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Introduction: Mangroves are resilient forests of transitional zones between

land, ocean and freshwater for they are tolerant to salinity. In The Gambia,

mangrove forests are found along the coast of Atlantic Ocean and River

Gambia where they support the livelihoods of millions through multiple

ecosystems services. Despite their importance in The Gambia, consistent

country-wide information on their coverage, dynamics and change hotspots

are lacking. Thus far, it remains unclear whether the coverage of mangroves

has decreased or increased over the last few decades. Often, the existing

estimates vary strongly across sources and the methodologies in the available

literature are not always reproducible. This study attempts to fill these gaps by

providing up-to-date spatial information on mangrove forests in The Gambia.

Methods: To provide a reproducible workflow and a comprehensive

assessment, we used continuous time series of freely available data to study

the extent and dynamics of mangrove forests in The Gambia. To construct

gap-free image time series, we used statistical models to describe land surface

phenology based on monthly composites derived from Landsat and MODIS

land surface reflectance acquired between 2000 and 2020. We used 1212

Landsat and 407MODIS tiles spread across multiple spectral indices along with

a calibrated set of training and validation data to train and validate a random

forest classifier for accurate land cover classifications.

Results and discussion: The overall accuracy and Kappa statistics of

the classifications range between 0.96 and 0.98. Our findings suggest a

net increase of 4,000 ha in mangrove forests over the last 2 decades,

corresponding to an annual rate of 200 ha. The net increase is largely

due to strong policy making which results in participative forest resource

management through the national forest action plan. The net increase in

mangrove forests should not mask the substantial degradation in some places

across the country. We estimated a total loss of nearly 5,670 ha, most of which
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appears to have taken place during the last decade in favor of wetlands. The

Gambianmangroves are amongst themost promising green business in Gulf of

Guinea, deserving an integrated governance - policy framework that address

the key requirements for ecological sustainability.

KEYWORDS

satellite image time series, landsat observations, MODIS collection, harmonic

modeling, gap-filling, land cover classification, mangrove, change detection

Introduction

The Gambia has a sizeable area of mangroves that

substantially contribute to rural livelihoods. These mangroves,

estimated to extend up to 160 km from the coast along the

River Gambia and covering an estimated area ranging between

497 and 747 km2, are among the most developed mangroves

of West Africa (Spalding et al., 1997; Feka and Ajonina, 2011;

Ajonina et al., 2013). Among other functions, these mangroves

provide food such as fish, oysters, and shrimps and also domestic

products such as wood fuel and timber for construction and

perform various regulatory functions such as coastal protection

and carbon sink (UNEP, 2007b; Satyanarayana et al., 2012;

Ceesay et al., 2017). There is a need to manage and monitor

these mangroves for sustaining the valuable ecosystem goods

and services they provide to the Gambians (Satyanarayana et al.,

2012).

Despite the importance of these mangroves, the trend

of mangrove vegetation in The Gambia for the past two

decades remains unclear. The discrepancy among the available

mangrove estimates in The Gambia implies potential problems

in the remote sensing approaches that produce these estimates.

An approach that addresses these problems would help to

reduce these discrepancies and improve the accuracy of

mangrove coverage and dynamics in The Gambia. We identified

the major uncertainty factors that may have caused the

discrepancies. Broadly, these include problems related to data

sanity checks, variations in the scale of analysis, the use

of non-standard classification systems, and differences in the

classification algorithms.

The lack of continuous clear observations due to various

remote sensing artifacts (e.g., clouds and cloud shadows) limits

remote sensing applications to a few images with the best

available number of clear pixels (Zhu and Woodcock, 2014;

Zhu et al., 2015). Typically, the landscape, which presents

strong intra-annual and inter-annual variabilities, is described

using a single image at a given point in time. For analysis

spanning more than a tile, it is often difficult to find a pair of

clear tiles that are close in time. Such data specifications may

not reasonably capture the true surface state variability since

tropical LULC can present significant variability between years

and between the times of the year. In using a single image

approach, different studies may subjectively select different

input images. Such a selective image specification will likely

lead to different results, exacerbating the range of discrepancies

between studies. Similarly, reference data (e.g., training data for

image classification) for machine learning models can be easily

flawed in the sense that fewer LULC than what is present on the

ground is likely to result in an inaccurate classification that does

not necessarily reflect the real ground conditions. In addition,

the use of non-standard classification systems leads to arbitrary

class labels making cross-study comparisons difficult. LULC

classification system should be sufficiently detailed to detect the

changes between mangroves and other forested covers. Studies

aiming to provide accurate change estimates should consider all

major LULCs while keeping the reference data consistent with

the temporal change in these LULCs. Unless data are normalized

to a comparable scale, reference data should be collected over the

areas of persistent LULC.

While the spatial resolution seems to haveminor importance

in explaining the discrepancies in mangrove estimates in The

Gambia, the difference in the spatial scale can be concerning

when the base data do not sufficiently describe the temporal

variability of the area of interest. The interpretations of

mangrove dynamics in the region diverge because the scale of

many remote sensing analyses does not always capture local

accounts of mangrove cover gains and losses (Fent et al.,

2019). Spalding et al. (1997) reported a decrease from 600 to

<500 km2 between 1982 and 1995. UNEP (2007b) reported

a slight decrease (from 747 in 1997 to 580 km2 in 2005)

in mangrove vegetation and attributed it to drought, increase

in soil salinity, illegal exploitation, and land use conversion.

Ceesay et al. (2017) estimated this decline in Tanbi Wetlands

National Park of The Gambia at 6% between 1973 and 2012

and attributed it to increase salinity which negatively affects

mangrove regrowth and rejuvenation. In the Central River

Region of The Gambia, Ali Bah (2019) estimated this decline at

5.54% between 1984 and 1994, 7.18% between 1994 and 2007,

and 22.02% between 2007 and 2017 and attributed it to an

increase in temperature and a decrease in rainfall coupled with

increased settlement and grazing land. In contrast, Fent et al.

(2019) found an overall increase in mangrove forest areas of

51.21% between 1988 and 2018 across The Gambia and in the

Sine Saloum and lower Casamance estuaries in Senegal. In these
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areas, mangroves have seen a significant recovery between 1988

and 1999 following the increased precipitation and tree species

regrowth that experiences diebacks due to salinization caused

by drought (Fent et al., 2019). While Sine Saloum experienced

a lower precipitation increase between 1988 and 1999 compared

to Low Casamance, the former has seen an important increase

and the latter a slight decline in mangrove forests (Fent et al.,

2019). It is clear from the studies that mangrove dynamics

is a complex topic that requires multi-disciplinary approaches

where various scale-dependent factors are required. Evidence

from recent studies (Fent et al., 2019) has shown that neither

climatic, political, and nor anthropogenic factors alone can

explain the dynamic of mangrove vegetation near The Gambia

and arguably elsewhere.

