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Wetlands around the globe are being impacted by changing temperature

and precipitation patterns. Simultaneously black ash forested wetlands are

expected to lose much of their overstory canopy due to the invasive

Emerald Ash Borer (EAB). Field experiments and modeling efforts have

provided information on species tolerance of post-EAB conditions and future

climate adapted species. No studies have yet examined the interaction

of the loss of ash and future climate scenarios on wetland hydrologic

conditions. We developed daily wetland hydrology models for three

vegetation conditions: black ash forest, alternate non-ash forest, and non-

forested. Model simulations were evaluated under current climate conditions

and under two future climate scenarios representing warm & dry (T: +1.9◦C,

P: −2.6 cm) and hot & wet (T: +8.9◦C, P: +6.2 cm) scenarios. For each

combination of vegetation condition and climate scenario, 10,000 annual

synthetic weather sequences were used as inputs to the wetland hydrology

models. Simulated wetland hydrology remained highly variable based on

seasonal precipitation and evaporative demand. We compared the occurrence

probability of stream-network connectivity, surface inundation, and dry

conditions. Effects ranged from slightly drier under non-forested and warm

& dry conditions to much wetter under alternate-forested and hot & wet

conditions. Non-forested conditions resulted in a median increase of 15 and

20% of daily observations of connectivity to stream networks and surface

inundation, respectively, and 7% (median) fewer daily observations of dry

conditions. Alternate-forested conditions resulted in larger median impacts:

40 and 35% more daily observations of connectivity to stream networks

and surface inundation, respectively and 10% fewer daily observations of dry

conditions. Projected climate change-induced water deficits resulted in 3–

9% fewer days with connectivity and surface inundation, respectively and

0–10% more days with dry conditions (values represent the range of median

values for combination of vegetation and future scenario). Our results show

vegetation change as an equal or greater individual driver of future hydrologic

conditions in black ash wetlands relative to climate change. Non-forested

conditions and projected climate change-induced impacts each effectively

negated the other. Management decisions around vegetation transition and
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establishment should consider the interaction with future climate scenarios

and the large effect that poorly inundation-adapted plant communities could

have on hydrologic conditions.

KEYWORDS

black ash, climate change, stochastic weather generator, emerald ash borer,
ecohydrology, wetland hydrology, water table, ecosystem specific yield

Introduction

Shifts in temperature and shifts in the timing, frequency,
and quantity of precipitation associated with climate change
are already impacting global wetland ecology and these impacts
are expected to intensify into the future (Burkett and Kusler,
2000; Moomaw et al., 2018). In general, the Great Lakes
region of North America is expected to see declining summer
precipitation while total annual precipitation stays stable or
increases (Hayhoe et al., 2010; Byun and Hamlet, 2018).
These projected changes result in increased precipitation in
the spring and winter months. Winter precipitation will
also experience a phase change, seeing a reduction in the
proportion of precipitation as snow, increased occurrence
of rain-on-snow melt events in the winter and spring, and
earlier snowmelt timing (Notaro et al., 2015). Our study area
in the western Upper Peninsula of Michigan, United States
is projected to receive increased winter precipitation and a
slight decrease to slight increase in summer precipitation
dependent on emissions scenarios and model (Byun and
Hamlet, 2018). Based upon numerous downscaling scenarios
across multiple general circulation models (GCMs), local
conditions are expected to vary within a region and our
study area is projected to have wetter summer conditions
relative to much of the Great Lakes region (Byun and
Hamlet, 2018). The shift in precipitation timing and magnitude,
the reduction of total snowfall, and an earlier onset of
snowmelt will reshape the annual hydrologic budget. These
changes will alter wetland hydroperiods, with water availability
increasing in the winter and spring and decreasing in the
summer and early fall. Throughout the Great Lakes region,
including our study area (Byun and Hamlet, 2018), summer
temperatures are expected to increase 2–8◦C (Hayhoe et al.,
2010; Byun and Hamlet, 2018). The resulting increased
evaporative demand is expected to outpace any projected
increase in summer precipitation, leading to more frequent
drought conditions and increased water stress on ecosystems
(Byun and Hamlet, 2018).

Black ash (Fraxinus nigra Marsh.) is an important hardwood
component of many forested wetlands in the northern
United States and southern Canada. In addition to climate-
change induced impacts, black ash wetlands face the loss of

the major canopy species due to an invasive insect, Emerald
ash borer (Agrilus planipennis Fairmaire, EAB). Emerald ash
borer was first found in the United States in southeastern
Michigan in 2002 (Haack et al., 2002). It is known to
infest and cause high mortality in all ash native to North
America (Herms and McCullough, 2014). As of this writing,
EAB is present in 35 US states and five Canadian provinces
and has invaded the western Upper Peninsula of Michigan
in 2020 (APHIS, 2021). High mortality, the importance of
ash in regional forested wetlands, and cultural significance
of black ash in regional indigenous communities have led
to research on the impacts of their loss and strategies
to mitigate those impacts. Iverson et al. (2016) evaluated
potential replacement species for black ash in the context
of habitat availability, species migration, and replacement
species susceptibility to climate change impact, providing
a useful resource for climate-informed species replacements
for black ash. However, black ash grows in a range of
geomorphic settings, and local site conditions can have a
strong influence on hydrology, forest structure, and wetland
plant community (Kolka et al., 2018). Considering both
Iverson et al. (2016) and Kolka et al. (2018), we can identify
four necessary components to evaluate mitigation efforts in
black ash wetlands: (1) climate-informed species selection, (2)
species tolerance of local site conditions, (3) site conditions
following EAB infestation, and (4) site conditions in a
future climate.

Previous and ongoing work in Michigan and Minnesota
has assessed mitigation for components 1–3 that inform
the combined impact of climate change and EAB on black
ash wetlands. Researchers in Michigan (Bolton et al., 2018),
Minnesota (Looney et al., 2015), and Wisconsin (Bolton et al.,
2018) planted seedlings to evaluate potential canopy species at
the wetland rather than landscape level. The plantings in Looney
et al. (2015) and Bolton et al. (2018) took place under simulated
EAB infestation, where the seedlings were subjected to adverse
conditions due to the hydrologic impact of the loss of black ash
(Slesak et al., 2014; Van Grinsven et al., 2017), as well as the
increased competition from herbaceous growth under increased
light conditions (Looney et al., 2016, 2017; Davis et al., 2017).
This present study aims to integrate the results of the mitigation
assessments presented in these previous studies to enhance our
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understanding of components 3 and 4, and to specifically assess
selection of climate-informed species.

Of particular importance for this study is that the
above mitigation assessment research in black ash wetlands
incorporated (1) evaluation of targeted planted species at the
northern edge of their current range, evaluated impacts (2)
under present-day site conditions and (3) under simulated-
EAB site conditions. It was not feasible for these field studies
to address the interaction of EAB and climate change on site
conditions. Just as we have seen EAB impacts cascade through
black ash ecosystems affecting hydrology, plant communities,
and nutrient cycling, we can expect the future climate-driven
changes to hydrology to result in similar cascades. Focusing
on the future hydrologic characteristics of these wetlands will
inform the impacts to other functions, given hydrology is the
critical control on wetland ecosystems (Brinson, 1993). To
understand future hydrologic conditions, we have developed
wetland water level models and evaluated potential changes
in water levels under future climate scenarios and potential
changes in black ash stands as a result of EAB.

Wetland water levels in black ash wetlands in northern
Minnesota and northern Michigan were significantly higher
following girdling and cutting treatments where wetter site
conditions in conjunction with delayed timing and decreased
rates of drawdown during the growing season demonstrate the
hydrologic conditions that will likely exist following the EAB-
induced loss of ash (Slesak et al., 2014; Van Grinsven et al.,
2017). Co-dominant canopy species in black-ash dominant
wetlands, including red maple (Acer rubrum L.) and yellow birch
(Betula alleghaniensis Britt.) were shown to have significantly
lower sap flux when compared to black ash across the
entire gradient of observed water level conditions (Shannon
et al., 2018), and ultimately these lower rates contributed to
the significantly lower site transpiration estimates detected
in girdled and ash-cut treatments when compared to black
ash control treatments in northern Michigan wetlands (Van
Grinsven et al., 2017). Previous studies have also demonstrated
high-interannual variation in seasonal wetland water level
drawdown and rebound in black ash wetlands (Van Grinsven
et al., 2017). Estimating the behavior of a highly variable
system with a small number of weather sequences could lead
to biased or high-variance results, making it difficult to draw
proper conclusions about the combined impacts of climate
change and EAB. Simulation studies of future conditions should
be performed on a large number of weather sequences that
represent the variability of observable weather under a given
climate scenario. Stochastic weather generators (SWGs) provide
a tool for generating synthetic time series of weather that
simulate conditions under an observed or projected climate
(Wilks and Wilby, 1999).

