Environment of the state of Mato
Grosso (SEMA-MT) from 2001 to 2016. These data are used for
model training using the approach described below. We use the
2010–2019 time period for model warm-up, and the 2020–2050
time period for future projections.

Mato Grosso has an area of 90.3 million ha, equivalent to the
combined areas of France and Germany. In 2017, 53.5 million
ha were covered by native vegetation, spanning three biomes —
equivalent to approximately 59% of the state, or an area larger
than Spain. Mato Grosso was able to reduce deforestation from
1.278 million ha in 2004 to 0.155 million ha in 2010, a drop of
more than 85% in deforestation over 6 years across all biomes.
It is also an agricultural powerhouse, being the top producer of
a handful of agricultural commodities in the country. What’s
more, from 2006 to 2017, the state was responsible for the
bulk of deforestation reductions in Brazil, or 40,938 km2 out
of 62,321 km2 (West et al., 2019). In the meantime, both
soybean production and heads of cattle increased in the state. In
addition, Mato Grosso is home to 125,000 smallholder farmers
and 43 Indigenous ethnicities spread across 79 indigenous lands
(International Policy Centre for Inclusive Growth et al., 2019).

For these reasons we chose the state as our area of study,
as it is a crucial region for understanding the permanence
of deforestation reduction policies in the presence of large
agricultural production and Indigenous lands.

Data and preprocessing

In Table 1, we list the variables used in our model, including
their name, description and type. Our outcome variable is yearly
deforestation in Mato Grosso. In our model, past deforestation
reinforces future deforestation. Other variables control for the
spatial patterns of deforestation.

First, we account for the state and municipal political
boundaries. We then assign each pixel to an ecological
zone according to the state’s biomes to account for different
regulations in the 2012 Brazilian Forest Code. Part of the
forestland in Mato Grosso is located in private rural properties,
which are mandated to preserve 80% of their native vegetation
in the Amazon (forest), 35% in the Cerrado (savanna),
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TABLE 1 Features and variables used in the model.

N Feature name Description Type Source

0 Target Deforestation in Mato Grosso from 2001 to 2016
for each year

Binary (target) SEMA-MT (Secretary of Environment of the State
of Mato Grosso)

1 Pasture_yield Potential yield for grass in kg/ha Numerical Food and Agriculture Organization of the United
Nations/Global Agro-ecological Zones

(FAO/GAEZ)

2 Soy_yield Potential yield in kg/ha Numerical FAO/GAEZ

3 Altitude In meters Numerical Brazilian Ministry of Environment (MMA)

4 Rivers Distance to rivers in meters Numerical Brazilian National Water Agency (ANA)

5 Rodo10 Distance to roads in meters in 2010 Numerical Brazilian Ministry of Transportation (MT)

6 Terrain slope In degrees Numerical Federal University of Minas Gerais — Remote
Sensing Center

7 Biomes This splits the state into three biomes:
• Amazon (forest)
• Cerrado (savanna)
• Pantanal (wetland)

Categorical Brazilian Ministry of Environment (MMA)

8 Islands Rural settlements Categorical National Institute for Settlements and Agrarian
Reform (INCRA)

9 Indigenous_lands Indigenous lands Categorical MMA

10 Uc_todas_mt Conservation units in Mato Grosso Categorical MMA

11 Mue The municipality boundaries of Mato Grosso Categorical Brazilian Institute of Geography and Statistics
(IBGE)

and 20% in the Pantanal (wetland). We include protected
areas (i.e., conservation units and indigenous lands) where
deforestation is unlawful. These act as strong, although not
perfect, barriers against deforestation. Rural settlements are also
included and have been identified as hotspots of deforestation
(Assunção and Rocha, 2016).

Decay of deforestation events

In the historical data, the target variable — deforestation1 —
is represented by binary variables, indicating the year in which
the deforestation occurred. We also assume that once a cell is
deforested it stays that way forever. However, if we kept that
assumption, deforested cells would stay at a value of 1 in all years
of simulation runs, which would make it hard to distinguish
their influence over time. As our model deals with the influence
of neighbors and probabilities (values between 0 and 1), we
propose the following transformation of binary values to take
into account dynamic effects of deforestation.