Besides the issues related to data sanity checks, classification

systems, and classification algorithms, the reasons for these

discrepancies in estimates can also be explained by the sporadic

nature of the available studies which targeted different periods

and scales of analysis. To the best of our knowledge, none

of these studies succeeded in reconstructing the time series of

satellite images due to various remote sensing artifacts in the

region and limitations in computing resources for handling big

data. With few exceptions (Fent et al., 2019), studies aiming at

The Gambian mangroves have not been sufficiently holistic in

the sense of explaining the dynamics of the biophysical settings

in their specific context. While many studies (Jakubauskas and

Legates, 2000; Zhu and Woodcock, 2014; Zhu et al., 2015) have

successfully applied harmonic modeling (also known as Fourier

analysis) against remote sensing artifacts, to remove noise or

to achieve outstanding classification results elsewhere, most of

the available estimates of mangrove areas and trends in The

Gambia proceed via the comparisons of image classifications

derived from single-point images. Many problems can arise.

Because mangroves can be easily confused with other ecological

systems (e.g., closed forests and riparian vegetation), studies

aiming to provide realistic estimates of mangrove dynamics

should accurately account for spatial and temporal variabilities

of coastal ecosystems (Fent et al., 2019).

The objective of this study was to assess mangrove dynamics

in The Gambia. We used a locally continuous time series of

remotely sensed images to map all major land use and land

covers (LULCs) while putting emphasis on mangrove forest

dynamics in The Gambia.

Materials and methods

Study area

The Gambia (Figure 1) is located on the Gulf of Guinea,

bordered by the Atlantic Ocean to the west while forming an

enclave within Senegal. The country has an area of around

10,689 km2 (11,300 km² River Gambia included) extending

320 km along the Gambia River. The country is subdivided into

5 administrative units including the Western Region, North

Bank Region, Lower River Region, Central River Region, and the

Upper River Region.

The prevailing climate is of type Sudan Sahelian with an

average annual rainfall of around 900mm, a mean temperature

of around 25◦C, a long dry season from November to May,

and a rainy season between June and October. Gambia River is

perhaps the most visible feature of The Gambia with its densely

continuous thickets of mangroves presenting valuable shelter for

diverse species (Spalding et al., 1997). Most of The Gambian

vegetation is composed of savannas, shrubs, and grasslands, with

mangroves and forests, found essentially in the coastal regions

and around floodplains (FAO, 2010).

Other important water features include Tanbi Wetland

Reserve located in Western Region, Baobab Bolon Wetland in

North Bank Region, Bintang Bolon toward the border between

Western Region and Lower River Region, Mini Minium Bolon

in North Bank Region, and Bao Bolong located in North Bank

Region. The country has several protected areas among which

Niumi National Park located in the North Bank Region toward

the Sine-Saloum Delta of Senegal, the Tanji bird reserve along

the Atlantic coast, River Gambia National Park located in the

Central River Region, and Kiang West National Park in Lower

River Region.

As of 2013, the population of The Gambia is estimated

at 1.9 million, with a growth rate of 3.3% per annum (The

Gambia Bureau of Statistics, 2013). Most of this population

is concentrated in the Western Region along the coast of the

Atlantic Ocean. Income-generating activities for the coastal

population of The Gambia comprise fishing and fishing-

related activities including artisanal fishery and industrial

fishery. Coastal tourism, such as bird watching, and cruising

is another income-generating sector. Important agricultural

activities include rice farming, livestock keeping, and shrimp

aquaculture. Mangroves play a crucial role in these income-

generating activities and represent an important component of

rural livelihood in The Gambia.

In The Gambia, mangroves are found along the coast of

the Atlantic Ocean and lagoons extend up to 200 km inland

along River Gambia. For reference data, we considered the

rectangular area enclosing the country to include all mangroves.

The Gambian mangroves have been the center of debates—

mangrove regrowth vs. mangrove degradation1 over the last few

decades. The Gambia has a reach body of LULC (e.g., water

bodies, forests, savannas, shrublands, and croplands), most of

which are strongly influenced by the prevailing anthropogenic

1 According to certain definitions, degradation implies a reduction of

certain properties of a LULC, but the LULC actually remains the same

(e.g., forest degradation). In this paper, the term degradation refers to the

complete conversion of one LULC to another.
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FIGURE 1

Overview of The Gambia. The red box indicates the bounding box of the country used as a reference for data collection in a spatial analysis of

mangrove forests in The Gambia. Fresh water bodies are represented in darker blue color and salty water in lighter blue color. The probability of

MODIS observation given the Landsat is missing is estimated using the Bayes rules of conditional probability; the 2 events being Landsat

observation are missing and MODIS observation is available at a given pixel. The estimated probability is based on all remote sensing artifacts, as

identified by Fmask and MODLAND QA, in Landsat and MODIS images acquired between 1999 and 2020.

and ecological processes taking place in the coastal regions

(Andrieu, 2018).

While the country has good coverage in regard to Landsat

and MODIS data, the amount of missing data in a scene is often

substantial. This is an important challenge since many remote

sensing software applications will ignore pixels with at least a

missing value in one of the image bands. Such issues can be

relevant in some geostatistical applications and can dramatically

affect the results of spatial estimates. In The Gambia, the

probability of getting a MODIS replacement observation for a

Landsat image rarely exceeds 0.5, meaning that the chance of

getting one of the Landsat or MODIS observations is quite low

(Figure 1).

Satellite imageries

To provide accurate estimates of mangroves in The Gambia,

this study considered Landsat Tiers 1 and MODIS MOD09A1

V6 collections available from the Google Earth Engine cloud

computing platform (Vermote, 2015; Gorelick et al., 2017;

Wulder et al., 2019). These correspond to 217 Landsat tiles

and 131 MODIS tiles for the reference period 2000 to 2002,

243 Landsat tiles and 138 MODIS tiles for the reference period

2010 to 2012, and 752 Landsat tiles and 138 MODIS tiles for

the period 2018 to 2020. Note that Landsat is the primary

source of images and MODIS scenes are considered if and only

if they happen to have the same acquisition date as Landsat

scenes. Both the Landsat and MODIS tiles (used for filling gaps

in Landsat data) are land surface reflectance data scaled to a

comparable value range. The atmospherically corrected Landsat

and MODIS surface reflectance provide reasonable estimates

of target reflectance as it would be measured on the ground,

making them suitable for LULC analysis. The main artifact

that influences the usefulness and usability of these images

in the study area is the important cloud coverage during the

rainy season. We used the image bands differently owing to

their relevance in the study. The thermal and longest wave

infrared bands are only to summarize the phenology in terms

of data spread and peak. We will describe these metrics in

more detail in the next sections. In addition to these metrics,

we used the remaining bands to further compute 4 normalized

difference spectral indices that estimate water and vegetation

from different perspectives. These bands cover the visible (i.e.,

red, blue, and green), the near-infrared, and the shortest wave

infrared channels. The spectral indices include Tucker’s (1979)

normalized difference vegetation index (NDVI), Gao’s (1996)

normalized difference water index (Gao NDWI), McFeeters’s

(1996) normalized difference water index (McFeeters NDWI),

and Liu and Huete’s (1995) enhanced vegetation index (EVI).

Referential for data and image
classification

We conducted an extensive field survey fromMarch to April

2021 to systematically collect reference data for training and

validation of LULC classification. These training and validation

polygons, collected following the guidelines and class definition

of the international geosphere—biosphere program (FRA, 2000)

and the FAO land cover classification system (Di Gregorio,

2016), are fairly evenly distributed across the major LULC in

the region.

