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Mapping with height and
spectral remote sensing implies
that environment and forest
structure jointly constrain tree
community composition in
temperate coniferous forests of
eastern Washington, United
States
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*Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, United States, ?College
of Forestry, Oregon State University, Corvallis, OR, United States, *Forest Resilience Division,
Washington Department of Natural Resources, Olympia, WA, United States

Maps of species composition are important for assessing a wide range of
ecosystem functions in forested landscapes, including processes shaping
community structure at broader (e.g., climate) and finer (e.g., disturbance)
scales. Incorporating recently available remotely sensed datasets has the
potential to improve species composition mapping by providing information
to help predict species presence and relative abundance. Using USDA Forest
Service Forest Inventory and Analysis plot data and the gradient nearest
neighbor imputation modeling approach in eastern Washington, USA, we
developed tree species composition and structure maps based on climate,
topography, and two sources of remote sensing: height from digital aerial
photogrammetry (DAP) of pushbroom aerial photography and Sentinel-2
multispectral satellite imagery. We tested the accuracy of these maps based
on their capacity to predict species occurrence and proportional basal area
for 10 coniferous tree species. In this study region, climate, topography, and
location explained much of the species occurrence patterns, while both DAP
and Sentinel-2 data were also important in predicting species proportional
basal area. Overall accuracies for the best species occurrence model were
68-92% and R? for the proportional basal area was 0.08-0.55. Comparisons
of model accuracy with and without remote sensing indicated that adding
some combination of DAP metrics and/or Sentinel-2 imagery increased R?
for the proportional basal area by 0.25-0.45, but had minor and sometimes
negative effects on model skill and accuracy for species occurrence. Thus,
species ranges appear most strongly constrained by environmental gradients,
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but abundance depends on forest structure, which is often determined by
both environment and disturbance history. For example, proportional basal
area responses to moisture limitation and canopy height varied by species,
likely contributing to regional patterns of species dominance. However, local-
scale examples indicated that remotely sensed forest structures representing
recent disturbance patterns likely impacted tree community composition.
Overall, our results suggest that characterizing geospatial patterns in tree
communities across large landscapes may require not only environmental
factors like climate and topography, but also information on forest structure
provided by remote sensing.

digital aerial photogrammetry (DAP), nearest neighbor imputation, Sentinel-2, tree

community, forest mapping

Introduction

Mapping tree species across large extents is critical for
climate vulnerability assessments and adaptation planning
across the globe (Stohlgren and Schnase, 2006; Aubin et al,
2018). Ecologists have often used tools like species distribution
or niche modeling to quantify species distribution in terms
of presence and absence along environmental gradients (Elith
et al, 2006; Franklin, 2013). However, these environmental
gradients alone may not capture community structure and
species abundances (Canham and Thomas, 2010). Plant
community assembly and structure depend on drivers at
multiple spatial and temporal scales, including climate,
topography, and disturbance (Brown et al,, 2017). The use of
remote sensing, which captures the current state of habitat
characteristics or even direct observations of the species being
studied, could dramatically advance our capacity to map
community structure (Zimmermann et al., 2007; He et al., 2015).
Remote sensing research focused on measures of diversity, forest
types, or dominant species with multispectral, hyperspectral, or
airborne lidar data (e.g., Laurin et al., 2016; Axelsson et al., 2021)
has increased in frequency over the last three decades (Fassnacht
et al, 2016). It is critical that we understand how interacting
drivers might produce observed tree community patterns in
complex landscapes and tree species mapping based on remote
sensing may support such efforts.

In addition to understanding drivers of tree community
structure, tree species mapping may support forest management
in the face of an uncertain future. Under predicted climate
change, we expect that temperate coniferous forests like those
found in eastern Washington, USA, will likely experience
greater frequency and severity of disturbance, such as wildfire
(Westerling et al., 2006; Moritz et al., 2012; Westerling, 2016),
insects outbreaks (Kolb et al, 2016), drought (Williams et al,,
2012), and their interacting effects (Loehman et al., 2017; Agne
et al,, 2018), potentially leading to major changes in forests
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globally (Allen et al,, 2015; Millar and Stephenson, 2015). Forest
management increasingly aims to increase forest resistance and
resilience to climate change and shifts in disturbance regimes
(Schoennagel et al., 2017; Prichard et al, 2021; North et al,
2022), although the capacity of these forests to withstand such
stressors may be declining (Forzieri et al., 2022). Management
may be guided by regional monitoring and assessment programs
that identify where disturbances are occurring (Kennedy et al,,
2014; McDowell et al, 2015), the distribution of forests
vulnerable to those disturbances (Littell et al.,, 2011; Mildrexler
et al, 2016), and where forest management might help to
restore ecosystem structure and function to minimize that
vulnerability (Haugo et al.,, 2015; Hessburg et al., 2015; DeMeo
et al., 2018; Barros et al., 2019). Because disturbance potential,
forest vulnerability, and appropriate management approaches
all depend on the status of forest stands and their configuration
within their landscapes, managers require spatially explicit
data characterizing not just species presence and absence, but
tree community composition and structure (Washington State
Department of Natural Resources, 2020).