Our decay approach reduces historical deforestation
impacts based on the idea that deforestation that happened
farther back in time has less impact compared to the most
recent deforestation events (Fearnside, 1982). Consider that
deforestation in pixel

(
i, j
)
, i = 1, .., Q, j = 1, .., P, took

place n years ago. Here, Q and P are the number of rows and
columns, respectively, of a matrix corresponding to the study

1 This data does not include forest degradation.

area map. At current time, t, we decay deforestation events in
each pixel according to the equation:

dij (t) = δndij (t−n) , dij ∈ [0, 1] , t ∈ [t0, T] , n ∈ [0,t−t0] (1)

Where δ is the decay factor. We set the decay factor to
δ = 0.852. The corresponding matrix of decayed deforestation
at time t is denoted by D (t) =

(
dij(t)

)
∈ [0, 1]Q × P.

Application of decay to the deforestation data is illustrated
in Figure 2. The earliest information about deforestation dates
back to 2000, therefore in this year all pixels deforested as of that
date have values equal to 1. After 5 years, those pixels deforested
in 2000 decay and their values equal 0.44 (colored yellow in the
figure) in 2005. At the same time, more recent deforestation
events have happened and are happening in 2005, and the values
at these locations are higher (orange and red colors). In 2010,
pixels deforested in 2000 decay to 0.197 (colored lavender) and
pixels deforested in 2005 decay to 0.44 (colored yellow).

Model training

For model training, we apply a method based on gradient
boosting from machine learning techniques. The scheme of
feature collection is shown in Figure 3. We use stationary
data from Table 1 and combine it with deforestation dynamics
in the neighborhood to predict the target variable. The
target variable is decayed deforestation, as explained in the
preceding section, represented by a value between 0 and
1. The reason for predicting decayed values is because
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FIGURE 2

Decayed deforestation in relation to the year 2000, with a decay factor of δ = 0.85.

FIGURE 3

Scheme of feature collection.

this is the only target the model “knows.” A lower value
means that deforestation could potentially have happened
long ago, while a higher value indicates that deforestation
might have happened recently. As deforestation has not yet
happened, the latter indicates the higher probability that it
will. Thus, the “time” is reflected in the model when we
predict when future deforestation will take place — i.e., the
higher the predicted decayed value, the sooner deforestation is
likely to happen.

The regression model takes the following form:

dij (t + 1) = MODEL
[

Wk
ij,
∑

Hij (t) ,
∑

Hij (t−1),

∑
W l

ij (t) ,
∑

W l
ij (t−1)

]
,

k = 1, ..,K, l = 1, ..,L, L = K (2)

Where dij(t) is decayed deforestation in the cell (i, j) at
time t, dij ∈ [0, 1]. Here, Wk

ij, k = 1, .., K, are stationary
features in cell

(
i, j
)
; they are components of K matrices

Wk
=

(
Wk

ij

)
∈ RQ × P. Variables corresponding to stationary

features are provided in Table 2, where K = 11.∑
Hij (t) is the sum of targets in the neighborhood of cell

(i, j) at time t and has the form:

∑
Hij (t) =

1∑
r=−1

1∑
s=−1

di+rj+s(t) (3)

∑
W l

ij (t) , l = 1, .., L, is a convolution of selected features
W l

ij at cell (i, j) at time t, described by the formula:

∑
W l

ij (t) =
1∑

r = −1

1∑
s = −1

(
dirjs (t)−0.5

)
·W l

i+r j+s (4)
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TABLE 2 Stationary features in the regression model (see Eq. 2).