We have performed simulation experiments combining
observed wetland hydrology and synthetic weather sequences to
quantify the interactions of EAB and future climate scenarios.

We developed wetland hydrology models for black ash forested
conditions (current ash-dominated forested wetlands), non-
forested conditions (herbaceous and shrub/scrub wetlands), and
alternate-forested conditions (forested wetlands comprised of
current co-dominant species). Specifically, we used overstory
and understory plant community composition observed in black
ash wetlands before and after simulated-EAB site conditions
(Looney et al., 2015; Davis et al., 2017) to develop the wetland
hydrology models for black ash forested, alternate-forested,
and non-forested wetland condition classes, respectively. We
evaluated each class of wetland model under two potential future
climate scenarios for the end of the twenty-first century (2070–
2099). The two future scenarios are defined by a moderate
representative concentration pathway (RCP 4.5) projected using
a less sensitive GCM, and a business-as-usual representative
concentration pathway (RCP 8.5) projected using a more
sensitive GCM (van Vuuren et al., 2011). GCMs were considered
as more or less sensitive based on the magnitude of projected
change under a given RCP scenario (Byun and Hamlet,
2018). The two-scenario “bookend” approach provides a range
of potential future conditions as opposed to an ensemble
approach which masks some of the uncertainty in potential
future conditions by reporting the mean of possible scenarios
(Swanston et al., 2016). As a result, each class of wetland
model, including black ash forested, alternate-forested, and non-
forested, were evaluated for each ‘bookend’ model, respectively,
resulting in a total of six model evaluations.

We expect that the interaction of hydrologic impacts of
EAB and climate change will result in a tempering of the
two individual impacts in this region. While simulation of
post-EAB conditions have led to increased water levels and
reduced drawdown rates in the growing season, future climate
conditions in the region will result in reduced water availability
during that same period. These two opposing drivers should
result in some moderation to both impacts.

Materials and methods

Study sites and data

Wetland water levels measured from 2012 to 2020 at
eight black ash-dominated wetlands in the western Upper
Peninsula of Michigan, United States were used to develop
and evaluate our wetland hydrologic models (Figure 1 and
Table 1). The wetlands range in size from 0.29 to 1.54 ha
and 30–80% of the basal area consists of black ash with
histosol soils over an unconsolidated mineral layer located
at an average depth of 118.8 cm (Davis et al., 2017; Van
Grinsven et al., 2017). The region has average minimum and
maximum annual temperatures of −11.3 and 18.2◦C and an
average annual precipitation of 101 cm for the climate period
of 1980–2009 at the Bergland Dam (46◦35′13′′N, 89◦32′51′′W)
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meteorological station (Arguez et al., 2012). Wetland water
levels were continuously monitored in 2′′ inner-diameter driven
wells from 2012 to 2020 and logged every 15 min using Solinst
Levellogger Junior pressure transducers (Solinst, Ontario, CA,
United States), with more details available in Van Grinsven et al.
(2017). Barometric compensation was performed using data
from Solinst Levellogger Junior pressure transducers deployed
at a subset of study wetlands. Compensated water levels were
corrected for temperature differentials as in Shannon et al.
(2022). Following an initial control period of two growing
seasons, all of the wetlands used in this study were treated to
simulate the impacts of an EAB infestation. All ash trees greater
than 1” in diameter were girdled in three sites and all ash trees
greater than 1” in diameter were hand-felled and left on site in
the remaining five sites (Table 1).

Daily precipitation, daily minimum/maximum
temperatures, and solar radiation observations were retrieved
from existing meteorological stations. Daily precipitation
and daily minimum/maximum temperature were used as
inputs to the wetland water level models described below, and
to derive daily solar radiation, potential evapotranspiration
(PET), precipitation as snowfall and as rain, and snowmelt.
Precipitation records were retrieved from the National Centers
for Environmental Information Hourly Precipitation Dataset
(Hourly Precipitation Data [HPD], 2021) and summed
to daily values using the stations USC00201088 (Bruce
Crossing, MI, United States), USC00204328 (Kenton, MI,
United States), USC00475352 (Mercer Ranger Station, WI,
United States), USC00206215 (Ontonagon, MI, United States),
USC00476398 (Park Falls, WI, United States), USC00476518
(Phelps, WI, United States), USC00476939 (Rainbow Reservoir
Lake, Tomahawk, WI, United States), USC00477140 (Rice
Reservoir, Tomahawk, WI, United States), and USC00208680
(Watersmeet Fish Hatchery, Watersmeet, MI, United States)
(Figure 1). Daily minimum and maximum temperatures
were taken from the Global Historical Climatology Network
(GHCND) dataset (Menne et al., 2012a,b) for the same stations,
which were collocated stations for HPD and GHCND. Where
data were missing, values were filled using inverse distance
weighting using additional data retrieved from the Mesowest
(Horel et al., 2002) network stations BPLM4 (Baraga Plains,
MI), KTNM4 (Kenton, MI), PIEM4 (Pelkie, MI), WKFM4
(Wakefield, MI), WMTM4 (Watersmeet, MI). Solar radiation
data were also retrieved from the listed Mesowest stations.
The solar radiation and temperature data were used to fit
the Bristow-Campbell method coefficients to estimate solar
radiation from latitude and daily temperature range using
the PIEM4 Mesowest site (Bristow and Campbell, 1984;
Bojanowski, 2016). Bristow-Campbell solar radiation was used
to calculate potential evapotranspiration (PET) via the modified
Hargreaves-Samani equation (Hargreaves and Allen, 2003).
Precipitation was partitioned into snowfall, rain, and snowmelt
inputs using the CemaNeige snow accounting routine (SAR)

(Valéry et al., 2014). The CemaNeige SAR is temperature-
index based and accounts for accumulation, snowpack cold
content, and snowmelt through a thermal state weighting
coefficient and a degree-day melt coefficient. The CemaNeige
SAR is implemented in the R package airGR (Coron et al.,
2017).

Ecosystem specific yield

The link between hydrology drivers (rainfall, snowmelt,
PET) and daily water level response has been shown to be non-
linear and varying with stage (White, 1932; Loheide, 2008). In
wetland systems the relationship between the driver magnitude
and response magnitude has been termed the ecosystem specific
yield (ESy) (McLaughlin and Cohen, 2014). ESy has previously
been empirically derived as the ratio between precipitation
inputs and water level rise ( P

1 WL ) (McLaughlin and Cohen,
2014). The relationship between empirical ESy and water
level can then be modeled to provide a continuous estimate
of ESy. Models used to depict the relationship between ESy
and water level include exponential (McLaughlin and Cohen,
2014; Watras et al., 2017), quadratic (McLaughlin and Cohen,
2014), and step-wise regression (McLaughlin and Cohen, 2014).
Identifying ESy using the rainfall-rise ratio can be difficult
in the presence of confounding hydrologic variation such as
surface water connectivity and low-frequency seasonal changes
in water availability (Zhu et al., 2011; Watras et al., 2017).
Both factors were present in our study wetlands and there was
no clear relationship that adequately represented the function
relating P

1 WL and water level (Shannon et al., 2022), requiring
an alternative approach. Shannon et al. (2022) developed an
alternative using an inverse analog to P

1 WL , deriving ESy from
the ratio of cumulative water availability (Equation 1) and
water level. The first step is to fit a quadratic curve to the
relationship between a year-to-date water availability index from
the beginning of the growing season (April 1st) to the point of
minimum wetland water level (Supplementary Figure 1), where

WAYTD = PYTD +MYTD − PETYTD, (1)

and, WAYTD, PYTD, MYTD, and PETYTD are year-to-date
water availability index, rainfall, snowmelt, and potential
evapotranspiration, respectively. In developing this index, it
is assumed that PETYTD = cAETYTD, where c is a constant
representing a stable relationship between PET and actual
evapotranspiration (AET). This assumption is supported by
the hydrology of these wetlands, from spring through much
of the growing season these sites are not water-limited (Van
Grinsven et al., 2017). Empirical ESy was then considered as the
first derivative of the curve, which has the form 1 WL

1 WA , or the
cumulative water level change per unit change in cumulative
water availability. In the models described below, ESy is used to
determine the actual water level change per unit of individual
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FIGURE 1

Map of study site and meteorological stations of Global Historic Climate Network—Daily (GHCND), Mesowest, and Norms Station used for data
retrieval. Coordinates are in meters, UTM Zone 16N.