We covered 16 different classes (Table 1) for LULC

classification. Considering that LULC changes in the study

areas are mostly gradual and hoping to capture the essential
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intra-annual changes over a relatively short period (3 years),

our reference periods are 2000–2002, 2010–2012, and 2018–

2020. We will refer to these as 2000, 2010, and 2020 and

their respective classifications as 2000-classification, 2010-

classification, and 2020-classification. By considering multiple

years, hence deriving LULC classification over a period, we

minimized the chances of capturing noise, because LULC

changes due to noise tend to be ephemeral whereas true land

cover changes tend to persist through time (Zhu andWoodcock,

2014).

To account for the spatial distribution of LULC in relation

to the reflectance values in the image time series, we used

unsupervised classification to restrict the training and validation

data to areas whose classes have not changed between the

reference periods, given the spatial and temporal distribution of

the surface reflectance values. The purpose of these unsupervised

classification maps is to help identify the class boundaries of

the different LULCs from the natural breaks of the data. These

are rough classification estimates, but powerful enough to help

in generating accurate reference data when combined with the

knowledge of the area of interest.

We used k-means clustering to produce unsupervised

classifications (16 classes distributed over 1,000 random points)

for the 3 reference periods based on which we conducted

stratified random sampling across those locations whose LULCs

remain unchanged. By constraining the reference data to these

stable areas, we can use them to classify any image acquired

during the period over which the LULC persists. This required

careful visual observation and matching of class configurations

across the entire landscapes of the classified images. In a nutshell,

we overlaid the classification maps of the 3 reference periods to

identify the areas of persistent LULC via visual assessment of the

underlying color in themaps. Due to the lack of class labels in the

unsupervised classifications maps, we often identify the classes

via the temporal profile of the reflectance (e.g., closed forest may

have a longer phase and higher amplitude than open shrublands)

or the historical google earth images. After identifying these

areas whose classes have not changed between the reference

periods, we conducted the field survey to ground-truth these

areas and collect the training and validation polygons. These

polygons served as benchmarks for the stratified sampling of

the unsupervised classifications. For example, when we identify

(as True or False) the areas corresponding to, say, mangrove

in the unsupervised classifications, we mask out all pixels that

have changed (at least once) to other LULCs between the

reference periods. We then use the resulting binary image along

with the reference polygons collected over mangrove LULC to

conduct stratified random sampling over the persistent pixels.

The polygons serve to constrain the sampling of the reference

pixels within the purview of the LULC, whereas the stratified

sampling serves to constrain the sampling over persistent pixels,

ignoring all pixels that have changed between the reference

periods. While this process was tedious and time-consuming, it

helped us to identify sufficiently enough stable areas to collect

the training and validation data and to produce classifiers that

are consistent with the 3 reference periods. For each class

(Table 1), we considered 1,000 samples, making a total of 16,000

points, to train and validate a model for LULC classification.

Methods

This study involved a systematic review of the existing

literature aimed at mangrove ecosystems in The Gambia and

neighboring areas as well as a remote sensing-based analysis

of mangrove change using the locally continuous time series.

Our approach (Figure 2) for change detection unravels several

mysteries surrounding the topic to address several shortcomings

regarding LULC analysis in The Gambia and can provide clues

for accurate LULC analysis elsewhere. It involved several steps

for data scaling and gap filling to minimize the effects of sensors

difference (e.g., Landsat ETM+ vs. Landsat OLI) and remote

sensing artifacts (e.g., clouds and cloud shadows) along with

temporal smoothing to remove random noise.

Image processing

As mentioned earlier, we used the geometrically and

atmospherically corrected Landsat surface reflectance products.

These products are provided along with a quality assessment

band, which we used to mask all pixels affected by remote

sensing artifacts (Figure 2). Although these are currently among

the best available Landsat and MODIS products in the public

domain, they often need to be further processed prior to analysis

involving continuous observations. Since the atmospheric

correction may fail to account for these remote sensing artifacts

(Zhu and Woodcock, 2014), we discarded all pixels but those

acquired under clear conditions (Figure 2). In the few cases

where no clear acquisition is available, we created an empty

image to keep track of missing data and provide a slot for gap

filling, which we conducted in 3 steps. Roy et al. (2016) noted the

differences between OLI and other Landsat data and provided

coefficients for harmonizing these using linear transformations.

We scaled all data from other sensors to OLI, so that the

time series can be compared over the reference periods. This

is particularly important for studies using water or vegetation

indices because the difference is higher in the near-infrared and

shortest wave infrared bands whereas atmospheric correction

increases this difference in the visible bands (Roy et al., 2016).

The first step for gap filling consists in computing the

monthly median composites, considering a lag of 31 days

(Figure 2). This reduced the number of images to 12 median

images per year, corresponding to 1 image per month. The

median has proven to be a robust statistic in the sense that it

is tolerant of outliers and noisy observations.
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TABLE 1 Categories of land use and land cover used for image classification in The Gambia.

Land use and land

cover class

Description Class code

Fresh waters Lakes, rivers, and other reservoirs that are dominantly freshwater bodies. Fresh waters

Salty waters Oceans, seas, and other reservoirs that are dominantly salty water bodies. Salty waters

Closed forests Lands dominated by trees with a percent cover >70% during the entire

period of the year.

Closed forests

Open forests Lands dominated by trees with a percent cover between 60 and 70% during

the entire period of the year.

Open forests

Woody savannas Lands with herbaceous and other understory systems, and with forest

canopy cover between 30 and 60%. The forest cover height exceeds 2m.

Woody savannas

Savannas Lands with herbaceous and other understory systems, and with forest

canopy cover between 10 and 30%. The forest cover height exceeds 2m.

Savannas

Closed shrublands Lands with woody vegetation <2m tall and with shrub canopy cover >60%.

The shrub foliage can be either evergreen or deciduous.

Closed shrublands

Open shrublands Lands with woody vegetation <2m tall and with shrub canopy cover

between 10 and 60%. The shrub foliage can be either evergreen or

deciduous.

Open shrublands

Grasslands Lands with herbaceous types of cover. Tree and shrub cover is <10%. Grasslands

Permanent wetlands Lands with a permanent mixture of fresh water and herbaceous or woody

vegetation.

Wetlands

Croplands Lands covered with temporary crops followed by harvest and a bare soil

period (e.g., single and multiple cropping systems). Perennial woody crops

are classified as the appropriate forest or shrub land cover type.

Croplands

Urban and built-up lands Land covered by buildings and other man-made structures. Built-up

Cropland/natural vegetation

mosaics

Lands with a mosaic of croplands, forests, shrublands, and grasslands in

which no one component comprises more than 60% of the landscape.

Mosaics

Barren Lands with exposed soil, sand, rocks, or snow and never have more than

10% vegetated cover during any time of the year.

Barren

Mangroves Lands with a permanent mixture of salty or brackish water and herbaceous

or woody vegetation.

Mangroves

Regularly flooded vegetation Land transitioning between terrestrial and fresh water zones with sufficient

moisture for the development of near evergreen vegetation.

Riparian vegetation

Fresh and salty water, based on the definition of class water bodies in the IGBP land cover classification system, are considered to capture the reach of fresh and salty water as this can be

relevant in the context of mangrove ecosystems. Regularly flooded vegetation, closed forests, and open forests are based on the FAO LULC classification system. The remaining classes are

based on the IGBP land cover classification system.