Symbol Name

W1 Pasture

W2 Soy

W3 Altitude

W4 Rivers

W5 Rodo10

W6 Slope

W7 Biomes

W8 Islands

W9 Indigenous_lands

W10 Uc_todas_mt

W11 Mue

Convolution
∑

W l
ij (t) , l = 1, .., L, determines the

direction of deforestation spread and shows interaction
between adjacent cells in the neighborhood of grid cell (i, j).
W l

ij are L selected features from K = L stationary features
Wk

ij. We considered only numerical features. The sum of
neighboring cells in Eq. 3 is symmetrical by default. However,
in Eq. 4 we couple it with other features. This helps us
make the influence asymmetrical because it is adjusted to
additional factors, which in general vary around each cell.
Those features complement the actual impact of deforestation
as defined in Eq. 3.

We must note that since dij(t) can often be zero, we lose
information about features in such neighboring cells during the
convolution operation (Eq. 4). To eliminate this, we rescaled
it by subtracting 0.5 from dij(t) (see Eq. 4). As the result,

we construct L matrices
∑

W l (t) =
(∑

W l
ij(t)

)
∈ RQ × P

containing additional time-dependent features.
Table 3 provides variable names for new features

∑
W l (t),∑

H (t), where L = 6.
In our model, we account for both the current and

previous time steps. We consider an iterative process of feature
formation. After each iteration dij (t + 1) = MODEL[·], we

TABLE 3 Time-dependent features and their names.

Symbol Name of variable

∑
H
(
t − g

)
Target_sum_g∑

W1 (t − g
)

Pasture_Wg∑
W2 (t − g

)
Soy_Wg∑

W3 (t − g
)

Altitude_Wg∑
W4 (t − g

)
Rivers_Wg∑

W5 (t − g
)

Rodo10_Wg∑
W6 (t − g

)
Slope_Wg

The name of each variable has the form feature_Wg. This means that we apply the
convolution operation to matrix W of a feature; g is the number of time steps backward,
g ∈ {0, 1}. 1, previous step; 0, current step.

obtain matrix D (t + 1) =
(
dij(t + 1)

)
∈ RQ × P of decayed

deforestation, which is used for the feature formation:

∑
W l (t + 1) =

(∑
W l

ij(t + 1)
)
∈ RQ × P,∑

H (t + 1) =
(∑

Hij(t + 1)
)
∈ RQ × P.

Mato Grosso boundaries are used as spatial constraints,
assuming that deforestation beyond the state boundaries is equal
to zero. Hence, d (t) = 0 is fixed for grid cells on the border and
outside of Mato Grosso for all t.

For model training, we created a dataset with target
variable D(t), t ∈ [t0, T] and the corresponding variables from
Tables 2, 3. First, we created a dataset for the entire area and
all time steps. This dataset contains all features used in the
model (see Eq. 2). Second, we split this dataset randomly into
the train and test sets in the proportion of 70 to 30%. We solved
the regression problem in Eq. 2 using the LGBMRegressor
method from the LightGBM gradient boosting framework (Ke
et al., 2017). For tuning model parameters, we used the train
set. We applied K-fold cross validation with five folds and a
randomized search of parameters through the grid of fixed
range. To assess model quality, we considered the coefficient of

TABLE 4 The importance of features used in the model.

N Feature Importance of feature

1 Target_sum_0 0.167

2 Target_sum_1 0.081

3 Soy_W0 0.059

4 Soy 0.053

5 Islands 0.047

6 Altitude 0.046

7 Pasture_W1 0.046

8 Mue 0.044

9 Soy_W1 0.039

10 Rodo10 0.038

11 Pasture_W0 0.035

12 Altitude_W1 0.032

13 Slope_W0 0.031

14 Rivers_W1 0.030

15 Altitude_W0 0.030

16 Rivers_W0 0.029

17 Biomes 0.027

18 Pasture 0.027

19 Rodo10_W1 0.026

20 Rodo10_W0 0.026

21 Slope_W1 0.025

22 Rivers 0.019

23 Indigenous_lands 0.018

24 Slope 0.015

25 Uc_todas_mt 0.008

See Tables 2, 3 for notations.
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determination R2. This represents the proportion of variance of
decay deforestation that is explained by independent variables
in the model. After validation on the test set, we obtained an R2

score of 0.455. The features, sorted by their importance in the
model, are given in Table 4. The most important features are
those dealing with neighboring cells. Therefore, this outcome
confirms our hypothesis about deforestation drivers.