TABLE 1 Wetland size and treatment for field-study sites and 2012–2020 water year records used to develop wetland water level models.

Wetland Treatment Area (ha) Model training years Number of model test years

Control conditions Treated conditions Control conditions Treated conditions

009 Ash Cut 1.19 2012 2019 1 6

053 Ash Cut 0.82 2013 2019 2 5

077 Ash Cut 0.60 2012 2015 1 6

119 Girdle 0.33 2012 2018 1 6

139 Ash Cut 1.54 2012 2018 1 6

140 Girdle 0.61 2012 2019 1 6

151 Girdle 0.28 2012 2015 1 6

156 Ash Cut 0.35 2012 2015 1 6

drivers [precipitation/snow melt/evapotranspiration (ET)]. This
approach resulted in an asymptotic relationship between ESy and
water level, suggesting agreement with the exponential forms
in McLaughlin and Cohen (2014) and Watras et al. (2017).
Defining ESy as 1 WL

1 WA provided additional data used in fitting
the relationship between ESy and water level compared to the

rainfall/rise method because it allows the use of days without
rainfall in model development. Models for ESy were fit using the
year with the greatest water level drawdown for each wetland to
capture the widest range of ESy variation. Each wetland had the
same basic form of ESy function. The functions were fit using a
single hierarchical model with each of the coefficients allowed
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to vary independently within sites using the brms package in
R (Bürkner, 2017, 2018). The structure of the ESy function
requires that a lower bound be placed on ESy predictions to avoid
values less than or equal to zero. The minimum value of ESy
was determined as ESy at the wetland threshold water level (see
“Wetland hydrology models” below).

Wetland hydrology models

Wetland water levels were simulated on a continuous basis
using daily inputs. For each daily step, wetland water level
change was determined as a function of the previous day’s
water level, daily rainfall (R), daily PET, daily snowmelt (M),
and estimated streamflow (Q) (Box 1 and Table 2). Threshold
wetland water levels (WLcon) for surface water connectivity were
estimated separately from the control and treatment period as
the mode of the wetland water level record for the period. This
is similar to definition of hcrit from McLaughlin et al. (2019)
whose wetland surface water connectivity was also determined
from wetland water level records. The initial water level for
each year of simulation was set at WLcon, which assumes that
dormant-season precipitation and snowmelt have filled the
wetland basin to its maximum sustainable level. Streamflow
was assumed to occur whenever wetland water levels were
at or above the threshold water level. Each simulated daily
water level step was used to estimate ÊSy, for the next day to
serve as a multiplier for water level response to rainfall, PET,
and snowmelt components. Each driver (R, PET, M, Q) has a
coefficient (described in Table 2) allowing for wetland specific
responses to meteorologic and physical drivers (fitting described
below). β AET adjusts PET to calculate estimated AET and β

−AET is the reduction in AET between the control and treatment
periods. β −AET controls for the change in AET after treatment
when the black ash forest canopy was replaced by a shift to
obligate- and facultative-wet herbaceous species (Davis et al.,
2017). A first order autoregressive coefficient was also fit for
precipitation to simulate slow-flow contributions to wetland
water levels.

Training data for wetland water level models was selected
for each wetland as the year with the greatest water level
drawdown within each of the control and treatment periods, all
other years of data from 2012 to 2020 were used for wetland
model evaluation (Table 1). Wetland parameters were fit using
a mixed effect modeling approach implemented as partial
pooling of the population and individual wetland variance
with the variational inference algorithm implemented in the
probabilistic programming language Stan (Stan Development
Team, 2022). Use of partial pooling reduced the potential to
over-fit the individual wetland models to the training data
available for each wetland. A joint model was fit to the control
and treated conditions applying β −AET to only treated data
to reduce PET, while pooling fitting information between the
control and treated conditions for all other parameters. This

approach used data from both the control and treatment
period to estimate the majority of the parameters, effectively
doubling the available information for fitting. Wetlands with
intermittent surface water connectivity show limited response
to meteorologic drivers when above WLcon (McLaughlin et al.,
2019). To account for the lack of response when wetland
water levels were at or above WLcon, observation weights were
adjusted asymmetrically during model fitting. Water levels at
or above WLcon were given an initial 1/n weighting (identical
to an unweighted model), but when water levels were below
WLcon, the initial weights increased with the square of the
difference between water level and WLcon. This weighting
structure gave increased weight to the drawdown portions of
the hydroperiod, reducing the impact of surface-flow related
water level fluctuations around WLcon on model fitting. Median
parameter estimates from the posterior distribution at the site-
level were used in further analysis regarding model evaluation
and simulation of future conditions. Parameter estimates and
WLcon by treatment period can be found in Supplementary
Table 1.

In addition to black ash and non-forested conditions, we
simulated reforested black ash wetlands under one set of
many potential future forest compositions. For the selected
alternate-forest conditions, we assumed that a mix of the
current co-dominant species, red maple and yellow birch,
would become established with similar stand basal area
as the present forests. Alternate-forested simulations were
performed using the same parameters as the control period
with a reduction of β AET . This reduction is separate
from the β−AET term above, which is fit to observed
data from non-forested conditions. The reduction of β

AET for alternate-forested conditions was a function of
water level and current proportion of site basal area as
black ash:

βAET, alternate-forest = βAET∗

[
(1− BAash)+ BAash∗

[1.45077− 0.05869∗ (WL−WLcon)]−1
]

where, BAash is the proportion of wetland basal area represented
by black ash. This equation is derived from previous work
showing a water level-dependent difference in sap flux between
black ash and current co-dominant species (Shannon et al.,
2018).

Weather sequences under alternative
climate scenarios

Future climate conditions were simulated by running
wetland models under projected future (2070–2099) scenarios.
For an unbiased comparison between current and future
conditions, current climate scenarios are represented by
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BOX 1 Pseudocode representation of daily water level model implementation using variable definitions from Table 2.
# Water levels are started at ‘full’ conditions
WL[1] = WLcon

for t in 2: DAYS {
# Calculate ESy as a function of initial daily water level
Esy = fESy(WL[t − 1])
# Calculate effective AET applying βAET and β−AETfor treatment periods
AET_eff = Esy

∗ PET[t] ∗ (βAET
∗ (1 − β−AET

∗ (time_period == “treatment”)))
# Calculate rainfall plus slowflow from previous day
Rain = rain[t] + 8R

∗ rain[t-1]
# Calculate effective rainfall
Rain_eff = Esy

∗ Rain ∗ βR

# Calculate effective snowmelt
melt_eff = Esy

∗ melt[t] ∗ βR

# Calculate new water level
WL[t] = WL[t-1] + Rain_eff + melt_eff – AET_eff
# Check if initial daily water level was above connectivity threshold
If (WL[t − 1] > WLcon) {

# Calculate streamflow
Q = βQ

∗ (WL[t − 1] −WLcon)
# Limit streamflow back to be less than WLcon

Q = min{Q, (WL[t] −WLcon)
# Subtract streamflow from water level
WL[t] = WL[t] − Q

}
}

TABLE 2 Parameter notation and description for wetland water level models.

