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British Columbia’s (BC) diverse forest ecosystems include highly productive
old growth with global importance for carbon storage and biodiversity.
Current estimates of the remaining amount of "big-treed” old growth vary
10-fold, creating uncertainty that challenges provincial attempts to shift
management policy toward ecological integrity. This uncertainty arises from
using different remotely sensed indicators and definitions of tree size. No ideal
indicator exists. We attempt to improve clarity by evaluating the reliability of
candidate indicators, calibrating selected indicators to improve consistency,
and generating multiple estimates of the amount of big-treed old growth
using calibrated indicators. To evaluate reliability, we compared inventory
estimates of tree size and site productivity with measured tree size in 1,945
ground plots. To assess the amount of big-treed old growth, we determined
an equivalent "big” size threshold for each indicator and calculated the area
of old growth above the size threshold. Stand volume, tree density, basal
area, and diameter estimates performed poorly; we selected tree height and
two measures of site productivity for further analysis. Estimated tree height
best indicated the current old growth size, followed by inventory-based
site index and finally ecosystem-based site index. The calibrated indicators
agreed that very little remaining old growth supports large trees (1.5-3.3%
for the biggest trees; 6-13% including medium-sized trees that represent
the largest growing trees in lower productivity interior ecosystems). Tree
height cannot be used to compare the remaining area of big-treed old
growth to the area expected naturally, an important input for ecological risk
assessment and conservation planning because height data are lost from
the inventory after harvest. The two calibrated site productivity indicators
agreed that the amount remaining is less than 30% of the expected historical
amount, posing a high risk to biodiversity and resilience. We recommend
using estimated height to identify the biggest remaining old-growth stands
for regional planning and calibrated inventory-based site index for risk
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assessment until a detailed ecosystem mapping has been verified to represent
old-growth variability. To reduce uncertainty, we suggest that planning groups
compare several indicators and analysis approaches, adjusted to ensure
equivalence, and use precaution to avoid any unknowingly increasing risks.

old growth, indicator, tree size, productivity, British Columbia, Bayesian analysis

1. Introduction

British Columbias (BC) diverse forested ecosystems include
highly productive old growth that supports massive trees
with global importance for carbon storage, resilience, and
biodiversity (Lutz et al,, 2012; Law et al,, 2018; Watson et al,,
2018; Buotte et al, 2020). Because there is no agreed-upon
definition of big-treed old growth, considerable uncertainty
exists about how much remains, with estimates for BC
varying from 3 to 30% of total old growth, suggesting
either very high or relatively low risk to biodiversity and
ecological functions (Brown, 2021; Price et al, 2021). This
uncertainty challenges new provincial government attempts
to shift old-growth policy toward ecological integrity (Gorley
and Merkel, 2020; BC Government, 2021a) and has fueled
public and professional divisiveness (Canadian Forest Industries
[COFI], 2021; CBC News, 2021; Gelowitz, 2021; Muir, 2021;
Osborne and Cecco, 2021). Existing indicators of tree size
and ecosystem productivity focus on the growth of young
trees and rely on remotely sensed data (Bourgeois et al,
2018); they have not been assessed for reliability in describing
tree size in old growth. We fill this gap by using existing
field data to evaluate how well remotely sampled indicators
represent current old-growth tree size. To reduce uncertainty
about how much big-treed old growth remains, we provide
multiple lines of evidence; we select several reliable indicators,
calibrate them to improve equivalence among indicators,
and use each of them to ask how much big-treed old
growth remains in BC. While our analyses focus on BC,
the challenges inherent in adapting indicators designed for
different purposes and opportunities to reduce uncertainty
apply universally.

1.1. Big-treed old growth

Old-growth ecosystems are primary forests that have
developed a complex structure over centuries (Spies and
Franklin, 1996; Franklin et al, 2002). Old-growth character
varies considerably with climate and natural disturbance regime:
Where wildfire is rare, forests can be much older than the
oldest trees, with a heterogeneous structure created by gap
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dynamics (Lertzman, 1992; Daniels and Gray, 2006), and where
wildfire is more frequent, tree age is more uniform, with
large trees remaining as legacies from previous disturbances
(Burton et al, 2008). Old growth characteristics also vary
with site features such as moisture and nutrient availability:
higher productivity sites generally support forests with bigger
trees, more dead wood, increased heterogeneity, and higher
biodiversity (Spetich et al,, 1999; Chase, 2010; Hdmaldinen
et al,, 2018). These forests often include large old trees that
form keystone ecological structures which are at risk globally
(Lindenmayer et al., 2012, 2014; Lutz et al.,, 2012; Wardell-
Johnson et al., 2018). Big-treed ecosystems have exceptionally
high value as biodiversity hubs, carbon banks, and climate
refugia (Holt and Hadfield, 2007; Ashcroft, 2010; Hauer et al,,
2016).

Intact old-growth forests are vanishing worldwide (FRA,
2020) with dire implications for biodiversity, carbon storage,
and ecosystem resilience (Foley et 2005;
et al, 2008; Bradley et al., 2016; Frey et al, 2016; Law
et al, 2018; Watson et al, 2018). Big-treed forests face
the highest risk because they are targeted by timber

al,, Luyssaert

harvesting and under-represented in conservation areas
that typically avoid areas of high land-use conflict (Venter
2014; Polak et al.,
Developing

et al, 2016; Benner and Lertzman,
2022).

old growth is critical to understanding the status of

appropriate indicators of big-treed
these ecologically important at-risk ecosystems as a basis
for improving management (Gorley and Merkel, 2020;

Price et al., 2021).

1.2. BC's old-growth forests

British Columbia has over 50 million hectares of publicly
managed forests. Due to a varied climate and complex
physiography, a long coastline, steep mountains, and plateaus,
these ecosystems vary tremendously. Coastal and inland
temperate rainforests, with their cool and moist climate,
support forests that have developed complex structures over
centuries and millennia, including massive western redcedars,
Sitka spruces, and western hemlock trees (Gavin et al., 2003;
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Coxson et al, 2020). Interior forests include rolling sub-
boreal conifer-deciduous mosaics in the north and open
grasslands dotted with widely spaced conifers in the south
(Biogeoclimatic Ecosystem Classification Program of British
Columbia, 2012). Over the entire province, valley bottoms
typically grow bigger trees quickly, while slopes support trees
that become more stunted with elevation (Biogeoclimatic
Ecosystem Classification Program of British Columbia, 2012;
Benner and Lertzman, 2022).

About one-fifth of BC’s forests (11 million hectares) are
classified as old growth using provincial age-based criteria
(BC Government, 2022a). Because harvesting targets high-
productivity, big-treed, forests, these remaining areas of old
growth are biased towards smaller-statured forests that grow at
high elevation, in low-productivity coastal bogs, and in remote
northern regions (Price et al, 2021; Benner and Lertzman,
2022). Although large areas of low-productivity old growth
remain, some of the most productive big-treed old-growth
ecosystems, including Coastal Douglas-fir and inland temperate
rainforest are on the verge of extirpation (DellaSala et al,
2021).