In the second step, we used the median of the corresponding

MODIS acquisition of the month to fill data gaps in the Landsat

composite where these MODIS data are available. We then

computed the normalized difference spectral indices (i.e., NDVI,

Gao NDWI, Mcfeeters NDWI, and EVI), which we used for

subsequent analysis. The use of these indices can also improve

the accuracy of data estimates since values beyond the range

[−1, 1] are systematically discarded, even though EVI is not

conceptually bounded by this value range. The choice of these

4 spectral indices is motivated by their sensitivity to water and

vegetation, which are sufficient to describe the landscape of the

study area when times series are available.

The third step relies on vegetation and water seasonality

in the study region; hence, the temporal relationships

between consecutive observations captured in the time

series, to infer missing data using harmonic modeling

(Figure 2). Many realistic models for time series analysis

assume a component describing a consistent signal and

another component representing random noise (Shumway

and Stoffer, 2011). This is consistent with the behaviors of

most ecological systems, particularly in the study area. We

adopted the harmonic modeling approach to minimize the

effects of such noise which are a mere representation of

ephemeral variability. Under these considerations, we described
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FIGURE 2

Image processing routine used for a spatial analysis of mangrove vegetation of The Gambia.

pixel values as random variables chronologically indexed

by time.

Let
{

pt; t = t0, t1, . . . , tN
}

(1)

pt is the predicted pixel value at time t

pt = β0 + β1 t + et

Where,

β0 is the intersept of the regression line

β1 is the slope of the regression line

et is the random noise

pt is the predicted pixel value at time t

Many problems in the frequency domain of time series
analysis can be expressed as local, polynomials, and splines
regression using linear models (Shumway and Stoffer, 2011). In
the situation where the trend is of interest, the time series can be
described using a linear regression model that predicts the pixel
values based on time Equation (2).

pt = β0 + β1t + A cos (2πωt + ϕ) + et(Nonlinear form)

pt = β0 + β1t + β2 cos(2πωt)+ β3 sin(2πωt)+ et(Linearized form)
(2)

Where,

β0 is the intersept (Starting point of p)

β1 is the slope (How fast p changes with time)

t is the time indexed at t0, t1, . . . , tN (Time since the epoch in

radians)

A is the amplitude (The peak)

ω is the frequency of oscillation (ω = 1 for a single cycle)

ϕ is a phase shift (Time at which p reaches its peak)

β1t is then, the linear term (Inter-annual variability)

A cos (2πωt + ϕ) is then, the harmonic term (Main signal as

sinusoidal waveform)

et is the random noise

pt is the predicted pixel value at time t

β2,β3 are the harmonic coefficients (Intra-annual variability)

With,

β2 = A cos (ϕ)

β3 = −A sin (ϕ)

A =
(

β2
2 + β2

3

)1/2

ϕ =

(

β3
β2

)
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A cos (2πωt + ϕ) = β2 cos(2πωt)+ β3 sin(2πωt) (3)

In the situation where the periodic component is of interest,

as is the case in our study region, linear regression can still

accurately recover the periodic signal using sines and cosines as

inputs (Shumway and Stoffer, 2011; Zhu and Woodcock, 2014).

To accurately represent the prevailing seasonal variation in

water and vegetation in the study region, we adopted a nonlinear

model with a sinusoidal waveform [Equation (2); nonlinear

form] which we linearized [Equation (2); linearized form] to

fit local ordinary least squares regression (OLS) models that

predict the values of NDVI, Gao NDWI, Mcfeeters NDWI, EVI,

along with the green, the shortest wave infrared, and the thermal

bands based on time. As earlier mentioned, the choice of the 4

spectral indices is motivated by their suitability to achieving the

objectives of the study. We specifically included the 3 additional

raw bands (i.e., the green band, the shortest wave infrared band,

and the thermal band) in the harmonic modeling for later use

in LULC classification (refer to section 2.4.2). For each pixel, we

considered one cycle a year, corresponding to the single rainy

season in the study area, to compute the OLS coefficients and

fully specify the model which we then used to fill the remaining

gaps in the original time series (Figure 3). We adopted the same

harmonic modeling approach on the gap-free time series to

remove random noise and recover the main signal which we

used as input for subsequent analysis.

Land use and land cover classification and
accuracy assessment

From the output of the model described in Equation

(2), several components can be extracted and used in LULC

classification. Herein, we used the predicted value, the estimated

phase, and the estimated amplitude of the model. For each

reference period, the fitted model outputs the 148 fitted bands

corresponding to an image every month (30 days). Note that

we only used the phase and the amplitude (not the fitted

bands) for the green, the shortest wave infrared, and the thermal

bands included while fitting the harmonic model (refer to

section 2.4.1). With an amplitude and a phase for each of

the 7 bands used in fitting the harmonic model (NDVI, Gao

NDWI, Mcfeeters NDWI, EVI, green, shortest wave infrared,

and thermal bands), the fitted model includes 14 additional

bands summarizing the magnitude (peak) and the wavelength

(spread) of the phenological cycle. We used the phase and

amplitude of the green band because they provided us with

a fairly good medium for distinguishing between areas where

the 4 spectral indices are similar. In particular, the Gao and

Mcfeeters NDWIs can often be very similar as is the case for

NDVI and EVI. Therefore, the preprocessed data for image

classification consisted of a large image of 162 (148 fitted bands

+ 7 phases + 7 amplitudes) bands for each reference period.

To provide comprehensive accuracy assessments, we split the

16,000 reference data points collected into 70% for training

and 30% for validation. For each reference period, we trained

and validated a random forest classifier considering a maximum

number of 100 trees. The accuracies of the 3 models are almost

identical and we did not prefer one over another. Instead of

using one of the 3 models in the supervised classifications,

we classified the images of the 3 reference periods using

their corresponding models. It is important to emphasize that

classifications aiming to accurately detect LULC change, as in the

case of change detection based on image comparison, should use

classifiers that are comparable in regard to their throughputs, or

at least a single model to ensure the comparability of the results.

Land use and land cover analysis

To provide a general picture of the landscape stability and

disturbance, we examined the changes in all LULCs considered.

We then provide a more detailed analysis specifically tailored

to mangrove forests. These include the quantitative estimates

of mangrove dynamics and change magnitude along with a

qualitative analysis resulting in the mapping of change direction.

In a nutshell, the analysis first involved the comparison of the

2000-classification against the 2020-classification to estimate

LULC changes over the entire study period. We then compared

the 2000-classification against the 2010-classification looking

for a change that may have occurred during the decade 2000–

2010 and the 2010-classification against the 2020-classification

for change that may have happened during the decade 2010–

2020. The analysis of LULC changes consisted in estimating the

areas of the major LULC over time using simple GIS operation.

We estimated the areas occupied by each LULC classes over

time using the multitemporal classification. The changes over

the entire study period [Change (2020–2000)] were estimated

by subtracting the estimates based on 2000-classification from

the ones based on the 2020-classification. The analysis of

the mangrove dynamics and change magnitude consisted in

examining the areas where mangrove changes have occurred

using a simple classification comparison.We estimated the areas

by comparing LULC over areas detected as mangroves during

one or more of the reference periods considered. This results

in a mangrove mask, which we used to mask all other areas

and compute the share of mangrove losses and gains in relation

to other LULCs. Mangrove change direction analysis consisted

of grouping these areas into 3 categories including areas where

mangroves were converted into other LULC (decrease), areas

where mangroves remained (stable), and areas where other

LULC became mangroves (increase).