A predictable initial reaction to some of the relatively small
R2 scores is that perhaps the correlation is not as expansive
as we might have predicted. However, taking into account the
presence of random deforestation in the historical data that
is explained neither by internal factors nor interaction with
neighboring cells provides helpful context. The appearance of a
correlation, however, slight, indicates that there is a relationship
between the two variables that is statistically significant despite
the preponderance of seemingly random deforestation. In the
simulation portion of this paper, we propose a Monte Carlo
approach to allow such random deforestation events to be
taken into account.

During model training we did not force barriers (e.g.,
Indigenous lands and conservation units) to be unavailable for
deforestation. However, based on the historical data the model
learned to consider those areas as having a very low probability
for deforestation.

Simulation of scenarios

The trained model allows the assessment of the spatial
dynamics of deforestation probabilities. After decaying past
deforestation, we predict “probabilities of deforestation” as
target variables, represented by values from 0 to 1, in the cells
where no deforestation has previously occurred.

In order to identify an event of deforestation, we set a
threshold value N. As soon as this threshold is reached, the pixel
is marked as 1 and is considered to be deforested, and the decay
factor is applied in all next time steps. Once a pixel is deforested,
we don’t apply any other operations except decaying. Thresholds
are applied to deforestation probabilities only in pixels marked
as 0, i.e., standing forest land. Therefore, we track two maps in
parallel:

• A map of probabilities, including both deforested and
forested pixels.
• A map of 0’s and 1’s (e.g., the status of each pixel).

We use the first map for modeling and the second
for model output.

2 We keep the decay factor constant as a baseline for illustrative
purposes. However, calibration of the decay factor is an interesting study
itself, because it determines the degree to which past deforestation
impacts the future one. Perhaps, this factor could be spatially explicit or
clustered by regions, and even scenarios. This is a topic for future work.

In modeling thresholds, we apply both deterministic and
probabilistic approaches. In a deterministic case, we deal
with the prescribed deforestation thresholds. In a probabilistic
approach, we use Monte Carlo to identify deforestation events
at each step. For this purpose, we add random deforestation by
the following rule: ũ = a · ub, where u ∈ Uniform(0, 1), where
a, b are parameters. We set a = 1 and b = 0.53.

Considering both probabilistic and deterministic
thresholds, the current threshold is defined by the
formula: Nf = min{N,ũ}, where N is the deterministic
threshold. Therefore, deforestation takes place either when a
fixed threshold N is reached or if there is a random event that
indicates it could happen at the lower threshold ũ.

For this purpose, we chose a random threshold from
a transformation of a uniform distribution, as illustrated in
Figure 4. This helps to reduce the chances of obtaining very
low values for probabilistic thresholds that would result in an
immediate deforestation of many grid cells. For example, if
the random number generator draws the value u = 0.2 it is
transformed to ũ = 0.447.

The simulation runs through 2050. We use the interval
2010–2019 for model initialization, and then, from 2020
onward, we introduce the thresholds. During the initialization
period, only probabilistic thresholds are implemented.
Initialization is necessary for the model to reach a stable
mode of operation. During this interval, the nearest-neighbor
mechanism manifests itself sharply and some time is needed for
saturation of this mechanism to normal mode. This happens

3 These values represent the degree of random deforestation and are
fixed in this study. However, sensitivity analysis could be done in the
future to better capture this effect, although it is a difficult task due to
its random nature.

FIGURE 4

Transformation of random threshold u from uniform distribution
into threshold ũ.
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because we do not have any fixed time interval during the
training period, as we take arbitrary subsets of data for learning
and testing, which differs from the time-series approach.