1.3. BC's forest policy

Forest policy in BC over the past 25 years has driven this
biased pattern in old-growth retention by ignoring tree size
and site productivity in retention targets (BC Government,
1999). Policy developed in the 1990s recommended stratifying
retention by fine-scaled ecosystem units that would represent
site productivity (BC Government, 1995; Fenger, 1996).
However, subsequent assessment of potential impacts on timber
supply led to an explicit rejection of this approach, allowing for
continued harvest of big-treed forests while meeting retention
targets in smaller statured stands with a lower economic value
(BC Government, 1999).

Public interest in big-treed old growth has recently
resurged as the area of these ecosystems has declined.
Demonstrations and over 1,000 arrests in Canadas biggest
act of civil disobedience have garnered the international
spotlight (e.g., Lavoie, 2021; Osborne and Cecco, 2021). At the
same time, collaborative First Nation, provincial government
planning efforts have been initiated to address concerns
about the cumulative effects of resource management on
indigenous values within First Nations’ territories, including
those associated with old growth, (BC Government, 2014,
2021b; Artelle et al, 2019; Yahey w.
2021).

In response to these emerging concerns, the BC government

British Columbia,

commissioned an independent old-growth review (Gorley and
Merkel, 2020). During extensive consultation, the panel heard
a consensus about the need for a paradigm shift in old-growth
management from timber to ecological integrity as a priority.
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The provincial government committed to implementing all of
the panel’s recommendations (BC Government, 2021a), some of
which required assessing indicators and using them to map at-
risk big-treed old growth.

1.4. Indicators of big-treed old growth

Indicators available in the BC forest inventory with the
potential to assess big-treed old growth include several metrics
of tree size (tree height, diameter, volume, basal area, and stem
density) and two estimates of stand productivity (“inventory-
based” site index and “ecosystem-based” site index). We
examine productivity indicators because, while tree size metrics
are direct, they cannot answer all questions. For example,
comparing the current area of big-treed old growth to the
area expected under historic disturbance regimes is used
to assess the risk to biodiversity and resilience and is an
important input into conservation planning (Lindenmayer
et al., 2006; Keane et al., 2009; Seidl et al, 2016). Such
analysis requires an indicator, like site productivity, that does
not change as stands grow. Estimates of tree size, though
potentially ideal for mapping the biggest remaining old
growth, cannot answer questions about the historic distribution
of big-treed old growth because the tree size data of old
growth are lost after harvest, resulting in a sliding baseline
(Pauly, 1995).

For most of BC, forest inventory data are derived
from remote imagery with limited field sampling (Bourgeois
et al, 2018). Although considerable work has examined
potential young forest growth rates for input into timber
supply projections (BC Government, 2010), very few studies
have considered how well inventory data represent the
current condition of old-growth forests (except Nussbaum,
1998), posing challenges for old growth management and
conservation. We attempt to fill this gap by using existing field
data to evaluate how well remotely sampled indicators of tree
size and site productivity represent current old growth tree size.
We then apply the most reliable indicators to the entire province
and ask how much big-treed old growth remains.

2. Materials and methods

We evaluated the reliability of existing indicators of big-
treed old growth by comparing inventory data to field samples.
Both datasets are publicly available: the provincial forest
inventory, based on remote imagery, covers over 50 million
hectares of BC’s forest (BC Government, 2020); and field
sampling is available for nearly 7,000 ground plots scattered
across the province (BC Government, 2020). We evaluated
direct indicators of tree size, as well as two indicators of site
productivity. We then used three indicators to ask how much
big-treed old growth remains in BC.
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2.1. Definitions

2.1.1. Old growth age

While functional definitions of old growth, based on
multiple stand attributes, are ecologically preferable (Spies and
Franklin, 1988; Marcot et al., 1991; Pojar et al., 1992), they are
complex and rarely used at large scales; instead, forest managers
generally define old growth by simple and somewhat arbitrary
forest age criteria (Hilbert and Wiensczyk, 2007). Functional
definitions are not available for BC. The provincial methodology
defines the seral stage by age criteria that vary based on estimates
of historical disturbance regime: in general, wetter ecosystems
are considered old above 250 years, and drier ecosystems above
140 years (BC Government, 1995). In BC, large-scale industrial
harvest started circa 1900; hence forests older than 140 years
can be classified as primary forests. In the evaluation phase, we
used 140 years as the minimum age threshold to expand the field
plot sample size for wetter ecosystems (BC Government, 2022b);
while not all were old growth, this sample represents mature and
old growth primary forests. In the assessment phase, we used
provincial thresholds for the old seral stage (140 or 250 years),
which we considered equivalent to old growth.

2.1.2. Forest type

At the broadest scale, BC’s ecosystems are classified by
biogeoclimatic zones that describe coastal and inland temperate
rainforests, dry forests of the southern interior, sub-boreal
and boreal forests of the central and northern interior, and
high-elevation mountain forests (Biogeoclimatic Ecosystem
Classification Program of British Columbia, 2012). Within each
zone, the predominant tree species vary with site conditions.
Because ecosystems and tree growth patterns vary by species,
we created “forest types” by dividing BC’s forests based
on the biogeoclimatic zone and predominant tree species.
Insufficient ground plots exist to stratify by tree species
within finer biogeographic units (e.g., by biogeoclimatic variant;
Biogeoclimatic Ecosystem Classification Program of British
Columbia, 2012).

2.1.3. Indicators

We evaluated several direct indicators of tree size including
tree height (defined as the height of healthy co-dominant trees
of the predominant species within a plot), tree diameter (defined
as quadratic mean diameter measured at 1.3 m above the
ground within a plot, a measurement biased toward larger
diameters), total above-ground tree volume/ha (based on height,
diameter, species composition, and stem taper curves, including
live and standing dead trees), basal area/ha (defined as tree
cross-sectional area multiplied by stems/ha), and tree density
(stems/ha, live and dead; BC Government, 2022c). We excluded
trees smaller than 12.5 cm in diameter from all measures to
remove the effects of young and/or suppressed trees.
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We evaluated two indicators of site productivity: inventory-
based site index (from Provincial Vegetation Resources
Inventory; BC Government, 2020) and ecosystem-based site
index (from the Provincial Site Productivity Layer; BC
Government, 2021c). Although both indices estimate tree height
in meters at age 50, they record different values for a given old
growth forest. Inventory-based site index begins with current
forest conditions interpreted from air photos and limited-field
validation. From the age and height of the predominant tree
species, it then applies growth curves to estimate height at
age 50 (Mah and Nigh, 2015). Ecosystem-based site index
attempts to reflect underlying ecosystem processes rather than
measuring current conditions (BC Government, 2021c). In the
portion of the province where site series (the finest division
within the biogeoclimatic classification system; Biogeoclimatic
Ecosystem Classification Program of British Columbia, 2012)
are mapped (based on field assessment or predicted from
landscape features), ecosystem-based site index is based on
estimates for the predominant tree species within a site series;
elsewhere, it uses a biophysical model (Nigh and de Jong, 2015).