Parameter Definition

t Daily time step

WL Wetland water level (relative to ground surface)

WLcon Threshold wetland water level for surface water connectivity (relative to ground surface), varies by treatment status

Q, βQ Streamflow and streamflow coefficient

R, M, βR Rainfall (R), snowmelt (M), and precipitation coefficient (applied to R and M)

PET, β AET , β−AET Potential evapotranspiration (PET), PET to AET coefficient, and AET post-treatment reduction coefficient

ESy Estimate of ecosystem specific yield

φR Autoregressive coefficient for rainfall

hindcasted GCM historical climate scenarios (1980–2009)
rather than observed conditions during the study period.
Daily climate was projected for each combination of scenario
(more sensitive GCM under higher forcing and less-sensitive
GCM under lower forcing) and period (1980–2009, 2070–
2099). Performance of GCMs in the North American Great
Lake region varies mostly due to the unaccounted regional
climate impact of the Great Lakes (Notaro et al., 2015;
Rood and Briley, 2018). GCM model selection was guided by
performance and sensitivity of the models to climate change
in the Great Lakes region (Byun and Hamlet, 2018). Based on
the results of Byun and Hamlet (2018), we chose to use the
General Fluid Dynamics Lab Coupled Model (GFDL-CM3) and
National Center for Atmospheric Research Community Earth
System Model (CCSM4) GCMs downscaled by the localized
constructed analogs method (LOCA) (Gent et al., 2011; Griffies
et al., 2011; Pierce et al., 2014). LOCA downscaled data were

retrieved from the downscaled CMIP3 and CMIP5 Climate
and Hydrology Projections archive.1 Both GFDL-CM3 and
CCSM4 were shown to perform well for the Great Lakes
region, and CCSM4 and GFDL-CM3 represent models that
show less and more sensitive responses to a given RCP
forcing, respectively [Figure 5 in Byun and Hamlet (2018)].
The two future climate scenarios used for simulations were
the CCSM4 under RCP 4.5 and GFDL-CM3 under RCP 8.5.
We refer to CCSM4 under RCP 4.5 as the warm & dry
scenario with mean summer temperatures projected to increase
1.9◦C and mean summer precipitation is projected to decrease
by 2.6 cm relative to CCSM4 hindcasts of the 1980–2009
period. We refer to GFDL-CM3 under RCP 8.5 as the hot
& wet scenario with mean summer temperatures projected to

1 http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/
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increase 8.9◦C and mean summer precipitation is projected
to increase by 6.2 cm relative to GFDL-CM3 hindcasts of
the 1980–2009 period. Inspection of LOCA daily simulations
of GFDL-CM3 and CCSM4 for the 1980–2009 period show
excellent alignment with regionally observed conditions during
the same period (Supplementary Figure 2). There appears to
be fewer dry days in the LOCA dataset relative to the observed
dataset. Monthly and seasonal precipitation totals showed good
agreement between the LOCA and observed datasets and no
bias-correction was performed.

The objective of simulating wetland conditions under
climate scenarios is to understand the expected response and
the range of possible responses. The 30-year periods of daily
projections under LOCA downscaling provide a representation
of the normal climate variation under each scenario (Baddour
and Kontongomde, 2007). Quantifying the range of weather
patterns under each climate scenario and the corresponding
wetland response is best performed with many more years of
simulation using stochastic processes (Wilks, 2012). While the
LOCA downscaled-GCM data represents a model of physical
processes, stochastic weather generators (SWGs) are statistical
models used to generate additional weather series that are
drawn from the distributions of the original modeled data. We
followed the generalized linear model (GLM) based SWG with
seasonal conditioning described in Verdin et al. (2015), which
is a type of the more general Richardson SWG (Richardson,
1981). Details of SWG implementation can be found in
the Supplementary Material Section “Stochastic weather
generator–Methods.” Synthetic weather series of minimum and
maximum temperatures, and precipitation were generated for
all simulation data, and were used to calculate PET, snowfall,
and snowmelt. The combination of SWG predicted synthetic
series, and calculated values were used as inputs to the wetland
hydrology models.

The LOCA-downscaled projected daily data from the
coordinates of the Bergland Dam meteorological station were
used to fit SWGs for each climate scenario. Each SWG was
used to simulate 10,000 individual annual synthetic weather
series with seasonal conditioning drawn randomly from the
30 years of projection data. Conditioning the models on
individual years of observed data is intended to increase
interannual variability, which can otherwise be limited in SWGs
(Wilks and Wilby, 1999).

Data analysis

Results of this research consists solely of simulation data to
draw conclusions from modeled wetland water levels driven by
synthetic weather series generated from parametric descriptions
of LOCA downscaled GCM projections. To avoid a false sense
of dichotomy about the future climate and wetland conditions,
we report our results by contrasting the probability of observing

certain wetland conditions under different vegetation types and
climate scenarios and account for the uncertainty inherent from
these simulations by including the entire the distribution of
simulation results (McElreath, 2020). This means that tests
for statistical significance are not presented for most analysis
results, but rather effect sizes are compared. As an exception, the
performance of water level models is evaluated using a mixed-
effects linear model to demonstrate no statistical difference
between observed and modeled water levels. All simulation
and analysis were carried out using the R statistical computing
language (R Core Team, 2019).

Future hydrologic conditions
Observed water levels from 2012 to 2020 within these

wetlands show high interannual variation under field control
and treatment conditions. Rather than considering this low-
signal, high-variance variable, we expand the concept of
WLcon and define three critical ecohydrological thresholds
(CEHTs) to a measure the impact of vegetation and climate
changes. CEHTs were set to capture wetland connectivity to the
downstream hydrologic network via streamflow and subsurface
flow, inundation when wetland water levels were at or near
the soil surface with surface water likely in microtopographic
hollows, and drawdown when wetland water levels dropped far
below the surface of the wetland (Table 3). Wetland water table
levels were compared to these thresholds and the number of days
that a wetland was above or below a given threshold could be
used to calculate the probability of occurrence of that CEHT.
We chose to calculate and compare these probabilities at the
monthly scale, though they could be computed for other time
scales from daily to annually.

Wetland model performance
Wetland water level model performance was evaluated using

the retained independent testing datasets (all years 2012–2020
not included as training years in Table 1). Model performance
was assessed using observed meteorologic conditions, in
contrast to simulation results, which relied on hindcast climate
conditions. We calculated R2 as a metric for the relationship
between observed and modeled values. R2 cannot be used to
evaluate the accuracy of the models because consistent over-
or under-predictions can still result in high R2 values (Krause
et al., 2005). The median error of daily modeled water level
was used to measure model bias and the root median squared
error (RMedSE) of the daily modeled water level to assess
overall predictive accuracy. RMedSE was used in place of
RMSE because we expect some outlier errors where regionally-
informed local rainfall records do not match actual rainfall
within study wetlands. Relative RMedSE was calculated as the
RMedSE relative to the observed annual range in daily wetland
water levels to provide additional context on the scale of the
errors. In addition to the overall accuracy of the models, we
want to accurately capture the probability of occurrence of the
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TABLE 3 Water level thresholds and definition of three conditions considered as critical ecohydrological thresholds.

Name Water level threshold Definition and significance

Connectivity Water level above threshold water
level minus 5 cm

Wetlands directly connected to the larger surface water network (McLaughlin and
Cohen, 2014)

Inundation Water level above wetland surface
minus 10 cm

Surface flooding or soil saturation impacting plant community and nutrient cycling
dynamics (Davis et al., 2017; Looney et al., 2017; Kane et al., 2019)

Drawdown Water level more than 50 cm
below wetland surface

Dry surface and non-saturated soils impacting plant community and nutrient cycling
dynamics (Davis et al., 2017; Looney et al., 2017; Kane et al., 2019)

The occurrence of these thresholds was used to compare the impacts of EAB and climate change on the future of black ash wetland hydrology.

CEHTs. We tested the predicted probabilities of inundation,
connectivity, and drawdown to the observed probabilities of
the same conditions using a linear mixed effects model with
dependent variable as the probability of occurrence, population
effects of observed/predicted and wetland status, and a group
effect for wetland (Lenth, 2021). Summary and statistical tests
were performed using estimated marginal means (Bates et al.,
2015). Directly proving the theoretical basis of the approach
used to calculate ESy is outside the scope of this study and
would be best performed with a purpose-designed experiment
or simulation. To assess the application of the approach, we
compare quantile regressions (τ = 0.5) between the daily water
level change and WAYTD (Equation 1) using adjusted (the
product of driver and ESy) and unadjusted (no ESy) drivers.