Figure 5 illustrates historical deforestation dynamics (2000–
2016) shown by blue trajectory and simulation results during
(2010–2019) shown in red color both in terms of annual
and cumulative values. Number of deforested cells was 284
thousands in 2000 and had a rapid growth until 2005 when
it reached 342 thousands. The area of a cell is 1 km2. Then
the rates were reduced to around 2 thousands cells per year by
2010 resulting in 364 thousands cells. The growth rate stabilized
until 2016 leading to cumulative value of 373 thousands cells
in 2016. Simulation started in 2010 and resulted in a sharp
increase of annual rates from 1.5 thousands cells per year in
2010 to 3.5 thousands cells per year in 2011. This is explained
by activation of the neighboring mechanism proposed in the
study, which to some extent replicated historical behavior from
2000. By 2019 the growth rate stabilized and reached the level of
1.47 thousands cells per year. The cumulative values show that
although simulation results (red line) is above the historical data
(blue line) during 2010–2016, simulation results satisfactory
replicate historical deforestation trend. We assumed that the
model setup the results presented in the figure was good enough
for our research objectives, which deal more with the future
policy impacts on deforestation dynamics, rather than with
replicating the historical period.

Figure 6 shows how the threshold part of our model works.
For illustration, we set a deterministic threshold to N = 1,
meaning that deforestation should never happen. Therefore, the
only active threshold is probabilistic — i.e., a random draw can
set a value below 1 in some cells, thus potentially leading to
deforestation due to accidental exogenous factors, such as fire.
One can see that deforestation rates are declining in this case,

but are still positive. Five simulations are shown in this figure in
addition to the average values. It can be seen that randomization
is reasonable and does not produce any explosive effects — i.e.,
the spread of stochastic runs around the mean is bounded. In all
simulations deforestation falls from about 1,500 km2 per year to
about 700 km2 per year by 2050.

A more realistic situation is when the threshold is set to
N = 0.35 for the entire area. The dynamics of deforestation
rates in this case are shown in Figure 7. We consider this
scenario as the baseline for our future runs. The deforestation
rate increase to 1.84 thousands cells per year in 2020 that
is compatible with 2.2 thousands cells per year in historical
period 2016 as shown in Figure 5. One can see that in terms
of deforestation rates the model shows an inverted U-shaped
behavior. At first, the number of deforested cells grows at an
increasing rate until the growth rate reaches its maximum. After
its peak, growth starts to saturate. This behavior would result in
the S-shaped curves in cumulative values shown in Figure 8. We
also present several Monte Carlo runs, showing that deviation
from the mean is less than 10%. The concave shape in Figure 7
is explained by the decreasing number of cells available for
deforestation, because we do not model any afforestation in
this study. This pattern of deforestation dynamics is found in
other studies (e.g., Lubowski et al., 2014). The falling rate of
deforestation during the period 2035–2050 illustrates a rather
catastrophic situation: at this stage the number of deforested
cells is so high that the spread slows down because of this.

Results

In this section we present results of our simulated policy
intervention at the jurisdictional scale.

FIGURE 5

Historical deforestation dynamics (2000–2016) and simulation results during the model initialization (2010–2019) both in terms of annual (left)
and cumulative (right) values.
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FIGURE 6

Deforestation scenario with threshold N = 1. Deforestation rates are the number of deforested cells per year. The green line represents the
mean of stochastic simulations. The dashed blue line represents a stochastic simulation used in the “Results” section. Other lines are
representative of individual model runs. The spread of stochastic runs around the mean is bounded.

FIGURE 7

Deforestation scenario with threshold N = 0.35. Deforestation rates are the number of deforested cells per year. The green line represents the
mean of stochastic simulations. The dashed blue line represents a stochastic simulation used in the “Results” section. Other lines are
representative of individual model runs. The spread of stochastic runs around the mean is bounded.

First, we modeled a jurisdictional command-and-control
policy affecting the state of Mato Grosso. We simulate a
tightening of law enforcement to curb deforestation during the
period 2025–2034 by increasing the threshold at which cells
are deforested compared to BAU, implemented by shifting from
N = 0.35 to N = 0.4.

Next, in order to understand the permanence of avoided
deforestation and related carbon emissions from this

command-and-control policy intervention, we modeled
four different scenarios. First, the tighter law enforcement
policy (N = 0.4) is maintained throughout 2050.