Broadly distributed and consistently measured national
forest inventory data characterize the tree communities across
regions (e.g., tree species, densities, and diameters) and when
integrated with multispectral satellite remote sensing can form
the basis for wall-to-wall mapping of measured forest attributes
(McRoberts and Tomppo, 2007; Tomppo et al., 2008; White
etal, 2016). Multispectral satellite remote sensing (e.g., Landsat,
Sentinel-2) is appealing for forest mapping using sparse forest
inventory data because of its low cost, global coverage, long-
temporal record, large scene-size, and the spectral and spatial
resolution appropriate for characterizing vegetation attributes
(Cohen and Goward, 2004). Furthermore, the Landsat and
Sentinel-2 mutlispectral time-series likely serve as a good basis
for forest composition mapping at national scales (Fassnacht
et al, 2016). For example, the USDA Forest Service Forest
Inventory and Analysis (FIA) plots and 30-m, multi-decadal,
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multispectral Landsat satellite imagery support regional (Davis
et al, 2015; Bell et al, 2021) and national (Riley et al,
2016) mapping of forest structure and composition in the
United States. Still, regional and national mapping of tree species
composition remains challenging.

Challenges in tree species mapping highlight not only
technical vegetation mapping difficulties but also fundamental
uncertainties in factors controlling tree community patterns
in managed and unmanaged landscapes. Recent regional and
national tree community composition mapping efforts in USA
and elsewhere may rely on spectral indices and seasonal
dynamics in imagery from MODIS (e.g., Isaacson et al.,, 2012;
Wilson et al., 2012; Zhang et al,, 2018), Landsat (e.g., Ohmann
et al, 2011; Adams et al, 2020), and Sentinel-2 (Hoscilo
and Lewandowska, 2019; Malcolm et al., 2021) multispectral
imagery. However, due to the fact that many forested areas
contain multiple tree species that vary in occurrence and
abundance at fine spatial scales, there is a need for finer-
scale remote sensing that can capture variation in forest
composition and structure. For example, adding forest canopy
height information derived from lidar dramatically improved
forest structure predictions in central Oregon, USA, but
resulted in inconsistent improvements in the prediction of
species occurrence (Zald et al,, 2014). Environmental gradients
can dominate the mapping of species occurrence at broad
scales (Ohmann and Gregory, 2002; Ohmann et al, 2011),
but may have little effect on species abundance within their
distribution (Canham and Thomas, 2010; Canham and Murphy,
2016). Abundance and occurrence are clearly not independent,
sometimes requiring the modification of mapped species
data based on their known ranges (Duveneck et al, 2015),
presumably to reduce commission when species are predicted
beyond their known extent. Even after constructing models and
maps, species presence and abundance are likely to covary due
to unaccounted for drivers or interactions among species (Clark
et al., 2014; Pollock et al., 2014).

The emergence of new remote sensing platforms may
provide a basis for improving species composition mapping
by providing structural information to help differentiate
species presence and relative abundance. The use of digital
aerial photogrammetry (DAP) to generate height and cover
information (e.g., Bohlin et al., 2012) may help to refine
elements of local community composition. The development
of new capacities for deriving three-dimensional information
from stereo-photography and the capacity to collect data over
large areas at relatively low costs have resulted in increasing
interest in the use of DAP for a variety of forest monitoring
and mapping applications (Goodbody et al., 2019). High-quality
information on forest structure (e.g., DAP) is beginning to
provide detailed forest structural data similar to lidar, but are
regularly collected across large areas (e.g., entire states) during a
single year (White et al., 2015). Pushbroom aerial photography,
which forms the basis for statewide aerial photography from the
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National Agricultural Image Program (NAIP) in USA, presents
differing challenges to frame-based photography, but can still
be used to enhance forest inventory estimation and modeling
(Strunk et al,, 2020, 2022). Additionally, the greater temporal
and spatial resolution, as well as radiometric characteristics, of
Sentinel-2 satellite imagery compared to Landsat may improve
model performance for forest structure (Flood, 2017; Astola
et al, 2019; Grabska et al,, 2019). Exploration of differing
combinations of environmental and remote sensing datasets
may highlight the contributions of each information source
(Strunk et al., 2022).