2.2. Data processing

2.2.1. Ground plot data

Forest attributes have been measured based on provincial
government standards within 6,978 ground plots across BC to
support forest inventory and models of stand growth and change
(Supplementary Figure 1; BC Government, 2020). Ground
samples are managed by federal and provincial governments
in collaboration with industry; the provincial government
provided us with the most recent records for each, collected
between 1995 and 2020. We extracted data for forests with
measured age over 140 years and removed ecosystems classified
as alpine (N = 10) as well as harvested stands (age not
yet updated, but attributes updated; N = 65), leaving 1,945
ground plots of forest >140 years old. We retained naturally
disturbed stands, assuming that in these stands, necromass
replaced biomass. For analyses comparing productivity indices,
we removed over 400 additional plots with missing ecosystem-
based site index data and only used forest types with >10
samples, leaving 1,487 plots.

2.2.2. Inventory data

We extracted data from a recent publicly available forest
inventory for BC Government (2020). Because inventory is
not updated to address recent disturbances, we updated forest
age to account for newer harvesting, mountain pine beetles
(where percent dead >70%), and wildfire (in moderate and
high severity portions of recent fires; Han et al, 2021). We
excluded private and federally managed land; Tree Farm
Licenses without public data; non-forested ecosystems including
alpine, subalpine parkland, grassland, and shrub-dominated
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ecosystems; very low productivity forests (inventory-based site
index of <5 m at 50 years, as used by the province to define the
forested land base; BC Government, 2022¢); and areas lacking
forest age information. We extracted all records for forests
classified as older than 140 years.

We used SELES (Fall and Fall, 2001) to overlay and
summarize 1-ha raster grids of data layers and exported
resultant files for analysis.

2.3. Evaluating indicator reliability

We overlaid the inventory and ground plot datasets and,
at each old growth field plot location, compared inventory
values to ground measurements (i.e., inventory tree height
vs. measured tree height) within forest type. For productivity
indices, because definitions are based on 50-year stands and
hence cannot be measured in old growth, we examined the
relationship between each index and measured tree height.

We explored the data initially by correlating measured
and inventory attributes in forest types with more than 30
plots (N = 1,945 plots) using Pearson’s R-value to estimate
relationship strength. The smallest group included 43 plots,
meaning that any R-value of >0.3 was statistically significant at
a = 0.05. Given an interest in indicators with consistency over
the province, we looked for patterns across different forest types.

After eliminating attributes with poor correlations between
measured and estimated data, explored the remaining attributes
more formally in R (R Core Team, 2021), using a hierarchical
Bayesian model on all forest types with more than ten plots
(Gelman et al, 1995). As well as simplifying interpretation,
Bayesian analysis explicitly models the probability of each
parameter in the posterior distribution, allowing for richer
inference possibilities and more complex models (Hamaker and
Klugkist, 2011). Hierarchical models are a common Bayesian
approach for nested data, allowing for information pooling
and multiple scales of variability within one statistical model.
We modeled ground plot data as a linear function of the
inventory within two levels of hierarchy: biogeoclimatic zone
and leading species within a zone. We chose weakly informative
priors based on suggestions from Stan Development Team
(2019) and modeled biogeoclimatic zones and tree species level
parameters as normally distributed (detailed model specification
in Supplementary material).

We specified and fit the model using the STAN modeling
language (Gelman et al,, 2015), and we used the rStan package
(Stan Development Team, 2022) as an interface to R for
further analysis. Initial model runs showed divergent MCMC
iterations due to excess correlation between levels, so we used a
non-centered parameterization for the hierarchical parameters,
drawing them from a standard normal distribution initially and
then scaling them. This is a common reparameterization for
hierarchical models to address convergence issues in MCMC
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chains (Ogle and Barber, 2020). Posterior predictive checks
confirmed model quality (Supplementary Figure 2). We also
ran the frequentist equivalent mixed-effects model to validate
the results from the Bayesian analysis.

We used the same model setup to test inventory height
and diameter against measured values and to test site indices
against attributes. For comparing model fit, we used the
loo package (Vehtari et al, 2022) which uses Leave-One-
Out Cross Validation, to calculate the expected log pointwise
predictive densities (ELPD), a measure of how well the posterior
distribution models the data (Vehtari et al.,, 2017). We compared
ELPD estimates between models to determine model quality.
For most model parameters, we present 90% credible intervals,
symmetric around the median value.

Using a Bayesian framework allowed us to investigate
estimates separately for each level of the hierarchy and compare
full posterior distributions, including model fit. In frequentist
statistics, R?> measures data variation explained by the model.
Bayesian models do not have a direct R? value, thus, we
implemented a pseudo R? calculation (Gelman et al,, 2019).
This statistic can be interpreted similarly but is applicable to
the Bayesian paradigm. Furthermore, it provides a posterior
R? distribution instead of a single estimate, allowing for
easier testing and interpretation. We calculated the pseudo R?
distributions for each model. To test for significant differences
between two R? posteriors (e.g., x and y, which are quasi-
independent distributions), we calculated the probability of x
given y for each MCMC iteration and averaged over iterations.

N
Thatis: P (y > x) = % > P(y > xilx;), where N is the number
i=1

of iterations (after the burn-in period).

To assess the reliability of site productivity indices across
the entire province, we used the frequentist equivalent mixed-
effects model (R package “Ime4” with biogeoclimatic zone
and leading species as random effects) to compare the two
site indices with estimated tree height in the full inventory
database (N = 52,265,165 1-ha? total; 18,221,436 ha > 140 years
old). Database size and computation power precluded the use
of the hierarchical Bayesian model for inventory data. This
analysis should give similar median estimates, but it lacks other
information testing abilities available with the Bayesian analysis.

To model differences between inventory-based- and
ecosystem-based site indices, we used the multilevel equivalent
of a paired t-test, a mixed-effects model with the site as
the random effect.

2.4. Using selected indicators to assess
BC's big-treed old growth

We used each indicator selected in the evaluation phase

(tree height, inventory- based-, and ecosystem-based site index)
to investigate two questions critical to BC’s land-use planning
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across the entire provincial inventory database: (1) what
proportion of remaining old-growth forest supports big trees;
and (2) how does the remaining amount compare to the
expected historic amount. The first question addresses the
current status without considering the harvest of previous
big-treed old growth; the second attempts to reduce the
shifting baseline effect, enabling ecological risk assessment
based on the assumption that risk increases as ecosystems
move further from their natural state (Keane et al., 2009). We
examined forests defined as old growth (aged >250 years in
less frequently disturbed and >140 years in more frequently
disturbed ecosystems; BC Government, 1995). We used recently
updated disturbance return intervals to determine the expected
historic old forest area in each zone and productivity class
(BC Government, unpublished data). We explored several
approaches to investigate the uncertainty associated with using
indicators designed for different purposes.