Then, we modeled three alternative levels of law
enforcement loosening by decreasing the threshold of
deforestation for all cells across the jurisdiction to N = 0.38,
N = 0.35 (BAU value) and N = 0.33. This captures the
possibility of a policy rollback triggered in 2035.
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FIGURE 8

Cumulative number of deforested cells.

Our simulations allow us to understand the intertemporal
effects of such a command-and-control policy and analyze
changes in deforestation and emissions patterns in the absence
or presence of future policy reversals.

Jurisdictional scenarios with variable
thresholds

In this subsection we consider scenarios applied to all the
cells, i.e., jurisdictional policies.

Figure 9 shows the dynamics of deforested cells in each
year during the period 2020–2050. The orange, blue, and green
lines show the dynamics for thresholds 0.4, 0.35, and 0.3,
correspondingly.

Our simulations show that the range for thresholds is
between 0.3 and 0.4 — i.e., the model is quite sensitive to the
changes in thresholds4. This is connected with other parameters
of the model as well as the chosen decay rates and time scale.
We set the 0.35 threshold as the baseline; 0.4 corresponds to
a tighter law enforcement and lower deforestation pressure,
and threshold 0.3 is a rather extreme scenario of loose law
enforcement and deforestation boom.

In the first scenario we introduce a policy intervention from
2025 to 2034 to slow down the BAU deforestation by increasing
the threshold from 0.35 to 0.4. One can see the positive effect of

4 We fix this range of thresholds (between 0.3 and 0.4) for illustration
in this study. However, threshold values would vary with respect to
decay factor. Therefore, simultaneous calibration of the decay factor and
threshold values could be done in the future.

this policy in Figure 9: the blue trajectory is switched to the black
dashed line. If this policy were to be kept, deforestation would
decline until 2050. However, if from 2035 to 2050 we change the
threshold value of 0.4 to lower values, we see that deforestation
rises again. Although the period of tight deforestation control
has its positive effects, deforestation rates reach the BAU levels
in 2050 (magenta dashed line; N = 0.35) or can go even
higher (red dashed line; N = 0.33) if the new threshold is
lower than the BAU threshold. At a threshold of N = 0.38, the
green dashed line, deforestation stays below the BAU trajectory.
The purpose of experimentation with different thresholds is to
detect a critical level after which avoided deforestation could be
treated as permanent.

Figure 8 illustrates the cumulative deforestation values
corresponding to the annual deforestation in Figure 9. Here,
we observe that temporary deforestation control (2025–2034)
has positive permanent effects even if the policy is rolled-
back: in cumulative values all the dashed curves are below the
BAU curve by 2050.

Nevertheless, because of the high deforestation rates at
threshold N = 0.33 following the end of deforestation control
in 2034 shown in Figure 9, there is a possible negative outlook
after 2050 in that scenario. The model exhibits permanent effects
for N = 0.4 and higher.

Spatial dynamics and barriers against
deforestation

The illustration of spatial dynamics of deforestation
corresponding to the BAU scenario (Figure 9) is shown in
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FIGURE 9

Deforestation scenarios under jurisdictional policies.

FIGURE 10

Spatial dynamics of deforestation under the BAU scenario for 2035 and 2050, with Indigenous lands acting as barriers against deforestation.

Figure 10 for the years 2035 and 2050. We see that in 2035 the
deforestation process is still in an active stage. The hotspots are
shown in magenta and red colors. In the future deforestation
is happening mainly in the Amazon biome which can be
explained by the historical deforestation pattern depicted in
Figure 2. In this figure most of the clusters of pixels with high
decayed values in 2010, which drive the future dynamics in
the model, are located in the Amazon biome. There are some
recent deforestation events in Pantanal, but they are rather
isolated, i.e., not forming clusters, and therefore do not activate
the proposed neighboring mechanism intensively, leading to
low deforestation in the future scenarios. As mentioned in the
paper we do not model afforestation and therefore deforestation
can happen only in the cells that were not deforested before.