Results

Accuracy assessment of land use and
land cover classifications

The accuracy assessment shows that the random forest

classifications have comparable accuracy, with an overall
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FIGURE 3

Available monthly median Landsat NDVI and Gao NDWI values after MODIS gap filling, and their corresponding gap-filled and predicted values

estimated using harmonic modeling at a di�erent location in The Gambia. This figure illustrates how the model fits di�erent data inputs to

capture the variations across multiple pixels. Non-solid circles represent the raw Landsat data after gap-filling using MODIS data. Dots (inside

non-solid circles) represent gap-filled data after harmonic modeling. Solid circles are fitted values after harmonic modeling. Non-solid circles

without a dot inside are noisy data detected and removed by the harmonic prior to computing the fitted values.

accuracy of 0.98 for the 2020-classification, 0.96 for the 2010-

classification, and 0.97 for the 2000-classification. Similarly, the

Kappa statistics are close enough to the overall accuracy to

warrant the reliability of the classifications.We achieved a Kappa

of 0.98 for the 2020-classification, a Kappa of 0.96 for the 2010-

classification, and a Kappa of 0.96 for the 2000-classification

(Table 2). The producer accuracy ranges from 0.92 to 1.00 for

the 2020-classification, 0.87 to 1.00 for the 2010 classification,

and 0.89 to 1.00 for the 2000-classification. The user’s accuracy

ranges from 0.92 to 1.00 for the 2020-classification, 0.87 and

1.00 for the 2010-classification, and 0.88 to 1.00 for the 2000-

classification. Mangroves, for which all validation samples were

correctly classified in the 2000-classification, are the classes with

the best classification accuracy owing to a producer and user’s

accuracy between 0.99 and 1.00.With this level of accuracy, the 3

classifications can reliably serve the purpose of change detection.

Country-wide analysis

Dominant land use and land cover at a glance

While we identify 16 major LULCs in The Gambia,

croplands, open and closed shrublands, woody savannas,

savannas, and mangroves are the dominant ones from an aerial

view of The Gambia (Figure 4).

Wetlands, riparian vegetation, closed forests, grasslands,

and barren lands are less perceptible. Croplands and

cropland/natural vegetation mosaics are mostly found in

North Bank Region around Bao Bolong Wetland and Farafeni

town toward the border with Senegal. Forests are mostly

found in Western Region where open forests extend westwards

toward the Bitang Bolon River into Senegal. Closed forests

are limited to the coastal region following the coastline into

Senegal. Western Region is the most populated region in The

Gambia, with most of the build-up areas concentrated in the

coastal part of the region, particularly in the greater Banjul

showing a rapid urbanization sprawl. Savannas followed by

woody savannas dominate the Lower River Region of The

Gambia where croplands and cropland/natural vegetation

mosaics occupy a substantial area. Mangroves, wetlands, and

riparian vegetation are mainly found all over the bank of River

Gambia from the Atlantic Ocean to the Upper River Region.

These land covers are also found in most tributaries of River

Gambia. The most developed mangroves of The Gambia are

found in the Western Region, Northern Bank Region, and

Lower River Region, particularly in Tanbi Wetland, Baobab

Bolon Wetland, Mini Minium Bolon, Bitang Bolon River,

and the upper part of Niumi National Park. Grasslands and

cropland/natural vegetation mosaics cover most part of the

Central River Region where we noticed a sizeable share of

wetlands and bare lands toward the upper part of the region.

Shrublands are mainly found in the Upper River Region with

a southward increasing vegetation density. Closed shrublands

are more visible in the southern part of River Gambia whereas
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TABLE 2 Accuracy assessment of multi-temporal land use and landcover classifications used for assessing the dynamics of mangrove forests in The

Gambia between the period 2000 and 2020.

Land use and land

cover class

2020-Classification 2010-Classification 2000-Classification

User’s

accuracy

Producer

accuracy

User’s

accuracy

Producer

accuracy

User’s

accuracy

Producer

accuracy

Fresh waters 1.00 0.99 0.99 0.99 0.99 0.98

Salty waters 1.00 1.00 1.00 1.00 1.00 1.00

Closed forests 1.00 1.00 0.99 0.99 0.99 1.00

Open forests 0.97 0.97 0.97 0.97 1.00 0.99

Woody savannas 0.94 0.96 0.95 0.94 0.97 0.98

Savannas 0.97 0.97 0.96 0.93 0.98 0.97

Closed shrublands 0.98 0.97 0.94 0.94 0.95 0.91

Open shrublands 0.97 0.96 0.94 0.93 0.90 0.93

Grasslands 0.99 0.98 0.96 1.00 0.98 0.98

Wetlands 0.99 0.99 0.96 0.98 0.97 0.98

Croplands 0.95 0.92 0.87 0.89 0.89 0.89

Built-up 1.00 0.99 1.00 1.00 1.00 0.99

Mosaics 0.92 0.96 0.89 0.87 0.88 0.89

Barren 0.98 1.00 0.99 0.99 0.98 0.99

Mangroves 0.99 1.00 1.00 0.99 1.00 1.00

Riparian vegetation 1.00 0.99 0.99 0.98 1.00 1.00

Overall accuracy 0.98 0.96 0.97

Kappa 0.98 0.96 0.96

open shrublands are more visible in the northern part of

the river.

It appears that mangroves, open forests, woody savannas,

and croplands have been steadily increasing over the last 2

decades. In contrast, closed forests, savannas, grasslands, and

wetlands have been steadily decreasing. On the other hand,

it appears that cropland/natural vegetation mosaics, closed

shrublands, salty water, and built-up experienced an increase

between 2010 and 2020 whereas they have seen a decrease

between 2000 and 2010. Contrastingly, open shrublands, barren,

fresh water, and riparian vegetation have seen a decrease

between 2010 and 2020 whereas they have seen an increase

between 2000 and 2010 (Table 3). From the analysis of the

dynamics of the major LULC of The Gambia, we found out that

some LULCs exhibit a gradual increase; others have fluctuating

trends with both increase and decrease, and some others show a

gradual decrease.

Except for closed and open shrublands and mangroves,

most LULC classes pertaining to the natural vegetation of The

Gambia exhibit a declining trend over the 20-year study period.

Natural vegetation (e.g., closed forests, savannas, grasslands,

and wetlands) has been declining in favor of semi-natural

vegetation (e.g., croplands and cropland/natural vegetation

mosaics), sparse natural vegetation (e.g., closed shrublands,

open shrublands), and even in favor of surface that is not

favorable to vegetation (e.g., barren).

It is clear from our findings that several natural vegetation

classes have been shrinking since 2000. The area closed forests

occupy decreased from 86,139.19 ha in 2000 to 61,875.77 ha

in 2020, resulting in a net loss of 24,263.42 ha. Savannas

experienced a net reduction of 50,867.70 ha (i.e., from

164,881.50 ha in 2000 to 114,013.80 ha in 2020). Grasslands

reduced gradually from 110,155.41 to 75,660.51 ha, making a

net loss of about 34,494.90 ha. We estimated a net reduction

of wetlands area of around 6,822.99 ha, owing to the drop

from a total area of 37,022.08 ha in 2000 to 30,199.09 ha

in 2020.