To address the need for improved mapping of species
composition as well as to understand the appropriate use of
maps, we examined how the addition of new remote sensing
products with higher spatial and temporal resolution and
consistency (DAP and Sentinel-2) influenced coniferous tree
species composition mapping in eastern Washington, USA. We
leveraged existing field observations provided by the US Forest
Service with remote sensing and environmental covariates to
model and map tree species occurrence and abundance across
eastern Washington. For our study system, we asked two
questions: (1) What combinations of environmental and remote
sensing data provide the best accuracy for predicting species
composition? (2) What do differences in model performance for
mapping species occurrence and abundance indicate about the
factors controlling tree species distributions?

Materials and methods

Study area

Our study area was the forested regions of eastern
Washington state, USA (Figure 1). This area includes
portions of the eastern Cascade Mountains, the northern Blue
Mountains, and western portions of the Crown of the Rocky
Mountains. Across this area, climate varies substantially as does
forest height (Figure 1). We focus on the ten most common
species in the study area, representing seven genera of western
coniferous tree species, each occurring on at least 10% of the
forest inventory plots in the region (Table 1). The gradients in
biophysical conditions support various tree species adapted to
different conditions, as indicated by a wide range of drought and
fire tolerance.

Tree species occurrence and
abundance data

Forest inventory data provide the basis for both model
calibration and validation. The FIA data provide field-based
measurements of forest conditions, which characterize, among
other things, tree species presence and abundance. Inventory

frontiersin.org


https://doi.org/10.3389/ffgc.2022.962816
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/

Bell et al.

10.3389/ffgc.2022.962816

Study Area

-6.7 deg C 123

FIGURE 1

blue = taller).

Study area map, highlighting the study area (blue), the distribution of FIA plots (gray = not in this study, orange = this study with DAP, blue = this
study without DAP), mean annual temperature (blue = cooler, red = warmer) (Wang et al., 2016), and DAP vegetation height (orange = shorter,

[ |
107 Nodata

meters

TABLE1 Ten most common species in the study area (1,415 total forest inventory plots).

Species Common name Presences Fire group Drought group
Abies amabilis (ABAM) Pacific silver fir 169 Very intolerant (1) Very intolerant (1)
Abies grandis, Abies concolor (ABGRC) grand fir, white fir 373 Intolerant (2) Moderate (3)
Abies lasiocarpa (ABLA) subalpine fir 316 Very intolerant (1) Intolerant (2)
Larix occidentalis (LAOC) western larch 395 Very tolerant (5) Tolerant (4)

Pinus contorta (PICO) lodgepole pine 337 Very intolerant (1) Moderate (3)
Picea engelmannii (PIEN) Engelmann spruce 277 Very intolerant (1) Very intolerant (1)
Pinus ponderosa (PIPO) ponderosa pine 523 Very tolerant (5) Very tolerant (5)
Pseudotsuga menziesii (PSME) Douglas-fir 1,010 Tolerant (4) Tolerant (4)

Thuja plicata (THPL) western redcedar 210 Intolerant (2) Intolerant (2)
Tsuga heterophylla (TSHE) western hemlock 209 Very intolerant (1) Very intolerant (1)

Fire and drought tolerance groups were based on previous publications (Burns and Honlkala, 1990).

plots used a nested plot design (four nested 13.5-m? microplots,
168.3 m? subplots, and 1,012.2-m? macroplots, depending on
tree diameter) distributed across roughly one hectare. Individual
live and standing dead tree measurements included diameter,
height, and species. We define a proportional basal area as the
live basal area of a given species (m? ha™!) relative to the total
basal area of the plot. Species were considered present when the
live basal area was greater than 0 m? ha~!, and absent otherwise.
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We used plots with at least 50% of their area classified as forest
(i.e., at least 10% stocked) or forest-capable (evidence of the
previous forest and undeveloped for non-forest use, such as
agriculture) (Bechtold and Patterson, 2005). We focus on FIA
plots in the study region measured during the five years prior
to the acquisition of the DAP and Sentinel-2 data: 2012-2016
(Figure 1): 1,027 plots for areas with DAP and 1,415 plots for
the entire study area.
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TABLE 2 Covariate group combinations for the best model for each species based on maximizing the performance metrics: R? and RMSE for

proportional basal area and TSS and overall accuracy for species occurrence.