Partitioning impacts between sources
Comparisons of the combined and separate impacts of EAB

and climate change were performed against modeled baselines
rather than field-study observed conditions. Comparing to
modeled future simulated baselines with each alternative
vegetation condition ensures that comparisons are not biased
by the relationship between wetland meteorology and SWG
weather sequences, avoiding the potential of identifying model
artifacts as meaningful when comparing observed and modeled
results. The distribution of modeled wetland water levels was
evaluated for each future vegetation and climate scenario
combination. The 10,000 simulations for each combination
were summarized by simulated day of year to compute the
median and the 67% highest density credible intervals (HDCIs)
(McElreath, 2020) for each combination. HDCIs are potentially
asymmetric intervals that contain the stated proportion of
all observations. They differ from confidence intervals by
providing information about the most probable range for
results rather than identifying the range of values that would
be expected to contain the true mean. This approach was
used to quantify future conditions and baseline scenarios for
comparison and benchmarking. Modeled baselines provide
consistency between the baseline, or control, period and
alternative vegetation cover and climate scenarios, which is
critical for drawing meaningful conclusions. Apart from the
advantage of consistency, modeled baselines can also provide
a flexible tool to answer more questions about the drivers of

the observed changes. Different baselines can be computed
from the simulations by combining the six vegetation-climate
combinations. To evaluate total impact of EAB and climate
change, future non-black ash conditions were compared to black
ash under the current climate. Alternative baseline comparisons
included comparing each vegetation cover to itself under
alternative climate scenarios, and comparing vegetation covers
to each other within a climate scenario. These two alternative
baselines allowed us to determine how much of the observed
total impact was attributable to either climate projects or EAB
using the same set of 10,000 simulations.

Results

Ecosystem specific yield

The results of a quantile regression of pooled data (used
only to validate ESy development but not used elsewhere in this
study) explain daily change in wetland water level as a function
of PET, P, and M (Equation 1 and Figure 2). We found that
pseudo-R2 of the model improved from 0.63 to 0.74 when the
product of the inputs and modeled ecosystem specific yield
are used. The difference between pseudo-R2 is large enough
to be of note, but more importantly we can see that water
level drawdown is extremely underestimated by the unadjusted
model (Figures 2A,B). Our results show that periods with the
highest drawdown are not correctly modeled using the raw
inputs. Prediction is improved during these periods of high
drawdown when the ESy adjusted hydrologic inputs are used.
Periods of high drawdown generally occurred mid-season when
water levels were farther below the surface, corresponding to
higher expected ESy estimates.

Wetland water level model
performance

Wetland water level models performed well for most
wetlands with median errors between 0 and −10 cm, R2 of
0.75–0.90, and RMedSE values of less than 7.5 cm (Figure 3B).
Predicted water levels at two wetlands, 119 and 156, had
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FIGURE 2

Predictions of daily change in water level using a quantile regression with observed daily water level as the dependent variable and potential
evapotranspiration (PET), rainfall, and snowmelt as the independent variables. The model was fit two times, once with raw hydrologic inputs (A)
and once with inputs adjusted by ecosystem specific yield (B). The right panels show the full dataset while the left panels zoom in on an interval
[-5, 5] for both the observed and predicted water levels. The dashed line shows a 1:1 line and the solid line shows a quantile regression (τ = 0.5)
between predicted and observed water levels.

R2 below 0.6 for most of the withheld training years, which
was chosen as a threshold for unsatisfactory model results
based on work by Moriasi et al. (2015). Models at these
wetlands showed similar rates of bias or error relative to
the other wetlands. Both of these sites are closed basins
with no surface outlet and site 119 was shown to have
different source water characteristics from other sites, showing
much less connectivity to groundwater sources (Van Grinsven
et al., 2017). Site 053 had good correlation between predicted

and observed water levels, but variable performance on the
magnitude of predictions (Figures 3A,B). Mean and median
model performance was similar for both control and treatment
conditions for all model metrics (Supplementary Table 2).
Median errors less than zero show that the models had
an overall negative bias, which indicates drier simulated
wetland conditions than were observed (Figure 3A). The
median rRMedSE is moderate for both Control and Treated
condition models (∼15%), but notable outliers were present
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FIGURE 3

Wetland model performance metrics. Individual metrics were calculated for each site-year combination for all withheld test years (control and
treatment conditions) and are presented within sites. Evaluated metrics include median error (A), R2 (B), root median squared error (RMedSE, C),
and root median squared error relative to the annual range of daily wetland water level within that year (rRMedSE, D).

at wetlands 053 and 077 (Figure 3D and Supplementary
Table 2).

When compared to observed wetland water levels,
modeled wetland water levels showed no significant (α = 0.05)
difference in probability of occurrence of CEHTs (Figure 4 and
Supplementary Table 3). The range of site-level probability
of each level of interest was similar between modeled and
observed data (Figure 4). Though not significant, these results
show a slight systematic bias toward drier conditions in the
modeled wetland water levels. This bias was consistent for
both the control and treatment conditions. All remaining
comparisons of current conditions to combinations of
future vegetation conditions and climate scenarios use
modeled current conditions and not observed current
conditions. This comparison ensures that the described
model bias does not impact results, but it does create
a disconnect between observed conditions and expected
changes.

Future hydrologic conditions

Synthetic weather generators were shown to be
representative of the LOCA downscaled data (Supplementary

Material Section “Stochastic weather generators–Results”).
Changes in wetland water levels under future climate conditions
were highly variable across both scenarios and both vegetation
types (Figure 5). The reported probability is the proportion of
observations where daily water level surpasses each threshold
out of all modeled daily water levels in a month (∼240,000).
The median probability and a range representing 67% of all
observations (highest density continuous intervals, HDCI) are
shown as point and line estimates for the warm & dry and hot
& wet future climate scenarios. Modeled black ash conditions
are also reported as the median and 67% HDCI, represented as
a crossbar and shaded area.

For non-forested conditions, the results of both climate
scenarios primarily showed a decrease in probability of
connectivity relative to current wetland conditions, except for
the hot & wet scenario in June, July and August, which showed
an increased probability of connectivity (Figure 5A). In July,
August, September, and October, the warm & dry climate
scenario consistently showed wetlands as drier than current
conditions: lower median probabilities of connectivity and
inundation, higher probability of drawdown, and little-to-no
overlap with the HDCI of current conditions (Figures 5A,C,E).
The hot & wet climate scenario showed slightly wetter
wetlands in July and August, connectivity (+), inundation
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FIGURE 4

Tests comparing predicted probability of occurrence for critical ecohydrological thresholds (CEHT). Reported values show the seasonal
probability of daily water level exceeding the respective CEHT. Control and treated conditions refer to observed control and treated conditions
or predicted modeled black ash and modeled non-forested conditions. Black point and error bar represent estimated marginal mean and its
95% confidence interval. Individual points represent data observed or simulated for 1 year at one site. All data presented were derived only from
the withheld test period for each wetland.

(+), drawdown (−) than current conditions, though there
is considerable overlap between future and current climate
scenarios. Alternate-forested conditions were consistently
wetter than current conditions under both climate scenarios,
with a significant increase in connectivity and inundation
and decrease in drawdown, particularly during July-September
period (Figures 5B,D,F). Changes to wetland hydrology were
consistently wetter under the alternate-forested conditions
and both climate scenarios, while the non-forested conditions
showed variable results between the two climate scenarios.
Currently these wetlands have a hydroperiod with high water
levels in May at the start of the growing season, a drawdown
period of variable strength, and then a rapid rebound in water
levels at the end of the growing season mid-September to
October. Increased June-August connectivity and inundation in
the alternate-forested conditions under both climate scenarios
and the non-forested conditions under the hot & wet scenario
show dampening of that hydroperiod trend. On the other hand,
non-forested conditions under the warm & dry scenario showed
an amplification of the current hydroperiod, with drawdown
increasing and connectivity/inundation decreasing through the
growing season and not rebounding until October or later
(Figures 5A,C,E).