Despite the losses in some natural vegetation land covers,

we observed substantial increases in other classes including

mangroves, open forests, and woody savannas. Mangroves

made an important gain with a total area of about 4,004.21

ha (i.e., from 55,140.37 ha in 2000 to 59,144.58 ha in

2020) over the 20-year period. Open forests increased from

12,212.32 ha in 2000 to 81,347.26 ha in 2020, making a

total gain of 69,134.94 ha. Woody savannas also increased

from 8,458.35 ha in 2000 to 32,965.98 ha in 2020, gaining

a total area of 24,507.63 ha. Among the semi-natural

vegetation, we estimated a gradual net increase in croplands of

24,068.76 ha (i.e., from 42,938.62 ha in 2000 to 67,007.38 ha

in 2020).

Owing to the fluctuating trend across the 2 decades, our

analysis remains unconclusive in regard to some classes of
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FIGURE 4

Land use and land cover classifications of The Gambia based on harmonic modeling of image time series acquired over the periods 2000–2002

(2000-classification), 2010–2012 (2010-classification), and 2018–2020 (2020-classification). These maps were derived by filling data gaps in

Landsat monthly median composites using the equivalent MODIS data where these MODIS data are available.

natural vegetation. We expect, however, that open shrublands

have increased by 963.00 ha, and closed shrublands increased

by 614.40 ha, whereas riparian vegetation decreased by

4,816.53 ha. We noticed the same fluctuating trend in non-

vegetated classes such as barren for which we conjecture

an increase of around 4,966.15 ha, fresh waters for which

we look for a reduction of 644.05 ha, salty waters which

we bet to have reduced by 4,128.34 ha, and built-up areas

where we suspect a reduction of 3,111.69 ha. Among the

semi-natural vegetation, cropland/natural vegetation mosaics

also exhibit a fluctuating trend despite a total gain of

890.70 ha.

Mangrove change direction

From an aerial view of The Gambia, mangroves appear

to have remained dominantly stable over the study period

(Figure 5). Nevertheless, we noted a few spots of both increase

and decrease spread across the country. It seems that the areas

of increase dominate the areas of decrease. While The Gambian

mangroves appear to do well over the study period, it would be

important to have a closer look at these sites since such analysis

can provide useful information for site-specific interventions.

In general, the stability is inclined toward an increase around

the coastal regions whereas it tends toward a decrease near

the Central River Region. We identified a few sites that have
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TABLE 3 Quantitative estimates of changes in major land use and land

cover of The Gambia between 2000 and 2020.

Land use and

land cover

class

2020 2010 2000 Change

(2020–

2000)

Fresh waters 34,146.64 39,470.47 34,790.69 −644.04

Salty waters 54,124.64 50,437.79 58,252.98 −4,128.34

Closed forests 61,875.77 83,280.79 86,139.19 −24,263.42

Open forests 81,347.26 30,991.32 12,212.32 69,134.93

Woody savannas 32,965.98 10,394.19 8,458.35 24,507.63

Savannas 114,013.84 151,760.68 164,881.53 −50,867.69

Closed shrublands 162,892.45 153,688.10 162,278.10 614.35

Open shrublands 103,685.16 105,685.38 102,722.22 962.94

Grasslands 75,660.51 90,807.37 110,155.41 −34,494.90

Wetlands 30,199.09 36,001.28 37,022.08 −6,822.99

Croplands 67,007.38 64,509.15 42,938.62 24,068.75

Built-up 12,617.83 11,357.80 15,729.52 −3,111.69

Mosaics 199,673.28 190,552.80 198,782.64 890.64

Barren 42,568.52 46,921.99 37,602.37 4,966.15

Mangroves 59,144.58 58,860.63 55,140.37 4,004.21

Riparian vegetation 9,524.71 16,727.91 14,341.24 −4,816.53

Total 1,141,447.64 1,141,447.64 1,141,447.64 0.00

These estimates are derived from multi-temporal classifications of remote sensing data

involving the use of MODIS images to fill data gaps in Landsat images and harmonic

modeling of the resulting Landsat time series. The values are reported in hectares of land.

experienced an increase in mangrove forests as well as those that

have seen a decrease in this vegetation over the study period.

Sites of increasing trend can be found near Balingho, Bitang

Bolon, and Darsilami. Those of decreasing trend are observed

near Bambali Island and Mini Minium. We will look at these

sites in more detail in the next sections.

Mangrove dynamics and change magnitude

Our results suggest that mangroves experienced a net gain

of around 9,673.26 ha against a net loss of around 5,669.05 ha

between 2000 and 2020. Most of the gain mangroves made came

at the cost of riparian types of LULCs. Over the study period

(2000–2020), mangroves gained about 5,263.35 ha of land at the

expense of wetlands and around 3,146.91 ha against riparian

vegetation. We observed relatively minor gains at the expense

of woody savannas where mangroves gained around 1,680 ha

and savannas where they gained an approximate area of 1,122

ha. Despite the net gain, mangrove forests experienced a sizeable

shrink in many areas across The Gambia. Mangroves lost an

approximate area of 2,213.04 ha in favor of wetlands, about

1,729.76 ha in favor of riparian vegetation, and around 1,309.45

ha for closed forests (Table 4).

During the decade 2000–2010, we estimated a total gain

of 7,118.02 ha against a total loss of 3,397.76 ha. Wetlands

contributed the most to these mangrove conversions during

this decade. Wetlands lost around 3,791.40 ha to mangroves

which lost around 1,033.82 ha to wetlands, corresponding to a

difference of more than 2,500 ha in favor of mangroves (Table 4).

During the decade 2010–2020, we estimated a total

mangrove gain of 5,889.75 ha, a gain that is slightly lower

than the 7,118.02 ha estimated during the previous decade. In

contrast, mangroves lost a slightly higher (5,605.08 ha) area

than in the previous decade (3,397.76 ha). During this decade,

mangrove gains came at the expense of wetlands (2,773.75

ha) and riparian vegetation (2,608.22 ha) whereas the loss is

mainly due to the expansion of wetlands (2,104.39 ha), riparian

vegetation (1,652.08 ha), and closed forests (1,624.66 ha) into

mangrove areas (Table 4).

Site-specific analysis

Mangrove change direction

The site-specific analysis revealed greater insights in regard

to the mangrove change direction. Mangroves have remained

more or less stable in Tanbi Wetland (Figure 6) and Niumi

National Reserve (Figure 7). Despite the general mangrove

stability in these protected areas, we noted some spots of

decrease in Crab Island and increase toward the north of Abuko

Nature Reserve during the period 2010. Crap Island was once

mangroves before 2000, and mangroves were converted into

crab-breeding sites during the decade 2000–2010. During the

same period, we note the degradation spots that have taken place

inside Tanbi Wetland Reserve. It is interesting to investigate the

cause and rate of this degradation.