Metric Species Clim Topo Loc DAP DAP_sd S2 S2 sd
Proportional basal area R? (@) ABAM [ @] [ @] [ 1@ O
Proportional basal area RMSE (O) ABGRC [ e} [ &) @O [ e} O O

ABLA [ @) [ ]®) [ ]®) L ¢

LAOC O [ ]©] [ ]©] O O [ ]®]

PICO o0 [ ]®] [ ]®] [ ]®] [ ]®]

PIEN [ ]O) [ ]o] @O @O [ ]]

PIPO [ ]©] [ ]] o0 @O [ ]]

PSME [ ]o] [ ]o] [ ]] [ ]®]

THPL [ ]©] [} ([ ] [ ]®] [ ]

TSHE [ ]O] [ ]O] O O [ ]®]

Included (%):

R? 70 70 60 90 50 80 70

RMSE 70 70 60 80 40 80 60
TSS (M) ABAM | [m] | [ [m} ] |
Overall accuracy (0J) ABGRC | | [_|m] | |

ABLA [ [m} [ [m} ] ||

LAOC | | [}

PICO | | [} ]

PIEN [} | [} ] ] ||

PIPO || [ ] _|m]

PSME [ [m] [ [m] [ [m}

THPL [ [m] [ [m] [ [m} ] || ||

TSHE | | [ [m} ||

Included (%):

TSS 100 90 100 10 30 40 40

Accuracy 60 20 100 0 10 0 0
Comm. model | | | ] || ||

Symbols indicate that the covariate group was included in the best model for GNN accuracy in terms of different metrics for each species. Accuracy was assessed at the 1.0-ha scale (5 x 5
20.1-m pixels). The community consensus model (Comm. Model) was identified at the bottom of the table and is comprised of covariate groups included in the best model for >50% of
species in at least one of four performance metrics. Covariate groups include climate (Clim), topography (Topo), location (Loc), DAP, spatial variability in DAP (DAP_sd), Sentinel-2 (S2),

and spatial variability in Sentinel-2 (S2_sd). Species abbreviations can be found in Table 1.

Geospatial data

We focused on several groups of geospatial covariates
related to the environment and remote sensing of forest
vegetation. In this section, we describe key environmental, DAP,
and multispectral geospatial data sources. All geospatial data
were reprojected and resampled to Washington South State
Plane projection, resulting in 20.1-m (66-ft) pixels. Thus, pixels
are roughly the footprint of the Sentinel-2 satellite imagery for
the bands used in the calculation of tasseled cap indices (20 m).
Processing of Sentinel-2 covariate rasters occurred on Google
Earth Engine (Gorelick et al., 2017), with all other processing
occurring on physical workstations.

Environmental data
For environmental gradients related to tree species
composition, we focused on three covariate groups (climate,
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topography, and location), with geospatial variable selection and
processing generally following previously published approaches
(Ohmann and Gregory, 2002; Battles et al., 2018; Kennedy
et al, 2018). To represent climatic variation, we extracted a
variety of climate variables representing annual and seasonal
temperature and precipitation patterns (Supplementary
Table 1) from ClimateNA, a 90-m downscaled version of
PRISM 1981-2010 climate normals (Wang et al.,, 2016). For
water deficit and snow water equivalent, we leveraged 90-
m resolution data generated for and described previously
using 30-year normal (1981-2010) (Dobrowski et al., 2013;
Cansler et al, 2022). To represent topographic variation,
we calculated a variety of topographic variables related to
elevation, slope, aspect, topographic position, and exposure
to incoming radiation (Supplementary Table 2) based on
10-m digital elevation models (Gesch et al, 2002; Gesch,