Within a given vegetation condition, inundation results
in Figures 5C,D closely resemble the patterns observed in
the connectivity results in Figures 5A,B. This is in line
with fit model parameters that showed maximum sustained
water levels were above the surface for almost every wetland
and treatment combination (Supplementary Table 1). For
connectivity/inundation, the non-forested conditions under the
hot & wet climate scenario showed more overlap with current
conditions than the warm & dry scenario (Figures 5A,C). This
is in contrast to the alternate-forested conditions, where the

hot & wet scenario showed a larger increase in probability of
connectivity/inundation (Figures 5B,D). Under both climate
scenarios the alternate-forest conditions showed a lower
probability of drawdown than under baseline conditions,
with almost no overlap with current conditions from July
through October (Figure 5F). Drawdown events were very
unlikely with near zero probability of occurring under alternate-
forested conditions under both climate scenarios. Probability
of drawdown in non-forested conditions increased in both
magnitude and variability in August and September under
the warm & dry future climate scenario, and increased in
variability in the same period under the hot & wet future
climate scenario. Differences from current conditions were
greatest in August under the warm & dry climate scenario
(Figures 5E,F).

Partitioning driver impact

To isolate the impact of climate change, we compared
the simulations under the current climate to simulations
under future climate scenarios for each vegetation class
(black ash forested, alternate-forested, and non-forested)
condition (Figure 6). To isolate the impact of changes
to vegetative cover driven by EAB, we compared the
simulations of the black ash forested class to simulations
of alternative vegetation conditions, including the alternate-
forested and non-forested condition classes, for each climate
scenario (Figure 7). Climate impacts were similar for
black ash and non-forested conditions under both future
climate scenarios, with decreasing connectivity/inundation
and increasing drawdown (Figure 6). Alternate-forested
conditions show much less change under both future
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FIGURE 5

Change in probability of water levels above (connectivity, inundation) or below (drawdown) ecohydrologically significant thresholds (CEHT)
under future vegetation (non-forested or alternate-forested) and climate scenarios relative to baseline of black ash under a current climate
where each combination of CEHT and future vegetation condition is identified in panels (A–F). Probability of occurrence is the proportion of
days in each month that simulated water levels reached and exceeded each threshold. Values are reported as the median (point/bar) and the
bounds of a 67% highest density continuous interval (HDCI, an interval, potentially asymmetric, that contains 67% of simulated values). For some
combinations of vegetation conditions and climate scenarios the HDCI may be indistinguishable from the point estimate because of the small
range covered by the HDCI. Blue and orange colors represent warm & dry and hot & wet future climate scenarios, respectively. Gray shaded
area represents 67% HDCI of model simulations for control black ash conditions under the current climate (baseline condition) and the black
crossbar represents the baseline monthly median probability (centered to zero).

climate scenarios compared to simulations under the
current climate (Figure 6). We also found that under
current climate scenarios, non-forested conditions were
closer to baseline black ash conditions under the same climate
scenario than alternate-forested conditions (Figure 7).
However, under future climate scenarios both non-
forested and alternate-forested conditions showed little
agreement with black ash wetland conditions and were
consistently more likely to have connected and/or inundated

conditions and less likely to see drawdown below 50 cm
(Figure 7).

The direction of impact due to EAB-induced vegetation
change is the opposite of both climate scenarios for both
vegetation conditions (Figure 8). The impact attributable to
vegetation change to non-forested conditions is of similar
magnitude as the impact attributed to climate changes, but the
alternate-forest scenario has a larger magnitude impact than the
climate impact under either future climate scenario (Figure 8).
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FIGURE 6

Change in probability of occurrence for critical ecohydrological wetland water levels (connectivity, inundation, drawdown) under combinations
of vegetative cover (black ash, alternate-forested, non-forested) and climate conditions (warm & dry, hot & wet) relative to the respective
vegetative cover under current climate baseline. Each column compares simulated wetland response within a fixed vegetation condition across
multiple climate scenarios. Values are reported as the median (point/bar) and the bounds of a 67% highest density continuous interval (HDCI, an
interval, potentially asymmetric, that contains 67% of simulated values). For some combinations of vegetation conditions and climate scenarios
the HDCI may be indistinguishable from the point estimate. Blue and orange colors represent warm & dry and hot & wet future climate
scenarios, respectively. Gray shaded area represents HDCI of modeled baseline.

FIGURE 7

Change in probability of occurrence for critical ecohydrological wetland water levels (connectivity, inundation, drawdown) under combinations
of vegetative cover (black ash, alternate-forested, non-forested) and climate conditions relative to the respective climate scenario (warm & dry,
hot & wet) under black ash cover. Each column compares simulated wetland response within a fixed climate scenario across multiple potential
vegetative covers. Differences within a column represent the impact of EAB and potential management decisions. Values are reported as the
median (point/bar) and the bounds of a 67% highest density continuous interval (HDCI, an interval, potentially asymmetric, that contains 67% of
simulated values). For some combinations of vegetation conditions and climate scenarios the HDCI may be indistinguishable from the point
estimate. Green and yellow colors represent alternate-forested and non-forested vegetation conditions, respectively. Gray shaded area
represents HDCI of modeled baseline.

Frontiers in Forests and Global Change 14 frontiersin.org

https://doi.org/10.3389/ffgc.2022.957526
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-957526 August 12, 2022 Time: 18:43 # 15

Shannon et al. 10.3389/ffgc.2022.957526

The entirety of the decrease in the probability of drawdown
under alternate-forested conditions is attributed to vegetation
change (Figure 8).

Discussion

Ecosystem specific yield

The approach used to calculate ESy, relating the magnitude
of water level change to the drivers of that change, was adapted
from and provides an alternative to approaches used to calculate
ESy presented in previous research (McLaughlin and Cohen,
2014; Watras et al., 2017). The results of our comparison
agree with others (McLaughlin and Cohen, 2014; Watras et al.,
2017) who found that the impact of ESy increases as water
levels decreased and that flooded conditions approach an ESy
of 1 (Supplementary Figure 1). This relationship results in
the largest adjustment to inputs during mid-season periods,
explaining the differences observed between Figures 2A,B.
Shannon et al. (2022) demonstrated that ET estimates derived
using this approach perform comparably to other methods for
calculating ESy (Soylu et al., 2012; McLaughlin and Cohen,
2014; Watras et al., 2017). Those results showed that calculated
ET was correlated with daily PET estimates from nearby
meteorological stations. Our results here together with those
in Shannon et al. (2022), showing general agreement with
the rainfall/rise method, provide empirical evidence that this
alternative formulation captures the variation of ESy with
wetlands. Thus, this alternative method can be used in scenarios
where the rainfall-runoff ratio approach is masked by outside
influences such as low-frequency hydrologic signals (Zhu et al.,
2011) and surface water connectivity (Watras et al., 2017).

Wetland models

Wetland water level model performance provided reliable
results to observe changes in the hydrographs of black ash
wetlands and compare the probability of occurrence for CEHTs.
The models showed good correlation between observed and
modeled water levels (Figure 3A and Supplementary Table 2).
The two wetlands with the lowest performance had the
least responsive wetland water levels, remaining consistently
inundated, suggesting that from both absolute and relative
standpoint, the wetland models as developed captured wetland
water levels more accurately for wetlands with greater variation
in annual wetland water levels. Wetland model performance
decreased sharply when wetland water levels were above WLcon,
which is expected based on the lack of stream-gage results. We
believe this issue has no impact on our results as analysis did
not require daily water depth accuracy, but instead focused
on the probability of exceeding WLcon as one of the CEHTs.

Improving this component of the model would have required a
combination of streamflow measurements during surface water
connectivity or an approach analogous to separation of baseflow
and quickflow in streams. Some wetlands (e.g., 053) showed
high variability in performance during the test period (Figure 3).
We believe much of this variability can be attributed to the use
of off-site meteorological data during model evaluation. Storm
systems, especially convective rain events in the growing season,
can be highly variable over short distances (Osborn et al., 1979),
such that off-site meteorological data may miss (or include)
storms that are important to restoring wetland water levels in
the summer. Additionally, wetland 053 was uniquely positioned
on the landscape (along a ridge top) and therefore may have had
different groundwater connectivity and flow dynamics than the
other wetlands in this study.

Importantly for our conclusions, the wetland models
performed well in predicting the probability of occurrence of
CEHT levels. The probability of occurrence of connectivity,
inundation, and drawdown was found not to be different
between the observed and modeled data in the test periods
(Figure 4 and Supplementary Table 3). Also, there is no
significant systematic model bias (positive or negative)
in the probabilities. Although no significant systematic
model bias was identified for CEHT analysis, Figure 4
does indicate a bias toward drier simulations when daily
water level measurements are compared. Therefore, the use
of a modeled control baseline is an important safeguard
against drawing conclusions from potential model artifacts.
Comparing the systematically-biased results could exaggerate
or mask the real expectation of wetter or drier wetland
conditions.