Mangroves appear to show a decreasing trend downstream

near Bambali Island (Figure 6) and around Mini Minium

(Figure 7) during the period 2010–2020. There is the general

spread of mangrove degradation across the 2 decades in Bambali

Island for which a substantial share of mangrove forests has been

converted into other land covers. This is enough alarming to

warrant immediate action because the mangrove ticket in this

region is becoming narrower and tightened to the bank of the

river that it is apparently heading toward complete degradation.

We observed a similar trend of progressive degradation in

Mini Minium Bolon where mangrove forests are progressively

degrading from the head of the tributary to its mouth. Despite

the substantial mangrove regeneration toward the head of

the Mini Minium tributary, the degradation has alarmingly

progressed during the last decade. We also noted an important

degradation spot at the mouth where theMini Minium tributary

flows into River Gambia.

In Balingho (Figure 6), for instance, mangroves appear to be

increasing since 2000. A similar pattern is observed in Bitang

Bolon and Darsilami (Figure 7). Balingho presents an opposite

trend compared to Bambali Island. Despite some patches of

degradation in Balingho, mangroves have been progressively
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FIGURE 5

Change direction in mangrove vegetation cover of The Gambia based on harmonic modeling and classification of Landsat and MODIS time

series. This figure was cut o� to exclude empty space for better visualization.
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gaining land areas on either side of River Gambia. There is

a general spread of mangroves onshore that has interestingly

been taking place across the 2 decades. The mangrove ticket

in this region is becoming wider around the river. Toward

the head of Bitang Bolon, we noted an important increase in

mangrove forests, despite a few spots of degradation in some of

the tributaries of the river.

Mangrove change analysis

Mangrove forests have remained more or less stable in

Tanbi Wetland and the vicinity of Niumi National Park toward

the Senegal border (Figures 8, 9). Mangroves have substantially

shrunk to riparian vegetation near Bambali island, constituting

one of themajor degradation hotspots in The Gambia (Figure 8).

The area appears to be one of the most important mangrove

disturbance sites in The Gambia. This area appears to show a

pattern that suggests the conversion of mangrove forests into

bare land. Essentially, mangroves become riparian vegetation

during the decade 2000–2010, which riparian vegetation demote

to shrublands during the following decade. Looking closely at

the map, one can infer that the pattern of mangrove degradation

in the Bambali region follows the following sequence: mangrove

to wetlands, wetlands to riparian vegetation, and riparian

vegetation to shrublands.

In the Bao Bolong River toward Katchang and near Balingho

village where River Gambia meanders, mangrove forests appear

to spread out off-shore on either side of the river, particularly in

the lower part of the meander cut-off (Figure 8). Mangrove gain

in this area seems to have occurred at the expense of wetlands

and riparian vegetation. We also noted a widespread appearance

of wetlands and riparian vegetation patches encroaching on

mangrove forests. Our results suggest that mangroves have

gained land area in this region but this expansion may have

happened at a reduced vegetation density since the mangrove

forests are becoming less compact. The area appears to exhibit a

proliferation of riparian vegetation at the expense of mangroves

and wetlands during the last decade. Overall, there seems to be

an important reduction of bare lands in favor of vegetated lands

in the region.

We noted a substantial increase in mangrove forests

at the expense of wetlands and riparian vegetation in the

Muni Munium River (Figure 9). Apparently, riparian vegetation

nurtures wetlands, which later promote mangrove forests; a

pattern that is nearly counterfactual to the one we observed in

the Bambali region. In this region, we also noted an important

mangrove degradation near Koular village where the mangrove

downgraded to wetlands during the decade 2000–2010, which

wetlands become closed forests during the following decade. The

Bitang Bolon River region is characterized by a general increase

in vegetation (Figure 9). Toward the outlet of the Bitang Bolon

River tributary to River Gambia and around its sources near the

border of the Lower River Region and West Coast Region, we

TABLE 4 Quantitative estimates of mangrove dynamics and changes

magnitude in relation to major land use and land cover of The Gambia

between 2000 and 2020.

Land use and

land cover

class

2000–2010 2010–2020 2000–2020

Gain Loss Gain Loss Gain Loss

Fresh waters 338.65 224.16 68.93 95.47 490.84 247.56

Salty waters 0.00 0.00 0.00 0.00 0.09 0.00

Closed forests 406.42 100.13 386.59 1,624.66 473.74 1,309.45

Open forests 0.44 0.44 0.26 7.32 1.92 10.10

Woody savannas 0.00 0.00 0.00 0.00 0.44 0.70

Savannas 0.26 1.31 0.87 2.79 16.80 2.79

Closed shrublands 2.09 0.09 0.52 3.65 11.22 3.22

Open shrublands 1.04 0.26 0.35 13.83 2.94 4.96

Grasslands 0.00 1.57 0.52 0.17 2.96 0.78

Wetlands 3,791.40 1,033.82 2,773.75 2,104.39 5,263.35 2,213.04

Croplands 0.00 0.26 0.26 1.04 0.09 1.04

Built-up 0.17 1.48 8.01 2.52 2.68 3.13

Mosaics 0.35 0.52 0.40 0.09 3.48 0.44

Barren 45.32 9.66 41.07 97.79 255.82 142.08

Riparian vegetation 2,531.87 2,024.08 2,608.22 1,652.08 3,146.91 1,729.76

Total 7,118.02 3,397.76 5,889.75 5,605.80 9,673.26 5,669.05

Gain refers to the area of mangroves acquired from other LULCs while loss is the area

acquired by the LULC from the expense of mangroves. These estimates are derived from

multi-temporal classifications of remote sensing data involving the use of MODIS images

to fill data gaps in Landsat images and harmonic modeling of the resulting Landsat time

series. The values are reported in hectares of land.

noted an increase inmangrove forests at the expense of wetlands.

In this region, fresh water appears to have become wetlands

during the decade 2000–2010, and wetlands become mangroves

during the following decade.

Discussion and conclusion

The declining trends in closed forests, savannas, grasslands,

and wetlands have important implications for the rural

population of The Gambia. This is quite crucial because these

are LULCs that have a strong connection with the predominant

pastoral and agropastoral livelihood of the majority of the

community in The Gambia. A substantial share of these is

lost in favor of mangrove vegetation. Although this gain in

mangrove cover is a win for environmental conservation, we

should not overlook its implication for the economy of The

Gambia. Crow and Carney (2013) reported that increases in

mangroves can mask the reduced ecosystem benefits gained by

the locals from other LULCs. Future studies may assess the

implications of mangrove gains on the livelihoods of the local

community in The Gambia. The sequential pattern of mangrove

conversion to shrublands through riparian vegetation in the
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FIGURE 6

Change direction in selected mangrove sites of The Gambia based on harmonic modeling and classification of Landsat and MODIS time series.

These maps are snapshots of Tanbi Wetland Reserve, Bambali Island, and Bolingho.

Bambali Island region suggests a possible salinity drop or a

drying trend in the region. The hypothesis of salinity is more

plausible because the salinity generally decreases downstream,

dropping below the tenth part per thousand in this region. The

claim of the decreasing abundance of anadromous fishes in this

region supports the explanation of decreasing salinity (Darboe,

2002; Albaret et al., 2004). This drop in salinity creates space for

unfavorable mangrove conditions leading to their degradation,

which contributes further to unfavorable habitats for these salty

water fish species.