This explains relatively low future deforestation patterns in
Cerrado due to the fact that it was intensely deforested in
the historical period (see Figure 2). The deforestation process
is well illustrated in particular by comparing the areas in
2035 and 2050 on the top-left of the maps. We also show by
hatched shading the Indigenous lands where the probability of
deforestation is very low. However, we see that deforestation
is active at the boundaries of those lands and, in particular,
that it will be concentrated in 2050, because it is basically
the only patches of forest left by that time. We also see that
there are some deforested pixels inside those areas, mostly due
to the random events simulated in the model. However, they
are not spreading due to their location. Although we do not
force probabilities to be zero, the model learned to keep them
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FIGURE 11

Maps of native vegetation surplus (left) and deficit (right).

FIGURE 12

Jurisdictional policy impacts compared to BAU scenario (as in Figure 9). Cumulative deforested areas corresponding to policy scenarios are
given in Figure 13. The figure clearly illustrates the impact of policy reversals — i.e., Cases 3 and 4 allow deforestation to be reduced to the
levels close to Case 1. This has some analogy with epidemic models, where policies could be considered as quarantine measures that can be
forced and relaxed by governments at various time periods.

very low in those lands, thus making Indigenous lands barriers
against deforestation.

Jurisdictional policy impacts

Here we consider how jurisdictional policies would impact
deforestation dynamics in the region according to our model,

following the native vegetation preservation requirements from
the 2012 Brazilian Forest Code. We use the following maps as a
basis for modeling scenarios: a map containing pixels of 1 km2

size with native vegetation surplus, and a map representing
pixels with native vegetation deficit. Both maps are shown in
Figure 11. These maps are based on data from Stabile et al.
(2022). The total area of surplus is 7.21 million ha while the total
area of deficit is 8.76 million ha.
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FIGURE 13

Cumulative number of deforested cells in jurisdictional policy scenarios.

FIGURE 14

Comparison of the BAU scenario (left) and Case 1 scenario for 2050 (right).

We use such maps to simulate two policies concurrently.
The first policy simulates an incentive-based jurisdictional
program where payments would be made to landowners with
native vegetation surplus, thus blocking those parcels from
deforestation. The second policy simulates a command-and-
control approach to bring properties back to compliance with
the Brazilian Forest Code by reforesting their deficits.

First, deforestation was blocked in all areas with a forest
deficit from 2010 until 2050. We considered all those pixels as
reforested and protected during the entire time interval. At the
same time we considered the following cases for areas with forest
surplus:

• Case 1 — block deforestation from 2010 until 2050.
• Case 2 — block deforestation from 2010 until 2030 and

allow deforestation afterward.
• Case 3 — block deforestation from 2010 until 2030,

allow deforestation in the period 2030–2034, and block
deforestation afterward.
• Case 4 — block deforestation from 2010 until 2030,

allow deforestation in the period 2030–2039, and block
deforestation afterward.

Modeling results are presented in Figure 12, where annual
numbers of newly deforested pixels are shown for various
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FIGURE 15

Proposed scenarios with different box locations (shape
200 × 200).

FIGURE 16

Proposed scenarios with different box sizes: Scenario 5
(100 × 100), Scenario 4 (200 × 200), Scenario 6 (300 × 300),
Scenario 7 (400 × 400).

scenarios. The difference between BAU and jurisdictional policy
cases in 2020 is explained by the fact that areas with deficit
and surplus were removed at the start of the simulations in
2010. The difference between policy scenarios begins in 2030.
The best outcome is achieved in Case 1, where all selected
areas are protected by policy until 2050. In that case the
rate of deforestation in the study area is consistently low. In
Case 2, when policy is relaxed in surplus areas until 2050
we see a relatively fast increase in deforestation rates with a
qualitative behavior similar to the BAU scenario; the maximum

deforestation rate happens around 2042. Quite interesting
effects are observed when the relaxation of policy in 2030 is
reversed in 2035 (Case 3) and 2040 (Case 4). The return of the
policy to protect areas with forest surplus allows to slow down
deforestation rates and gradually converge them to the level of
Case 1 by 2050. This shows that due to the high number of pixels
where policies are applied, the neighboring effect is one of the
key factors for spreading deforestation.