Future hydrologic conditions and
drivers

These simulation results aim to help relate potential future
conditions to current conditions in dry, wet, or “normal” years.
This work allows researchers and managers to answer questions
such as: What will these sites look like in a “normal” year in
the future? How will these sites respond to wet/dry conditions
in the future? For example, we could expect that during a
“normal” (median) year under the hot & wet future climate
scenario a non-forested wetland on these sites would have a
similar probability of surface inundation as a black ash wetland
does today in a wet year (higher end of HDCI) (Figure 5C).
In general, black ash wetlands that remain forested under
potentially less inundation-adapted species can be expected to
have wetter conditions relative to today under each of our
simulated climate conditions. Each combination of climate
and vegetation scenario can be used to influence management
approaches and timing in responding to EAB in black ash
wetlands.
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FIGURE 8

Expected change in probability of occurrence for critical ecohydrological water levels that can be attributed to future climate scenarios or
vegetation change due to emerald ash borer (EAB) impact and management response. Vegetation impact values represent the difference
between simulated black ash forests and each alternative vegetative condition under current climate conditions. Climate impacts represent the
difference between each alternative vegetative condition under the current climate and future climate (warm & dry or hot & wet) scenarios.
Differences are calculated using the daily values from July through September, highlighting growing season impacts. Values are reported as the
median (point) and the bounds of a 67% highest density continuous interval (HDCI, an interval, potentially asymmetric, that contains 67% of
simulated values). For some combination of vegetation conditions and climate scenarios the HDCI may be indistinguishable from the point
estimate.

The combined impact of EAB and climate is shown as
the difference between future climate conditions and black ash
conditions under historical climate (Figure 5). We were able
to draw additional information about the individual effects of
future climate and vegetative cover on wetlands by altering how
we calculated the baseline. We found that EAB impacts lead
to slightly wetter conditions under non-forested conditions and
the present climate (Figure 7). This result agrees with observed

water level response analysis in Van Grinsven et al. (2017),
where absolute water level response to simulated post-EAB
conditions resulted in wetter conditions and significantly lower
growing season drawdown rates. A modeled alternate forest
composition (alternate-forested) shows that EAB impact alone
would lead to dramatically wetter conditions following invasion
and death of black ash (Figure 7). This result is expected as
we modeled our alternate-forested conditions based on previous
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work showing that co-dominant hardwoods had significantly
lower seasonal transpiration estimates than black ash (Shannon
et al., 2018). Under non-forested conditions, we found that
the isolated impact of future climate scenarios would lead to
much drier sites (Figure 6). Connected/inundated conditions
would be less prevalent under non-forested conditions than
the alternate-forested conditions. The probability of surface
water connectivity or inundation occurring are dramatically
decreased under both climate scenarios and the probability of
wetland water levels dropping below 50 cm increases under non-
forested conditions (discussed below in Reduced Evaporation
and Non-Canopy Transpiration). Alternate-forested conditions
show no change in the probability of drawdown relative to
current conditions, and only slight decreases in connectivity
and inundation under the warm & dry scenario (Figure 6),
indicating the vegetation change to alternate-forested swamps
the impact of future climate scenarios (Figure 8). The
probability of each CEHT is not symmetrical around the
median, indicating that for each comparison it is important to
note if the conditions are likely to be wetter or drier than looking
at the median alone would suggest (Figures 5–7).

Our hypothesis that EAB and climate change would
counteract each other is supported by our results showing total
impacts on non-forested conditions are often within the HDCI
of current conditions (Figure 5). The dynamics of wetland water
levels are complex and climate change and invasive species
can each have major consequences (Burkett and Kusler, 2000;
Moomaw et al., 2018). In summarizing our findings, we expect
that wetlands that transition from black ash forests to non-
forested sites become wetter, but the effects of increased summer
evaporative demand will balance the wetter conditions over
time (Figure 5 and Supplementary Figure 4). Our synthetic
weather series indicated less summer precipitation under the
warm & dry scenario, while under the hot & wet scenario we
observed an increase in large storms (Supplementary Figure 4).
If management or natural regeneration leads to establishment of
future forests with lower site transpiration rates, the probability
of high-water conditions in these wetlands can be expected to
remain stable or increase in frequency, while dry conditions
(water levels more than 50 cm below the surface) become
rarer (Figures 5–7). Under both vegetation conditions, the
warm & dry climate scenario resulted in a lower probability
of connectivity relative to the hot & wet climate scenario
(Figure 5), suggesting that in these systems the decrease in
precipitation under the warm & dry scenario has a stronger
influence than the increased evaporative demand of the hot
& wet scenario. Our results also suggest that the impact of
climate change alone in this region will lead to consistently drier
conditions in most types of wetlands (Figure 7).

Future climate
The future climate scenarios used in this study represent

future conditions under a less (warm & dry) or more (hot &

wet) sensitive future climate conditions (Swanston et al., 2016).
The warm & dry scenario summer is projected to be slightly
drier than observed conditions, with similar PET (Table 4).
When summer water deficit is calculated as P-PET, we see
that, within a given year, conditions will show a decrease in
water availability. The hot & wet scenario is a much wetter
projection than both the observed climate and future warm &
dry climate (Table 4). There is little to no overlap in the 67%
HDCIs for summer precipitation between the hot & wet and
other scenarios. However, a commensurate increase in summer
evaporative demand may lead to only slightly wetter summer
conditions under the hot & wet scenario. Spring and early
summer water levels are currently strongly influenced by the
snowfall and melt regimes (Van Grinsven et al., 2017). The
Great Lakes region, including our study area, is expected to see
less precipitation as snowfall and earlier snowmelt (Byun and
Hamlet, 2018). This shift will result in spring melt becoming
disconnected from the start of the growing season. Annual water
deficits within these wetlands will be larger than the growing-
season only water deficits in Table 4.

Each of our 10,000 simulations were run as individual years
which results in no simulated long-term droughts and wet spells.
We deliberately chose to use single-year simulations because
of the length of available training data. During our study, the
region was in the process of transitioning from a relatively dry
period to a relatively wetter period (Supplementary Figure 5).
Our training data are primarily drawn from the drier portion
of the study period. Without longer-periods of training data
we did not capture both the intra- and inter-annual dynamics
of wetland hydrology. If we assumed all 10,000 years of
synthetic weather series were contiguous weather records, the
longest period of drought years (annual precipitation less than
annual PET) was 7 and 9 years for the warm & dry and
hot & wet climate scenarios, respectively. By using single-year
simulations we are implicitly assuming that fall and winter
(SON and DJF) precipitation is high enough to recharge the
local hydrology driving these wetlands, restarting the cycle at
or near maximum wetland water levels. When we consider
only fall and winter precipitation, we found 0, 8.7, and
10.1% of synthetic weather series had totals below the tenth
percentile of observed data, warm & dry, and hot & wet climate
scenarios, respectively. Synthetic (and LOCA) winters were
wetter than observed winters, supporting the assumption that
dormant-season precipitation would be enough to recharge
wetland water levels.

Interaction of actual evapotranspiration and
ecosystem specific yield

It is expected that vegetation conditions with lower
transpiration rates have lower rates of water level drawdown and
therefore increased water levels. In these wetlands this effect is
compounded by the dynamics of ESy. ESy increases in magnitude
as water levels decline (Supplementary Figure 1B), which is
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TABLE 4 Summer June/July/August precipitation, potential evapotranspiration, and water deficit (P–PET) for the climate scenarios in this study.
Reported values are the median and bounds of the 67% highest density continuous interval of seasonal total precipitation by observed or
projection year.