2007) and resampled to 20.1-m before computing derivative
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Differences in true skill statistic, overall accuracy, R? for proportional basal area, and RMSE for the proportional basal area between the standard
prediction from the consensus model and the predictions assuming species basal area less than 1 m? ha~! indicate species functional absence
(i.e, BA = 0 m2 ha—1). Accuracy results based on standard GNN predictions aggregated over the 25-pixel footprint. Species abbreviations can be

found in Table 1

products. To represent other geographic constraints on
forest structure and composition (e.g., historical dispersal
barriers) and to limit the imputation of individual plots
across large geographic distances (Ohmann and Gregory,
2002), we used x- and y-coordinates in the projected
coordinate system. Similar to spatial errors included in
some species distribution modeling approaches (Dormann
et al, 2007), location may act as a proxy for a variety
of ecological drivers of species composition, including
unexplored climate variables, soils, species genetics, road
or riparian corridors, and historical impediments to species

migration.

Digital aerial photogrammetry data

High-quality information on forest structure provided by
DAP consistently collected across large areas (e.g., entire states)
during a single year is beginning to provide detailed forest
structural data similar to lidar (White et al., 2015; Strunk et al,,
2020). To represent vegetation structural characteristics of forest
ecosystems, we used DAP variables (Supplementary Table 3)
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generated from 3D point clouds derived by processing 40-cm
resolution, stereo pushbroom aerial photography from the NAIP
with an advanced photogrammetric software (Strunk et al,
2020). NAIP imagery was collected in 2017 for the state of
Washington, and processed by the Washington Department
of Natural Resources (WADNR), with metrics derived using
FUSION (McGaughey, 2016), described in detail elsewhere
(Strunk et al., 2020). 3D point clouds were normalized by the
digital elevation model from overlapping lidar data (i.e., point
height minus ground elevation) prior to applying “GridMetrics”
in FUSION at a 20.1-m resolution to generate rasters of DAP
variables, such as cover, height above Ist to 99th percentile
heights, and measures of return height variability, skewness,
and kurtosis (Supplementary Table 3). While such pushbroom
imagery may result in more error compared to either lidar or
DAP based on frame cameras, these data can be useful for forest
inventory and modeling applications (White et al,, 2015). NAIP
imagery is collected statewide on a regular basis (every 2 years),
potentially making DAP preferable to lidar when considering
cost and spatial and temporal coverage.
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performing species-level models with vs. without DAP and/or Sentinel-2 data. Species abbreviations can be found in Table 1

Multispectral remote sensing data

To represent the spectral properties of forest ecosystems,
we used the tasseled cap transformation to generate brightness,
greenness, and wetness from Sentinel-2 data at 20.1-m pixel
resolution. The tasseled cap transformation reduces Landsat
imagery to three orthogonal indices (brightness, greenness, and
wetness) (Crist and Cicone, 1984). Past work in this region has
demonstrated the utility of tasseled cap indices for mapping
forest cover, structure, and composition (Cohen and Spies, 1992;
Cohen et al.,, 2001; Ohmann and Gregory, 2002; Ohmann et al.,
2011, 2014; Bell et al, 2021) as well as other regions (e.g.,
Hall et al.,, 2006; Powell et al.,, 2010; Beaudoin et al., 2014;
Wilson et al., 2018). First, we extracted all Sentinel-2 top-of-
atmosphere images from 2017 and 2018 from Julian days 180-
270 to represent the snow-free growing season (June-August).
We then processed each image to perform cloud masking and
dark object removal (Temporal Dark Outlier Mask method)
(Chastain et al,, 2019). To select the image that most closely
represents the center of the distribution of processed images,
we identified the medoid as an image for that pixel which
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minimizes the squared differences between the median and the
observation across bands (Flood, 2013). Finally, we calculated
the tasseled-cap indices for the medoid for each pixel (Shi and
Xu, 2019).

Spatial variation in remote sensing

Spatial variation in DAP and Sentinel-2, potentially
representing heterogeneity in forest structure and composition,
was characterized as the standard deviation in DAP PCA axes
(see below) and Sentinel-2 tasseled cap brightness, greenness,
and wetness using a 1.01-ha moving window (5-by-5 pixels).
Thus, standard deviation in DAP and Sentinel-2 spectral
variables (hereafter, DAP_sd and S2_sd, respectively) are
roughly equivalent to FIA plot-scale variation in remote sensing.