Finally, in Figure 14 we present maps that compare results
of deforestation in the BAU scenario and in Case 1 scenario of
jurisdictional policy for 2050. We see that due to the dynamics
of neighboring pixels that are at the core of the model, the
difference in deforested cells is considerable. This is a positive
result for policy interventions.

Discussion and conclusion

In this paper we analyze the permanence of REDD+
by employing a CA algorithm of endogenous deforestation.
We simulate different jurisdictional policy interventions to
slow deforestation and promote reforestation and investigate
the resulting deforestation patterns under alternative policy
scenarios through 2050. Our results suggest strong spatial
spillovers from past deforestation, path dependence and partial
irreversibility of changes in a deforestation pathway. In other
words, once deforestation declines from the BAU trajectory, it
is unlikely to rebound to BAU. This observation leads to an
important policy conclusion — the stronger and the longer
the policy interventions to curb deforestation, the less likely it
will bounce back.

The permanence of a policy depends on its success to reduce
cumulative deforestation and emissions compared to the BAU
trajectory. In turn, this depends on the probability that policy
rollbacks and the resulting trajectories of deforestation and
emissions do not overshoot the BAU trajectory and outpace
previously accumulated deforestation or emissions reductions
in the long run. Hence, permanence depends both on the
probability of policy reversals and the potential of emissions
overshooting, and the relevant time horizon to be considered
(e.g., 2050, 2100, etc.). Creating a buffer pool of emissions
reductions, as requested by jurisdictional REDD+ standards, is
a practical solution to extend the effect of a policy intervention
limited in time and mitigate potential policy reversals.

The findings of this study also creates a strong case
for a jurisdictional approach. Over time, the economy —
previously dependent on deforestation — converges to a new
low or deforestation-free steady state. The stronger and more
prolonged the period of active policy intervention, the better
the chances a tropical nation (jurisdiction) will rebalance natural
and manmade capital to support low deforestation development
pathways. This conclusion has immediate policy relevance —
an external intervention, on a jurisdictional scale, should
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be planned strategically to maximize the catalytic effect for
convergence to a lower deforestation steady-state trajectory.

The logical next step for this analysis is the application of
optimization in the organization of areas to protect to study
the dynamics of clusters of avoided deforestation. Further,
experiments with embedded optimization may answer the
questions: If we can spatialize interventions, do they affect
deforestation in an outsized way? If we reduce deforestation in
certain parcels of land, do they affect the deforestation trajectory
in different ways?

Future research

Future research will address the impacts of economic
incentives, namely a payment program for REDD+, on curbing
deforestation and the permanence of avoided emissions. In our
future work, we will analyze the effects of a payment program
for REDD+ by applying different deforestation restrictions to
the model — i.e., size and location constraints to protect certain
areas, reflected by boxed areas in the model.

Figures 15, 16 illustrate how we propose to set up these
modeled boxes to investigate the impacts of different box
locations and sizes on deforestation and permanence. For
example, a future scenario might consider making it very
difficult to deforest cells within a certain box by setting N = 1
for those cells, while deforestation of cells outside the box would
follow the BAU threshold (N = 0.35).

Moreover, we plan to investigate the results of increasing a
REDD+ program from project level (small box) to jurisdictional
level (the whole state). This will contribute to another heated
debate on project versus jurisdictional approaches regarding
reducing deforestation.

Another direction for further research is to check for spatial
synergies among different small boxes. A REDD+ payment
program targeted at rural properties may be scattered across
the jurisdiction, where each property could be treated as a
separate cell. Yet, using an optimization algorithm we may
be able to compare alternative results of conducting localized
REDD+ payment interventions versus optimizing deforestation
reductions over the landscape, given the same budget. This
analysis would help to establish a strategy for scaling up
jurisdictional REDD+ programs by maximizing environmental
benefits at the minimum cost.
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