Climate Precipitation (cm) Potential evapotranspiration (cm) Water deficit (cm)

Observed climate 29.93 (22.20, 32.75) 41.24 (38.20, 43.13) −11.12 (−19.88,−6.95)

Warm & dry future scenario 26.26 (21.86, 30.73) 40.14 (37.93, 42.07) −13.23 (−21.38,−10.99)

Hot & wet future scenario 36.09 (29.82, 40.46) 46.60 (42.56, 48.23) −10.85 (−18.18,−2.78)

Future climate data were taken from LOCA downscaled daily values, and observed climate was taken from observed conditions at Bergland Dam, MI, United States from 1980 to 2009.

the result of reduced soil pore space and wetland geometry
where a smaller volume of change results in a large water level
difference as effective wetland area decreases with wetland water
level (McLaughlin and Cohen, 2014). The effect is that the same
AET results in smaller changes to wetland water levels under
wet conditions than dry conditions. In this way the impact of
EAB may result in a feedback loop in which water levels remain
elevated:

1. Actual evapotranspiration begins to draw down water
levels, ESy is low,

2. Water levels decline slowly because of reduced AET and
low ESy,

3. At the peak of the growing season, ESy is lower than under
black ash, resulting in smaller water level changes per unit
AET, and AET is reduced relative to PET because of the
high water levels,

4. Mid-season drawdown is reduced by sustained low ESy and
suppressed AET,

5. ESy remains low.

Under the current black ash conditions, ESy increases
more rapidly due to higher black ash AET. The increase in
ESy accelerates the impact of higher AET, creating faster and
larger declines in wetland water level throughout the growing
season (Figure 9). This feedback loop may partially explain
the persistence of hydrologic impact following EAB disturbance
observed in Michigan and Minnesota (Diamond et al., 2018;
Kolka et al., 2018). In effect, the impact of EAB may shock these
systems into an alternative stable state of elevated water levels
(Scheffer and Carpenter, 2003). Our results indicate that future
climate scenarios will likely have a large enough impact to again
shock these systems out of a stable state. However, we cannot say
from these simulations whether the wetlands will reach a new
stable state under future climate conditions or what that state
would be.

Reduced evaporation and non-canopy
transpiration

We observed wetter conditions under our alternate-forest
simulations relative to both black ash and non-forested
simulations under all climate scenarios (Figures 5, 7). Two
factors are likely contributing to this result. The first is
that our alternate-forest composition is known to have lower

transpiration rates than the existing black ash canopy (Shannon
et al., 2018). As a model choice, we opted to assume that
the next most dominant canopy species would be the likely
replacement canopy species. The alternate-forest we modeled is
a narrow range of potential future forest compositions. Natural
regeneration or planting efforts may lead to alternate-forested
species composition that more closely matches the evaporative
potential of the current black ash canopy. The non-forested
conditions used to fit the wetland models consisted of species
that shifted in composition toward facultative and obligative
wet species (Davis et al., 2017). Secondly, the alternate-forested
conditions may have a lower total AET than the non-forested
conditions. In black ash wetlands in Minnesota, simulated
post-EAB conditions (girdled and standing ash) were found to
have higher water levels than sites where the ash stems were
harvested and removed (Diamond et al., 2018). The authors
attributed the result to reduced solar energy and wind-driven
boundary layer mixing due to the still standing stems leading
to limited AET. Our conditions have a notable difference from
that study in that we are assuming there are living trees on
site. However, a closed canopy would have the same effect of
reducing open water evaporation and understory transpiration.
With sufficiently reduced canopy transpiration the effect of
certain forest compositions could result in reduced overall AET.

The contrast between the non-forested and alternate-
forested simulated hydrology suggests an important
management tool. Iverson et al. (2016) and the work from
Looney et al. (2015) and Bolton et al. (2018) laid out a
framework and results for evaluating potential replacement
species considering site conditions of black ash wetlands. The
results presented here show the opportunity for management
decisions that consider the impact of future vegetation on
site hydrologic conditions. The general trend of drier future
conditions can be to some degree counteracted by management
for cover with lower evapotranspiration rates. Drier conditions
are not always preferable across the landscape and this tactic
could be used to retain water on the landscape, creating refugia
of standing water or cool moist soils for flora and fauna.
Although much of the region is expected to have drier summers,
our localized study area is expected to have wetter summers.
The impact of climate change in other areas of the region would
become even more pronounced because summer precipitation
is expected to remain constant or decrease, further increasing
the water deficit created by increased evaporative demand.
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FIGURE 9

Modeled and effective actual evapotranspiration under various climate scenarios and vegetation conditions. Modeled actual evapotranspiration
(AET) is the synthetic potential evapotranspiration (PET) multiplied by the model coefficient used in the relevant wetland model. Effective AET is
the modeled AET times the value of ecosystem specific yield (ESy) predicted from the contemporaneous water level, showing the magnitude of
water level change. The difference between the two values demonstrates the two-stage impact of reduced ET, where AET and ESy are reduced.
Effective AET is shown in green with 67% HDCI as a shaded ribbon around the median line. Modeled AET is in gray, but has low variability around
daily estimates masking the shaded gray areas.

Vegetation conditions would still amplify or counteract climate
impacts, and in some areas may become even more important
to providing wet or moist refugia on the landscape. Following
the EAB-induced loss of black ash, the vegetation conditions of
existing black ash-dominated wetlands, as detailed in Looney
et al. (2015) and Davis et al. (2017) will likely result in a
non-forested (herbaceous or scrub/shrub) or an alternate-
forested (comprised of co-dominant canopy species or planted
alternatives) wetland. Results presented here suggest that these
non-forested wetlands may in fact become even drier than what
would result from the influence of the projected drier climate
independently, and therefore the expected increased ET may
result in a net loss of existing wetland area over time. Whereas,
the alternate-forested wetlands are expected to have higher
water tables and have wetter site conditions, and these projected
wetter conditions may counteract the influence of a drying
climate and ultimately result in a lesser net loss of wetland area.

The response of each species and plant community will
show individual climate change responses that are not captured
in these models and may be non-linear (Short, 2016). Yuan
et al. (2019) show that Earth system models participating in the
CMIP5 project that vapor pressure deficit (VPD) will continue
to increase until 2100, and this projected increase in VPD
will likely have negative impacts on vegetation growth in the
future as evidenced by the comparison of VPD and normalized
differenced vegetation index (NDVI) trends between 1999 and
2015. While the Great Lakes region appears to match the global
scale projection of increasing VPD and decreasing NDVI (Yuan
et al., 2019), the vegetation response of wetland adapted forested
and non-forested species may not be as negatively affected

by increasing VPD as is expected in regional- to global-scale
upland areas if water levels in the wetlands remain elevated.
Based upon the modeled results presented here, the wetter and
higher water levels expected in the alternate-forested condition
in conjunction with the projected increasing VPD will likely
result in greater transpiration (Shannon et al., 2018) but may
not necessarily negatively influence forested vegetative growth
if a persistent supply of water is available to match the expected
increased stomatal conductance. Whereas the drier and lower
water tables expected in the non-forested conditions may –
similar to the expected regional-scale projections—negatively
affect vegetative growth due to limited water supply. Beyond the
potential for unforeseen vegetation responses to future climates
is the uncertainty of future climate conditions. The authors of
the fourth national climate assessment have highlighted that
early climate predictions have under-predicted contemporary
shifts in response to climate change (Wuebbles et al., 2017).
Unfortunately, this statement means that our models built on
those simulations may be underestimating the magnitude of
future changes and thus our results may be viewed as the lower
envelop of potential changes for the region.

Conclusion

Our research has shown that changes in evaporative demand
and precipitation regimes will likely result in drier conditions
on what are now black ash wetlands. In addition, the functional
loss of black ash due to emerald ash borer presents challenges
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and opportunities for the future of these wetlands. A large extent
of forested wetlands may require intervention to retain desired
benefits or features they currently provide. These interventions
can be used to drive sites toward wetter conditions, retaining
water on the landscape that may otherwise be lost under a
changing climate.

To implement long-term management objectives in forested
wetlands requires a deep understanding of the systems. We
have shown that changes in AET can interact with ecosystem
specific yield to create feedback loops that may push disturbed
black ash wetlands toward new hydrologic steady states.
This underscores that knowledge of species adaptation to
wet conditions and capacity to respond quickly to drying
conditions is critical for projected future site conditions. The
transition from black ash to alternative vegetative cover can
counteract or amplify the impacts of future conditions with
higher evaporative demand. The magnitude of the impact of
transition to less inundation-adapted species may be much
larger than that of climate change on these systems. Existing
results suggesting alternative species should be reevaluated in
light of the counteracting effect of climate change on EAB-
disturbed black ash wetland hydrology.
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