Principal components analysis
Given a large number of potential geospatial predictor

variables (48 total), we reduced the number of covariates
while still representing the variation in covariates relevant
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Distribution of predicted proportional basal area compared to observed values for each of the five drought groups based on the community
consensus model (Table 2). Median (blue points), 16th to 84th percentile ranges (thick blue line), and 5th to 95th percentile ranges (thin blue

line) predictions across observations are also presented.

to mapping forest structure and composition by applying a
principal components analysis (PCA) to each of three covariate
groups: climate (14; Supplementary Table 1), topography
(7; Supplementary Table 2), and DAP (19; Supplementary
Table 3). For these covariate groups, we used the first three
PCA axes for modeling and mapping as they accounted for
greater than 98% of the variation (Supplementary Table 4)
while still reducing the number of orthogonal covariates used
for modeling. We did not apply PCA to Sentinel-2 or location
groups as these groups include three (brightness, greenness, and
wetness) and two (x and y) covariates, respectively. Therefore,
for the seven covariate groups, a maximum of 20 predictors were
included in modeling and mapping. PCAs were performed in
ArcGIS Pro 2.6 using the geoprocessing tool names “Principal
Components.”

Statistical modeling and mapping

There are many statistical modeling options for species
composition mapping, each with its own advantages and
disadvantages. For example, univariate (e.g., random forest
regression) and multivariate (e.g., nearest neighbor) non-
parametric approaches are widely used in remote sensing
applications due to their flexibility (e.g., Henderson et al,
2019). Joint modeling of multiple species provides a coherent
2014, 2017;
2014), indicating that multivariate approaches

prediction of actual communities (Clark et al,
Pollock et al.,
are preferred for species mapping. In this study, we leverage
gradient nearest neighbor imputation for mapping tree species

community patterns as it is a multivariate method that preserves
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community structure as part of the modeling and mapping
process (Ohmann et al,, 2011).

Gradient nearest neighbor imputation (GNN) is a
non-parametric modeling approach, which uses canonical
1986) to define
a feature, or gradient, space in which k nearest neighbor

correspondence analysis (CCA; Ter Braak,
imputation can be performed (Ohmann and Gregory, 2002).
GNN has been used extensively for mapping both forest
structure and species composition (Ohmann and Gregory,
2002; Wilson et al., 2012, 2013; Ohmann et al., 2014; Kennedy
et al, 2018; Bell et al,, 2021), so we provide only a brief
description here. Initially, a gradient space is defined with
which similarity among plots and pixels can be calculated. The
gradient space uses a CCA to relate an environment matrix to
a species matrix. The species matrix traditionally uses species
abundances, but our species matrix was composed of the
species-by-size class basal areas as we have found that this
better represents forest structural and compositional gradients
in forests (Ohmann and Gregory, 2002). For the environment
matrix, we use geospatial predictors (or transformations of
them, such as PCAs described above) related to both the
physical environment (climate, topography, and location)
and the observed condition of forests (remote sensing). All
pixels and plots are transformed into the gradient space based
on the results of the CCA. Based on those locations in the
gradient space, every pixel is assigned the tree community (as
represented by the basal area of each tree species) observed
on the plot minimizing the distance in gradient space from
the focal pixel. In this study, we imputed only the nearest
neighbor (k = 1) rather than averaging over several neighbors
(k > 1). Therefore, maps of species presences and abundances
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1.0

reflect only those observed conditions from FIA plots, which
avoids unrealistic combinations of species that can occur when
averaging across more than one neighbor.

The focal response variables that we modeled were
species-level basal area and we used these values to calculate
species occurrence (species basal area >0 m? ha~!) and
proportional basal area (species basal area/total basal area) for
our 10 focal species (Table 1). We modeled species-level basal
areas to facilitate aggregation and scaling of predictions in a
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sensible fashion, such that for any set of pixels to aggregate, we
first summed species-level basal area and total basal area across
pixels and then calculated proportional basal area based on these
sums. Models incorporating DAP data used only 1,027 plots
for which these data were available, with all other models using
1,415 plots. To avoid spurious predictions associated with rare
species, we report results for the 10 most common species in the
dataset (Table 1). Our model fitting used the average covariate
values for the plot footprint (5-by-5 pixels) and species basal
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area for the entire plot. Model predictions were performed for
each pixel, with predictions being aggregated to the plot level
(average of 25 pixels).