2.4.1. How much of remaining old growth is
big-treed?

We used two approaches to address the current status. First,
we determined equivalent “big-tree” size thresholds for three
selected indicators (tree height, inventory-based site index, and
ecosystem-based site index) and estimated the amount of old
growth (>140 years old or >250 years old depending on the
ecosystem) above the threshold for each. To allow comparisons
with previously published estimates, we used an inventory-
based site index threshold of >20 m as the baseline (Price
et al, 2021). We estimated an equivalent height threshold
based on a linear model of inventory-based site index and
tree height. We estimated an equivalent ecosystem-based site
index threshold by comparing values estimated for the two site
indices in each ground plot and applying the difference for each
ecosystem, taken from the mixed effects model with the site as
the random effect.

Any choice of a threshold for a “big” tree is arbitrary and
varies by ecosystem (i.e., a relatively big tree will be smaller in a
less productive ecosystem). To address this challenge broadly,
we accounted for differences in productivity between coastal
and interior ecosystems by using a threshold of >20 m for
coastal ecosystems and >15 m for the less productive interior
ecosystems and used the estimated equivalent indices for each.

Our second approach focused solely on tree height. We
divided the province’s old growth into five equal height classes
(full height range defined as 1st-99th percentile within each
ecosystem to remove outliers; small, small-medium, medium,
medium-big, big). We summed the area in each height class and
looked at the area of the biggest group.

2.4.2. How does the remaining amount
compare to the expected historic amount?

The expected natural area of old growth provides a
benchmark for risk assessment. To assess risk to biodiversity
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and forest resilience, we compared the area of big-treed old
growth in each biogeoclimatic zone with the area expected
under historic disturbance regimes (Lindenmayer et al., 20065
Keane et al, 2009; Seidl et al,, 2016), assuming a random
distribution of disturbance. We used provincial government
estimates of disturbance regime to estimate the area of old
growth expected for each zone based on a negative exponential
disturbance model (BC Government, 1995; BC Government,
2016). We considered biodiversity and resilience to be at high
risk in areas with less than 30% of the expected area of old
growth (Andrén, 1994; Betts et al, 2007; Price et al.,, 2009)
while recognizing that many species cross habitat thresholds at
amounts higher than 30% (e.g., Zuckerberg and Porter, 2010;
Gutzwiller et al., 2015).

These analyses, by necessity, focused on the two indices of
ecosystem productivity; stand attributes, such as tree height,
cannot answer questions about risk because they change as trees
grow. Risk assessment requires comparing the current amount
of an ecosystem to the expected historical amount and, hence,
requires using an indicator that not only represents variability
but also remains constant over time. Problematically, after
harvest, provincial policy changes productivity index records
from inventory-based to ecosystem-based value, meaning that
the inventory-based indicator is not constant over time. Because
previous values are deleted, it is not possible to check for
historic records to determine the historic extent before 2002
(the oldest available version of the provincial inventory database;
BC Government, 2020). We compared the 2002 and 2020
databases to determine the magnitude of the post-harvest shift
in indicator value. Because shift magnitude varied with site
productivity, we recalibrated the site index in harvested stands
to previous values by applying a transition matrix based on
the proportion of each pre-harvest site index class found in
each post-harvest site index class within each biogeoclimatic
zone in an attempt to create a more consistent denominator
(Supplementary Table 1).

Using similar methods for current state analyses, we
calibrated the ecosystem-based site index based on analyses
of ground plot data to attempt to correct for the difference
between the two indices and accounted for differences in
coastal and interior ecosystems by using an inventory-based
site index >20 m for coastal ecosystems and >15 m for
interior ecosystems.

3. Results

3.1. Evaluating indicator reliability

3.1.1. Estimated vs. measured tree-size
indicators

Estimated tree height in BC’s provincial forest inventory
correlated moderately well with the height measured in 1,945

frontiersin.org


https://doi.org/10.3389/ffgc.2022.958719
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/

Price et al.

ground plots of forest >140 years old. In all 13 forest types
(predominant species within the biogeoclimatic zone) with
sufficient data (N > 30 ground plots), correlations met the
threshold for at least a weak to moderate statistically significant
relationship (R > 0.3; P < 0.05); for six groups, correlations
surpassed R > 0.5, signifying a moderate to a strong relationship
(Supplementary Table 2).

Correlations between measured and estimated values for
remaining indicators were generally weaker and varied by
forest type. For some forest types, height was the only
correlation reaching the threshold of R > 0.3, while in
others, measured and estimated diameter (7 of 13 forest
types), measured and estimated total volume (5 of 13 forest
types), and measured and estimated basal area (7 of 13 forest
types) also correlated at this level. Measured stem density
correlated very poorly with inventory estimates (meeting the
R > 0.3 thresholds in only 2 of 13 forest types). This
poor relationship decreased confidence in volume and basal
area comparisons because these estimates are related in part
to stem density. We selected tree height and diameter for
further evaluation.

Inventory height predicted measured height better than
inventory diameter predicted measured diameter [height:
slope = 0.51 (0.45-0.56); R> = 0.51 (0.48-0.53); diameter:
slope = 0.39 (0.31-0.49); R* = 0.41 (0.38-0.44); median (90%
credible interval); ELPD difference = —853 =+ 64; hierarchical
Bayesian assessment of forest types with N > 10 ground plots;
the difference between out-of-sample predictive accuracy].
Adding diameter to a model that included height did not
improve, and slightly and non-significantly worsened, predictive
power overall (ELPD difference = —0.7 £ 2.3; the difference
between out-of-sample predictive accuracy), and slightly and
non-significantly improved the model for western redcedar and
Douglas-fir within the Coastal Western Hemlock zone. Given
the lack of model improvement with diameter, we selected
height as the most reliable indicator. The relationship between
measured and inventory tree height varied somewhat amongst
forest types, from a median slope of 0.37 in yellow-cedar-leading
stands in the Coastal Western Hemlock biogeoclimatic zone to
a median of 0.61 in amabilis-fir-leading stands in the same zone.
The overall median slope of 0.52 reflects in part an overestimate
of the height of short trees and an underestimate of tall trees.

3.1.2. Site productivity vs. measured tree height

Across all forest types, the inventory-based site index was
significantly more strongly related to measured tree height
than the ecosystem-based site index, with a steeper slope
and better model fit [inventory-based site index: slope = 0.73
(0.46-1.07); R? = 0.44 (0.41-0.47); ecosystem-based site index:
slope = 0.55 (0.35-0.86); R?> = 0.40 (0.36-0.42); median and
90% credible intervals with N > 10 ground plots; significance
test for difference in R* P = 0.03; predictive accuracy: ELPD
difference = —57.7 & 17.6].
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Patterns varied by forest type (Table 1 and Figure 1).
For most forest types, stands with taller trees had higher
site index estimates, although data for the Interior Cedar-
Hemlock biogeoclimatic zone performed strangely. In this
biogeoclimatic zone, all five leading species had median slopes
near zero, and included negative slopes within the credible
interval, suggesting that stands classified as more productive
(by either index) could have shorter trees [Interior Cedar—
Hemlock inventory-based site index: slope = 0.11 (—0.12-0.35);
median R? = 0.11; ecosystem-based site index: slope = 0.07
(—0.26-0.48); median R*> = 0.11]. There was no obvious
reason for this anomaly. Removing this zone from the model
tightened the credible interval for slopes but did not change
conclusions.