The conversion of mangroves into forests through wetlands

in Muni Munium River suggests a limited reach of seawater

that leads to decreasing water salinity such that the ecological

conditions for mangrove forests are progressively degraded

without significant effect on the overall moisture. This may

explain the change of vegetation from mangroves to other

types of vegetation beside the mangrove plant species. Due to

the fertility of the area, this regular vegetation blooms to the

extent that it masks the surface water beneath it when viewed

from space.

The increase in non-mangrove forests in the Bitang Bolon

River region suggests that the area experienced some drying

that resulted in the regreening of waterways. This gave rise to

the development of wetlands over minor rivers and streams
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FIGURE 7

Change direction in selected mangrove sites of The Gambia based on harmonic modeling and classification of Landsat and MODIS time series.

These maps are snapshots of Bitang Bolon, Mini Minium Bolon, Niumi national park, and Darsilami.

and the conversion of some wetlands into riparian vegetation.

The hypothesis of the drying is consistent with the claims of

a prolonged dry period reported in The Gambia. The drying

that occurred prior to the year 2000 led to an increased tidal

reach of the seawater that has increased the general salinity

along Bitang Bolon, causing important mangrove diebacks in

the region (UNEP, 2007a; Fent et al., 2019). This conversion

of wetlands into mangroves is the fruit of joint efforts and

participative actions between several development agencies and

the local population toward mangrove conservation. Between

2013 and 2014, the United Nations Development Programme

(UNDP) initiated a widespread mangrove restoration project

that brought together several other development institutions

including Wetland International, the International Union

for Conservation of Nature (IUCN), and the formation of

the Sankandi Youth Development Association mandated at

restoring the native mangrove forests. The Bintang Bolong

River region shows several pockets of mangrove degradation

before 2017. More than 3 ha of these have been restored

in the vicinity of Bondali Tande village through the NEMA-

CHOSSO project, a project supported by IFAD (International

Fund for Agricultural Development). Since 2014, with the

support of several development institutions (e.g., Earthwatch

Europe, Reforestation World Switzerland, Network for Social

Change), Sankandi Youth Development Association planted

around 200,000 Red mangroves (Rhizophora mangle) along the

Bintang Bolong riverbank.

The patches of the non-mangrove forests in the Balingho

region suggest possible siltation of mangrove forests due to

sediment deposition resulting from the river meandering.

Frontiers in Forests andGlobal Change 16 frontiersin.org

https://doi.org/10.3389/ffgc.2022.934019
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Liman Harou et al. 10.3389/�gc.2022.934019

FIGURE 8

Land use and land cover classifications in selected mangrove sites of The Gambia based on harmonic modeling and classification of Landsat and

MODIS time series. These maps are snapshots of Tanbi Wetland Reserve, Bambali Island, and Bolingho.

The presence of these patches may also indicate areas where

mangrove replanting failed or mangrove seedlings (since there

are currently ongoing mangrove planting activities in the

region) that are too small to be detected from remote sensing.

Since 2019, Community Action Platform on Environment and

Development (CAPED) project has been restoring degraded

mangrove forests across the entire Lower River Division.

CAPED planted around 3 million mangrove saplings over an

approximative area of 5 km along the Lower River, with the

support of local communities and several government and

non-government institutions. Between 2013 and 2018, UNDP

supported a community development project that restored

nearly 2,500 ha of mangrove forests along the Bao Bolong

tributary near Darsilami and Illiassa villages and along the

Bintang Bolong tributary near the Tendaba village.

The stability of mangrove forests in the Tanbi region

is attributed to the protection of the area. Since 2007, the

Tanbi Wetland complex enjoys a legally-binding protection

status as a Ramsar site. In addition, the Tanbi region benefits

from the support of several development institutions (e.g.,
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FIGURE 9

Land use and land cover classifications in selected mangrove sites of The Gambia based on harmonic modeling and classification of Landsat and

MODIS time series. These maps are snapshots of Bitang Bolon, Mini Minium Bolon, Niumi national park, and Darsilami.

WABSA—West Africa Study Birds Association, CONFORA—

The Kombo/Foni Forestry Association) that guarantee its

sustainable exploitation. Mangrove resources’ usage in Tanbi

Wetlands conveys certain norms of sustainable exploitation. A

good example would be the Try Oyster Women’s Association

group that planted 6.7 ha with around 20,000 Rhizophora

racemosamangrove seedlings for a sustainable oyster collection.

The results of the dynamics of the major LULCs

provide important insights for decision-making in regard

to environmental planning because it provides key information

on landscape disturbance. From these findings, decision-

making has a clear guide for acting on biodiversity conservation.

Knowing that some LULCs are shrinking, decision-makers

can take action against the extension of a specific LULC

depending on its importance for the local community. From

our discussions on mangrove forest dynamics, it is clear that

synergetic actions between community-based organizations

and development agencies with clear goals have led to resilient

mangrove forests in the Gambia. That is, strong governance

and policymaking along with continuous environmental

finance are the keys to sustainable management, but these

may not be sufficient without proper incentives to embark

on the locals and an adequate framework for managing the

complex socio-institutional arrangements that are required at

various scales.

Limitations of the study

The use of locally continuous time series along with the

capability of the harmonic model to fill the data gap and

remove noise in the temporal signature of LULC is essentially
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responsible for the high accuracy we have achieved in this study.

The discontinuity of the time series outside the 3-year reference

periods means that the predictions of the harmonic model are

only based on the data corresponding to that temporal window.

This means that the predictive power of the model can be

improved using a longer period, preferably all available images.

The longer the period, the more likely the number of clear

pixels to infer the missing data and the more accurate the model

predictions. One can then target the period of interest for LULC

classification. An example of such algorithms is described in

Zhu and Woodcock (2014) as continuous change detection and

classification (CCDC). However, this entails the processing of a

large amount of data, which can be challenging in terms of both

acquisition and processing power among other requirements of

the algorithm. This is particularly challenging for applications

requiring high spatial resolution images. Switching to sentinel-

2 data would result in at least twice the requirements in data

storage and processing power compared to the Landsat data we

used in this study.

Our findings are limited to the periods of interest (i.e., 2000,

2010, and 2020). The study remains inconclusive when it comes

to what may have happened outside of these years. Further

studies may look at the yearly dynamics of LULC along with

the local perceptions of these changes. This would help to better

explain the root causes of gains and losses (Fent et al., 2019).

In fact, a lot can happen during the 3-year reference periods

we have considered in this study. With the increasing data

processing capability, it may be possible to generate an accurate

land cover map from every gap-filled image and come up with

some sort of probabilistic LULC assessment.

Our classifiers were able to separate salty and fresh water

(Table 1, Figure 4). While discriminating fresh and salty water

from multispectral images may seem far-fetched, the reaches

of salty and fresh waters are visible on the ground that you

attempted to show on the maps. Nevertheless, we currently

do not understand this well enough to provide a detailed

discussion, even though the distribution of mangrove tickets

appears to be related to this gradient. Future studies may

attempt to look at this phenomenon and its implication for

mangrove vegetation.

Data availability statement

We conducted the data analysis in Google Earth engine

cloud computing platform (Gorelick et al., 2017) and R

programming language (R Core Team, 2021). These were
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we used as bridge for throughput between Google Earth
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We automated the entire process, including the installation
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