Model selection, comparison, and mapping

To select the best combination of covariate groups for
mapping tree communities, we compared all 127 different
combinations of the seven covariate groups (excluding the
null model with no covariates and an intercept only) based
on their capacity to predict species presence or absence and
species proportional basal area. We quantified model skill in
differentiating presence and absence using true skill statistic
and overall accuracy (% correctly classified). True skill statistic
(TSS) is a measure of model accuracy that takes into account
omission and commission, but is not as sensitive as Cohen’s
kappa is too low or high prevalence (Allouche et al.,, 2006).
We used R? and root mean square error (RMSE) to quantify
the accuracy of proportional basal area predictions. We used
a modified leave-one-out procedure (Ohmann and Gregory,
2002) for assessing model accuracy. The modified leave-
one-out procedure generates the average prediction for each
mapped attribute for the 25 pixels overlapping the FIA plot
footprints based on the first independent neighbor at each pixel
(i.e., the plot with the minimal multi-dimensional Euclidean
distance in gradient space), ensuring that for the purposes of
model accuracy that imputed predictions are independent of
each individual plot being assessed. Previous analyses indicate
that this modified leave-one-out procedure performs similarly
to a traditional leave-one-out cross-validation (Ohmann and
Gregory, 2002).

We identified the combination of covariate groups that
produced the best performance for each individual species.
Because proportional basal area depends on not just one species,
but all species, separate models for each species were not
possible. To balance performance across species as well as both
prediction of species occurrence and proportional basal area, we
identified a community consensus model for which the majority
of species (>50%) included those covariate groups for the best
performing models in terms of at least one of four performance
metrics: TSS, overall accuracy, R?, or RMSE.

Using the community consensus model identified during
model selection and 20.1-m rasters of all covariate groups, we
generated rasters of species basal area across the entire footprint
of the DAP dataset (Figure 1). We mapped the basal area for
each of the 10 focal tree species and calculated the total basal
area as the sum of species basal area at 20.1-m resolutions.

To
environmental and forest structural conditions, we examined

quantify modeled species’ sensitivity to key
the relationships between predicted proportional basal area
and moisture limitation or canopy height across the 1,027 FIA
plots. Moisture limitation was represented by water deficit,
which is related to the difference between potential and actual

evapotranspiration (Lutz et al.,, 2010; Dobrowski et al., 2013).
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FIGURE 6

Mean (solid line) and 95% confidence interval (dashed line) for
proportional basal as a function of water deficit for (A) five
drought tolerance groups and (B) four fire tolerance groups.

Forest canopy height was represented by the 95th percentile
height from the DAP metrics. Similar metrics for lidar, such
as the 95th percentile height or returns, are strongly related to
forest structure and complexity (Kane et al., 2010a,b). Because
we are focused on proportional data, we modeled proportional
basal area as a function of water deficit or 95th percentile height
with a linear regression truncated at zero and one. To fit models,
we used the function tobit in the AER package (Kleiber and
Zeileis, 2008) within the R statistical computing environment
version 4.0.3 (R Development Core Team, 2020). Based on
these models, we generated mean and 95% confidence intervals
for predictions.
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Mean (line and symbols) and 95% confidence interval (whiskers)
for proportional basal as a function of 80th percentile height
from DAP for (A) four species showing an increasing response
and (B) six species showing a decreasing response.

Results

Identifying best covariate groups: The
community consensus model

The combination of covariate groups that resulted in
the highest-performing models for species occurrence and
proportional basal area differed by species and metric under
consideration (Table 2). For most species, tree species
proportional basal area predictions were most accurate (greatest
R? and least RMSE) for models that included climate,
topography, location, DAP, Sentinel-2, and S2_sd covariate
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groups. For species occurrence predictions, model skill (TSS)
was greatest for models including climate, topography, and
location and overall accuracy was greatest for models including
climate and location. Based on our criteria (predictor groups
included in best models based on R?, RMSE, TSS, or overall
accuracy for greater than 50% of species), we identify the
community consensus model as the one including climate,
topography, location, DAP, Sentinel-2, and S2_sd covariate
groups. Note that this community consensus model is a
compromise across all species as GNN predicts species
occurrence and abundance conditioned on the rest of the
community, resulting in a community consensus model that is
not necessarily the best performing for any individual species.
Unless otherwise stated, results reported for the remainder of
this paper focus on the community consensus model.