The inventory-based site index tended to have stronger
relationships with height than the ecosystem-based site index
within the biogeoclimatic zone, although only Coastal Western
0.006;
Figure 1). Excluding the anomalous Interior Cedar-Hemlock

Hemlock forests were significantly different (P =

zone, the median slope was higher for inventory-based site index
in forest types except for three species in the Sub-Boreal Spruce
zone (Table 1).

Comparing the three indicators (inventory tree height,
inventory-based site index, and ecosystem-based site index)
in the ground plot sites, inventory height was the most
reliable indicator of measured tree height, with a significantly
better model fit than inventory-based site index (P = 0.002);
ecosystem-based site index was the least reliable.

3.1.3. Site productivity vs. inventory tree height

Expanding analyses to inventory data across the entire
province, the inventory-based site index was more strongly
related to inventory height than was the ecosystem-based
site index, with a significantly steeper slope (inventory-
based site index: slope =
slope = 0.51; P < 0.01;
index type as predictor) and a higher model fit (inventory-

1.40; ecosystem-based site index:
linear mixed model with site

based site index: R> = 0.53; ecosystem-based site index:
R? = 0.08; Pseudo R? for generalized linear mixed models).
These patterns are consistent across biogeoclimatic zones
(inventory-based site index slopes range from 1.22 to 1.55;
ecosystem-based site index slopes range from 0.21 to 0.69;
Supplementary Table 3).

3.1.4. Inventory-based vs. ecosystem-based
site index

In old growth sample plots (>140 years old), inventory-
based and ecosystem-based site indices were positively
correlated with each other (rp = 0.52), with the ecosystem-
based site index values consistently higher than the inventory
site index (mean difference = 6.2 £ 0.1 m; SE; t = —58;
df = 1 650; P < 0.01; paired t-test). The difference was
higher in wetter temperate rainforest and high-elevation
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zones (Coastal Western Hemlock, Interior Cedar Hemlock, Consistent with the pattern in sites with ground plots, the
Engelman Spruce—Subalpine Fir) and lower in the dry ecosystem-based site index assigned a higher value to given
ecosystems of the southern interior (Interior Douglas-fir; stands than the inventory site index across the province (median
Table 2). 11 vs. 17.5; Figure 2).

TABLE 1 Relationship between site index and measured tree height by forest type (predominant species within the biogeoclimatic zone; groups
with N > 10 ground plots).

Forest type Inventory- Ecosystem- Difference
based based
Median slope Median slope P (slope)
(90% CI) (90% CI)
BWBS
SX 21 0.53 (0.05-0.97) 0.13 0.46 (—0.01-0.86) ‘ 0.09 0.42 0.09
CWH
BA 34 1.03 (0.77-1.30) 0.15 0.69 (0.49-0.92) 0.13 0.05 0.09
cw 108 0.89 (0.73-1.05) 021 0.65 (0.50-0.83) 0.09 0.05 <0.01
FD 20 0.80 (0.58-1.01) 0.11 0.54 (0.36-0.71) 0.12 0.06 0.14
HM 18 0.68 (0.40-0.93) 0.19 0.51 (0.29-0.70) 0.18 0.20 0.11
HW 120 0.93 (0.76-1.11) 021 0.69 (0.52-0.85) 0.10 0.05 <0.01
YC 46 0.62 (0.34-0.89) 0.13 0.44 (0.22-0.65) 0.09 021 0.08
ESSF
BL 392 0.51 (0.37-0.65) 0.11 0.48 (0.30-0.66) 0.05 0.42 0.01
HM 13 0.64 (0.35-0.98) 0.07 0.45 (0.19-0.69) 0.02 0.20 0.02
HW 13 0.76 (0.48-1.08) 025 0.58 (0.34-0.87) 0.12 0.24 0.02
PL 19 0.59 (0.31-0.87) 0.17 0.45 (0.19-0.69) 0.02 0.26 <0.01
SX 134 0.74 (0.52-0.97) 0.12 0.55 (0.36-0.75) 0.07 0.15 0.04
ICH
BL 16 0.02 (—0.30-0.31) 0.02 —0.01 (—0.41-0.43) 0.02 0.48 0.13
cw 75 0.07 (—0.16-0.28) 0.00 0.08 (—0.29-0.47) 0.01 0.52 0.14
FD 25 0.04 (—0.23-0.32) 0.00 0.06 (—0.32-0.48) 0.01 0.53 0.17
HW 73 0.15 (—0.06-0.37) 0.01 0.06 (—0.32-0.46) 0.01 0.38 0.10
SX 29 0.14 (—0.10-0.38) 0.01 0.12 (—0.26-0.51) 0.01 047 0.10
IDF
FD 87 0.87 (0.53-1.22) 0.16 0.64 (0.29-1.10) 0.04 0.25 0.01
MS
FD 15 0.82 (0.38-1.29) 0.15 0.51 (0.14-0.99) 0.03 021 0.02
PL 12 0.79 (0.33-1.29) 0.54 0.50 (0.08-0.99) 0.23 0.23 0.04
SX 12 1.05 (0.59-1.56) 0.28 0.63 (0.24-1.16) 0.04 0.16 <0.01
SBS
BL 62 0.35 (0.08-0.60) 0.04 0.41 (0.13-0.67) 0.04 0.61 0.13
FD 13 0.63 (0.37-0.88) 0.05 0.66 (0.37-0.99) 0.05 0.57 0.11
PL 16 0.49 (0.24-0.74) 034 050 (0.22-0.77) 0.10 0.52 0.02
e 114 0.61 (0.42-0.80) 0.16 0.57 (0.33-0.82) 0.06 0.42 0.01

BWBS, boreal white and black spruce; CWH, coastal western hemlock; ESSE, Engelmann spruce-subalpine fir; ICH, interior cedar hemlock; IDE, interior Douglas-fir; MS, Montane
spruce; SBS, sub-boreal spruce. BA, amabilis fir; BL, subalpine fir; CW, western redcedar; FD, Douglas-fir; HM, mountain hemlock; HW, western hemlock; PL, lodgepole pine; SX, interior
spruce; YC, yellow cedar; CI, credible interval.
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FIGURE 1

Relationship between site index and measured tree height by biogeoclimatic zone in 1,497 ground plots across BC. Crosses represent the
median slope and bars show quartiles and 90% credible intervals. BWBS P = 0.3; CWH P = 0.006; ESSF P = 0.12; ICH P = 0.59; IDF P = 0.15; MS
P = 0.11; SBS P = 0.26. Biogeoclimatic zones: BWBS, boreal white and black spruce; CWH, coastal western hemlock; ESSF, Engelmann
spruce-subalpine fir; ICH, interior cedar hemlock; IDF, interior Douglas-fir; MS, Montane spruce; SBS, sub-boreal spruce.

3.2. Using selected indicators to assess
BC's big-treed old growth

We selected estimated tree height and both productivity
indices to assess the current state of BC’s big-treed old growth
from two perspectives, asking how much of BC’s current old
growth supports big trees and how many of BC’s potentially
big-treed ecosystems are currently old.

3.2.1. How much of remaining old growth is
big-treed?

Given the differences among the three indicators, we first
attempted to determine equivalent thresholds for each. We
used the values in Table 2 to control for the difference
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between inventory-based and ecosystem-based site indexes by
biogeoclimatic zone. Based on a linear model, we estimated an
equivalent height threshold of 43 m for an inventory-based site
index value of >20 m and 32 m for >15 m.

Given thresholds approximately equivalent to an inventory-
based site index of >20 m, each indicator estimated a similar
area of big-treed old growth varying from 1.5 to 3.3% (Table 3).
Variability was higher when the definition of “big” was expanded
to include relatively “mid-sized” trees in the lower productivity
ecosystems in the interior of the province, with estimates
ranging from 5.5 to 13.2%.

The second approach, focusing on height as the best
indicator of old growth tree size, found that the largest of
five equal-height classes, representing the biggest trees in the
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TABLE 2 Difference between site indices (ecosystem-based site
index minus inventory-based site index) by biogeoclimatic zone
in ground plots.

Biogeoclimatic zone Change in site index

Boreal white and black spruce 4.0
Coastal western hemlock 8.1
Engelman spruce-subalpine fire 5.9
Interior cedar hemlock 6.6
Interior Douglas-fir 35
Montane spruce 5.0
Sub-boreal spruce 5.0

Estimates of change taken from a mixed effects model with the site as a random effect.
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FIGURE 2

Distribution of area by inventory-based and ecosystem-based
site index for BC's forests >140 years.

province (>40 m tall), covered 485,148 ha, representing 4.6%
of BC’s old growth.

3.2.2. How does the remaining amount
compare to the expected historic amount?
Using an unaltered inventory-based site index as the
reference point, 6% of highly productive stands (defined
by inventory-based site index >20 m) were classified as
old growth. Recalibrating harvested stands to their pre-
harvest site index values to improve consistency over time
decreased the denominator (i.e., the area of forest with

10.3389/ffgc.2022.958719

site index defined as >20 m) and estimated that 8% of
the highly productive stands were old (Table 4). Using an
adjusted ecosystem-based site index, 15% of high-productivity
ecosystems were classified as old. When lower productivity
forests in BC’s interior were included, the proportion of old
forests increased slightly to 9% for the inventory-based site
index and decreased to 11% for the ecosystem-based site index
(Table 4).

The two methods agree well on the estimated risk to
biodiversity and ecological function for the province as a whole
(high risk; <30% of expected) and in most biogeoclimatic
zones (Table 5). Analyses suggest that risk is relatively low
(>50% of the expected historic amount of highly productive
old growth) in the Boreal White and Black Spruce, high
(<30% of expected) in the Coastal Western Hemlock, Engelman
Spruce—Subalpine Fir, Interior Cedar—Hemlock, and Sub-
Boreal Spruce zones, and very high (<10% of expected) in the
Coastal Douglas-fir, Interior Douglas-fir, and Ponderosa Pine
zones. The methods differ in their assessment of risk in the
Mountain Hemlock and Sub-Boreal Pine—Spruce, where the
ecosystem-based site index suggests that the risk is relatively
low and the inventory-based site index suggests that the risk is
high.

4. Discussion

Our evaluation of potential indicators of BC’s big-treed
old growth found that inventory tree height was the most
reliable remotely sensed indicator of measured tree size in
old growth, followed by inventory-based site productivity. No
indicator is ideal to assess the amount of big-treed old growth
because no indicator was designed for this purpose. Post-harvest
data loss and change within the inventory database create
shifting baselines, and the lack of fine-scaled ecosystem mapping
limits the ability to differentiate among old growth ecosystems.
These complexities compelled us to use multiple lines of
evidence with indicators calibrated to improve consistency.
Our assessment of old growth using calibrated indicators
agreed that the amount of big-treed old growth in BC
accounts for about 3% of all old growth. The indicators agreed

TABLE 3 Area of "big-treed” old growth in BC using equivalent thresholds for three indicators calibrated to improve consistency.

Indicator Area of “big” Area of “big” Area of “big” Area of “big”
(SI > 20) old (SI > 20) old forest (SI > 20/15) old (SI > 20/15) old
forest (ha) (% of old) forest (ha) forest (% of old)
Height 269,278 25 1,290,827 12.1
Inventory-based site index 349,889 33 1,409,563 13.2
Ecosystem-based site index 162,379 1.5 579,963 5.5
Total old growth 10,639,523*

SI > 20; inventory-based site index >20 m across the province; SI > 20/15; inventory-based site index >20 m in coastal ecosystems and >15 m in interior ecosystems. *Total area for

height calculations is 10,639,397 due to missing data.
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TABLE 4 The proportion of high-productivity forests classified as old growth estimated using two indicators calibrated to improve consistency.

Indicator Area of “big” Total potential Area of “big” Area (ha) of Total area of | Area of “big”
(SI > 20) old area of "big” (Sl > 20) old “big” “big” (SI > 20/15)
forest (ha) (SI > 20) forest forest (% of (SI > 20/15) (SI > 20/15) old forest (%
(ha) big) old forest (ha) forest (ha) of big)
Inventory-based site 349,889 4,381,128 8.0 1,409,563 15,356,226 9.2
index
Ecosystem-based site 162,379 1,115,146 14.6 579,963 5,404,118 10.7
index

SI > 20; inventory-based site index >20 m across the province; SI > 20/15; inventory-based site index >20 m in coastal ecosystems and > 15 m in interior ecosystems.

TABLE 5 Percent of total forest (all productivities) and high productivity forest that is currently old by biogeoclimatic zone based on two indicators
calibrated to improve consistency.

Total forest | Expected | All prod. old High productivity old (% of productivity class)
area (ha) old (%) (% of forest)
Inventory-based site Ecosystem-based site
index index
BWBS Interior 12,260,445 0.33 0.18 0.16 0.18
CDF Coast 35,980 0.29 0.02 0.01 0.02
CWH Coast 7,572,364 0.86 0.41 0.07 0.14
ESSF Interior 10,458,813 0.47 0.15 0.06 0.13
ICH Interior 4,565,894 0.42 0.20 0.07 0.08
IDF Interior 3,046,109 037 0.03 0.01 0.03
MH Coast 1,200,087 0.92 0.53 0.12 0.47
MS Interior 2,576,330 0.39 0.22 0.14 021
PP Interior 79,282 037 0.03 0.01 0.01
SBPS Interior 1,997,333 0.25 0.08 0.04 0.13
SBS Interior 8,472,528 0.32 0.17 0.08 0.08

High productivity is defined as an inventory-based site index of >20 m in coastal, and >15 m in the interior, ecosystems.

that the amount of big-treed old growth remaining is less including diameter and volume metrics, to build a more
than 30% of the expected amount, posing a high risk to nuanced model of old forest structure (Burrascano et al., 2013).
biodiversity and resilience. Available attributes, however, were poorly related to measured

values for a given stand, and adding diameter did not improve
the relationship between estimated and measured tree size.
4.1. Evaluating indicator reliability Finer-scaled analyses (e.g., within the biogeoclimatic variant)
may find that diameter improves the model, particularly in

Because tree size and site productivity both influence old temperate rainforests, but we were unable to detect patterns
growth structure and function (Spetich et al., 1999; Chase, 2010; within provincial data.
Lindenmayer et al., 2012, 2014; Lutz et al.,, 2012), we compared Inventory-based site index was better related to measured
existing indicators of tree size and site productivity against height than was the ecosystem-based site index across the
measured stand attributes to determine the most appropriate province, particularly in the coastal temperate rainforest. The
indicators used to assess the state of “big-treed” old forest in BC. finding is unsurprising. The inventory-based site index bases
We found that estimated tree height best indicates the current conclusions about productivity on current old growth stand
old growth tree size, followed by the inventory-based site index height, while the ecosystem-based site index bases productivity
and finally the ecosystem-based site index. estimates on growth rates in young trees (Mah and Nigh, 2003).

Because trees grow differently depending on life history While early growth is relevant to projections of site productivity,
strategy (Hara et al.,, 1991; Messier et al., 1999; Omari et al, it does not necessarily predict old growth conditions. For
2021), height does not capture all the elements of a big-treed example, although western redcedar grows slowly and has a
forest (e.g., some of BC’s massively wide western redcedars are low ecosystem-based site index, it can continue growing for
relatively short); hence, we investigated secondary attributes, centuries to become massive in the coastal and inland temperate
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rainforests (Antos et al., 2016); conversely, lodgepole pine grows
rapidly and hence has a high ecosystem-based site index (Mah
and Nigh, 2015), but this growth rate does not translate into
massive old growth stands. A previous study found that younger
stands (20-120 years old) also have a poor relationship between
the modeled ecosystem-based site index and stand height
(Nigh and de Jong, 2015). Where good ecosystem mapping
exists, relationships may be improved, although this assumption
remains to be tested.

Provincial ground plot data suggest that both inventory-
based and ecosystem-based site indices in the Interior Cedar—
Hemlock biogeoclimatic zone may be in error. In this zone,
stands with taller trees had similar (or sometimes lower)
productivity measures compared to stands with shorter trees.
Inspection revealed no obvious causes. This anomalous pattern
requires further investigation.

4.2. How much big-treed old growth
remains in BC?

We explored the potential of the three selected indicators
to address two questions important to conservation and land-
use planning. First, we investigated the current state, asking
how much of BC’s remaining old growth supports big trees.
This assessment, useful for identifying stands for conservation
or special management, requires an indicator that captures
old growth tree size. Second, we assessed ecological risk by
comparing the remaining amount of big-treed old growth to
the amount expected under historic disturbance regimes (BC
Government, 2000; Keane et al., 2009; Seidl et al., 2016). This
assessment additionally requires an indicator that is consistent
as stands age.

Determining how much remaining old growth supports
big trees requires selecting a threshold for “big.” As a baseline
for comparing the three indicators at the provincial scale, we
used a single threshold of inventory-based site index >20 m,
consistent with Price et al. (2021). We determined an equivalent
threshold of 43 m for the tree height indicator and rescaled
the ecosystem-based site index to improve consistency (i.e., by
aligning median productivity values by biogeoclimatic zone). At
the provincial scale, the indicators estimate a similar area of
old growth above consistent size thresholds, representing 1.5-
3.3% of remaining old growth, matching a previous estimate
(Price et al,, 2021). This result contrasts with a previous estimate
that 30% of BC’s old growth is highly productive (Brown, 2021)
based on the ecosystem-based site index. Our results suggest
that the 10-fold increase in the amount found in that study
is primarily due to overlooking the increased values estimated
by the ecosystem-based site index relative to the inventory-
based site index for a given site. In essence, the approach selects
a different tree-size threshold by including trees defined as
“medium” by Price et al. (2021).
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Appropriate size thresholds vary with the ecosystem and
ecological value of interest. For example, planning for carbon
storage at the provincial (or larger) scale may focus on
identifying the biggest trees in the province, mostly growing
in the coastal and inland temperate rainforests, where stored
carbon values are among the highest in the world (Keith
et al, 2009; DellaSala et al, 2022). Conversely, planning for
biodiversity would benefit from selecting thresholds that vary
among ecosystems to identify the biggest trees remaining in a
region. Our simple stratification into highly productive coastal
(inventory-based site index of >20 m) and less productive
interior regions (inventory-based site index of >15 m,
equivalent to >32 m tall in our analyses) considerably increased
the estimate of the productive proportion of remaining old
growth (6-13% of remaining old growth depending on the
indicator). A more nuanced approach would separate the
productive inland temperate rainforest from the less productive
interior ecosystems (DellaSala et al,, 2022).

Comparing remaining big-treed old growth to the baseline
amount expected historically requires an indicator that
captures variation in tree size and remains constant over
time, thus excluding height. In theory, fine-scaled ecosystem
mapping to biogeoclimatic site series (BC Government, 1998;
Biogeoclimatic Ecosystem Classification Program of British
Columbia, 2012) should be capable of reflecting old growth size
and structure and be stable over time; unfortunately, fine-scale
field-based mapping was not completed in BC, limiting current
potential indicators to estimates of site productivity. Both
existing productivity indices face challenges: the ecosystem-
based site index remains consistent over time, but represents
tree size diversity poorly in old growth; and the inventory-based
site index better represents tree size but changes over time. After
harvest, provincial policy updates the site index from inventory-
based to ecosystem-based values (Mah and Nigh, 2003), adding
an average of 6 m to the site index.

We improved consistency over time by updating the
inventory-based site index in harvested stands to account for the
discrepancy by using a transition matrix based on a comparison
of the 2002 and 2020 inventory. This approach led to an estimate
that 8% of highly productive stands (with a site index threshold
of >20 m) are currently old. Using uncalibrated data, we
estimate that 6% of highly productive stands are old, 2% lower
than Price et al. (2021), due to recent harvesting and updated
inventory. Calibrated ecosystem-based site index estimates that
15% of highly productive stands are old. The indices agree that
ecological risk in BC, expressed as the amount remaining as
a proportion of the expected amount, is high (<30% of the
expected amount of 57%). At a finer scale, the indices agree
on risk levels for most biogeoclimatic zones. Unfortunately, the
two zones where the indices reach different conclusions about
risk in big-treed old growth, Mountain Hemlock and Sub-Boreal
Pine Spruce, had insufficient data for analysis in the ground plot
sample, challenging further investigation.
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4.3. Reducing uncertainty

No ideal indicator exists for big-treed old growth in British
Columbia, leading to highly publicized uncertainty about how
much remains, with estimates ranging from 3 to 30% (Brown,
2021; Price et al, 2021). Formal strategies exist for making
management decisions under uncertainty (Possingham et al,
2001; Burgman, 2005; Marcot, 2020). At the broadest conceptual
level, strategies that apply to assessing old growth include
increasing precaution, using multiple lines of evidence, and
decreasing uncertainty via monitoring and increased ground-
truthing (Walters, 1986; Burgman, 2005). Our analyses compare
multiple approaches, with indicators calibrated to improve
equivalence.

The provincial scale of our analysis increases uncertainty at
smaller scales. Analyses based on provincial-scale data covering
over 50 million hectares of diverse forest, while designed for
strategic purposes, including timber supply analyses and high-
level land-use planning (BC Government, 2020), cannot capture
BC’s forest diversity. While we attempted to capture coarse
variability by analyzing patterns by biogeoclimatic zone and
predominant tree species and completed sensitivity analyses of
site index thresholds by selecting a lower value for interior than
coastal ecosystems, we stress that regional planning will need
finer-scale analyses supported by local expertise and ground-
truthing.

The complexity of using indicators designed for different
purposes to assess the current amount of big-treed old growth
highlights opportunities to improve inventory. Retaining
historic data after harvesting (either tree height or site
productivity) would avoid shifting baselines, well recognized
as a challenge in fisheries research but less emphasized in
forestry (Pauly, 1995); stable estimates of site attributes are
a pre-requisite to risk assessment. The one indicator with a
stable estimate over time, ecosystem-based site productivity,
performed least well in predicting measured tree size, pointing
to the need to know how well remotely sensed data reflect actual
conditions. We suggest that keeping data to allow trend analysis
is critical.

Complete implementation of BC’s ecosystem classification
system (Biogeoclimatic Ecosystem Classification Program of
British Columbia, 2012) could provide a stable, reliable
indicator. While tree size varies somewhat predictably by
biogeoclimatic zone, old growth attributes can vary as much
within these classes, driven by differences in soil moisture and
nutrient availability (Meidinger and Pojar, 1991; MacKinnon
et al, 1992), captured by biogeoclimatic site series. For
example, within the coastal temperate rainforest, adjacent
forest ecosystems can vary from highly productive valley-
bottom gallery forests with massive Sitka spruce to bog
forests dominated by tiny shore pine. Biogeoclimatic site series
are, potentially, sufficiently fine units to capture big-treed
forests but are not mapped for most of the province. Where
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detailed ecosystem mapping exists, formal analyses have not yet
investigated whether this potential for reliability is achieved. The
assessment suggests that challenges remain: in the Great Bear
Rainforest, circum-music site series are sometimes grouped,
meaning that variation within a stratum can be high enough
to allow preferential harvest of the biggest stands (Holt and
Daust, unpublished data). We recommend that future study
evaluates the ability of detailed ecosystem mapping to improve
the assessment of big-treed old growth.

Recent provincial efforts are building LiDAR data inventory,
potentially improving the stratification of old growth (Mora
et al, 2013; BC Government, 2022d). LiDAR is generally
linearly related to inventory tree height (Tompalski et al,, 2021)
with height variability within inventory polygons (unpublished
results). With the ability to identify small patches of big trees,
LiDAR may be useful in designing conservation networks as
regional planning continues.

4.4. Policy implications

Forest harvest targets big-treed stand (Martin et al.,, 2020;
Price et al., 2021; Benner and Lertzman, 2022). BC is currently
updating regional land-use planning without an agreed-upon
metric of big-treed old-growth forests. Choosing an indicator
is a technical issue if parties share a vision. However, although
Gorley and Merkel (2020) heard consensus about the need for
an old-growth forest paradigm shift, and although the provincial
government has committed to a shift (BC Government, 2021a),
there is no shared vision for implementing the shift. In this
situation, indicator choice and transparency become crucial.

British Columbia’s the
demonstrates how legally enshrined pressure to maintain timber

policy over past 30 years
supply (Forest Planning and Practices Regulation, 2004), with
a cap of 4% timber impact for biodiversity conservation (BC
Government, 1999), has led to strategies that meet legal targets,
yet miss conservation intent, focusing on implementation while
overlooking effectiveness (Failing and Gregory, 2003; Price and
Daust, 2009). Misrepresenting the current old growth state by
combining forest types is easy: current BC policy combines
big-treed and small-treed forests within biogeoclimatic units
(BC Government, 1999), obscuring patterns in big-treed old
growth (Price et al, 2021). Using appropriate big-treed old
growth indicators would improve transparency, which is a
prerequisite for a paradigm shift (Gorley and Merkel, 2020).
Our analyses suggest that the selection of a big-treed old
growth indicator depends upon the question. To assess the
current condition, we suggest that inventory tree size is a
reasonable indicator for initial planning, allowing identification
of the largest remaining stands. At the provincial scale, maps are
available of BC’s biggest-treed stands stratified by biogeoclimatic
variant (BC Government, 2022a). We recommend that regional
planning efforts improve the initial estimate by assessing and
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ground-truthing the remaining old growth area in each
height class.

Assessing ecological risk is more challenging. Current
provincial policy recommends using ecosystem-based rather
than inventory-based site index to determine productivity in
old growth (Mah and Nigh, 2015; Nigh and de Jong, 2015). In
old growth, inventory-based site index typically underestimates
site productivity compared with similar harvested stands
(Nussbaum, 1998; Mah and Nigh, 2003), likely due to several
factors, including different methodology, changed growth rate
over time, and damaged tree tops (Stearns-Smith, 2001). The
policy is based on studies that focused on improving estimates
of absolute site productivity (Nussbaum, 1998) rather than
on capturing variation among stands (Mah and Nigh, 2003).
Our analyses, focusing on relative tree size in old growth,
demonstrate that the ecosystem-based site index performs
poorly at discriminating tree size. While it may reflect average
growth potential, it cannot be used to divide old growth
into size classes, and hence should not be used to estimate
the remaining amount of highly productive big-treed old
growth. We suggest that until detailed ecosystem mapping has
been completed and verified to represent the full diversity
of existing old growth stands, inventory-based site index be
used for risk assessment, with harvested stands adjusted to
account for the post-harvest shift. Until uncertainty about
risk is reduced, precaution dictates erring on the side of
conservation.

Available indicators, calibrated to improve consistency,
agree that BC’s big-treed old growth ecosystems are at high
risk. Current management policy will result in further threats
from timber harvesting (Price et al., 2021; Benner and Lertzman,
2022). The provincial government has committed to changing
its old growth management paradigm (BC Government, 2021a)
to address carbon storage, climate adaptation, biodiversity
conservation, and reconciliation with indigenous people.
Agreed-upon definitions and transparent analyses of remaining
big-treed old growth status are prerequisites to success.
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