Plot-level accuracy

Accuracy for the community consensus model varied
depending upon the species and metric being examined
(Figure 2). At the scale of individual plots (25 pixels), TSS
ranged from 0.06 to 0.76 (mean = 0.43) and overall accuracy
ranged from 47% to 83% (mean = 65%) for the community
consensus model. Commission rates at the plot level were
generally high (> 40%) for all species. Assuming extremely
low basal area predictions (BA < 1 m? ha~!) were functional
absences of the species increased accuracy of occurrence
predictions, with TSS ranging from 0.32 to 0.78 (mean = 0.52)
and overall accuracy ranging from 68 to 92% (mean = 80%).
For both standard predictions and predictions with species basal
area set to zero for functional absences, R? ranged from 0.08
to 0.55 (mean = 0.20) and RMSE ranged from 0.10 to 0.31
(mean = 0.15) for proportional basal area.

To assess the importance of remote sensing in the modeling
of species composition, we examined the differences in the
accuracy of occurrence predictions (TSS and overall accuracy)
and proportional basal area (R? and RMSE) for each species for
the best performing models with and without Sentinel-2 and/or
DAP (Figure 3). The addition of remote sensing increased TSS
for 70% of species (—0.12 to 0.16; mean = 0.03) and decreased
overall accuracy for 90% of species (—13 to 2%; mean = —5%).
Including remote sensing led to dramatic increases in R? for
all species (0.24-0.45; mean = 0.33) and small reductions in
RMSE for 80% of species (—0.06 to 0.00; mean = —0.02) for the
proportional basal area.

Aggregating species by drought and fire tolerance groups
indicated that proportional basal area was more predictable for
very tolerant and very intolerant classes compared to moderate
classes (Figure 4). While the variability in predictions relative
to observations was relatively high (i.e., broad distributions),
predictions averaged across plots tended to increase with
observed values, though often underpredicting at greater levels.
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These results indicate that models can capture general patterns
of species proportional basal area, though the best agreement
(i.e., values closer to 1:1 line and ranges of predictions are
narrower) between predicted and observed appears to be at
the lower proportional basal area for most species, which is
where there is the most plot support. The underprediction of the
proportional basal area appeared greatest for moderate drought
tolerance and intolerant drought and fire groups.

Regional and local patterns in species
composition

Mapping predicted proportional basal area across the
entire study region (eastern WA forests) highlights divergent
distributions in proportional basal area, and thus species
dominance, among species (Figure 5) likely associated with
broad-scale climatic controls. While P. menzeisii is found in
most (78%) forests in the region, it dominates (proportional
basal area >0.5) most strongly in the southwestern and
northwestern portions of the study area. The drought-tolerant
P. ponderosa also dominates over relatively large areas, most
notably along the lower elevational fringes of the study area.
Other species appear to be locally dominant, but not over such
large areas.

Given that species can be grouped based on tolerance
to stressors or disturbance agents, such as drought (e.g.,
Figure 4), we examined patterns of proportional basal area of
tree species grouped by drought and fire tolerance in relation
to moisture limitation. To represent moisture limitation, we use
the difference between potential and actual evapotranspiration,
or annual water deficit (sensu Lutz et al., 2010), with increasing
values indicating that local water availability is not sufficient
to track atmospheric demand. The proportional basal area of
fire and drought tolerance groups varied as a function of water
deficit (Figure 6). Very drought and fire tolerant tree species’
proportional basal area increased as the water deficit increased,
whereas fire and drought intolerant and very-intolerant species
increased their proportional basal area as the water-deficit
decreased.

To understand how local forest structural conditions might
constrain tree community composition, we examined species
proportional basal area as a function of 95th percentile height.
Four species decreased and six species increased proportional
basal area with 95th percentile height (Figure 7). For low 95th
percentile heights, P. menziessi, P. ponderosa, and A. lasciocarpa
were the most common, whereas, at greater 95th percentile
heights, P. menziessi and T. heterophylla were the most common.

At the landscape level, tree species’ compositional patterns
and their relationships to stand structure may be more complex.
For example, in an area in the southwestern portion of our study
region, the signature of a previous timber harvest (low basal area
region in the southern portion of the map) is reflected not only
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in the total basal area, but also in proportional basal area of
three dominant species in this area (Figure 8). The young, low
basal area forests (Figure 8D) were dominated by P. menzeisii
(Figure 8A) and P. ponderosa (Figure 8C). In contrast,
older, high basal area forests (Figure 8D) were dominated
by P. menzeisii (Figure 8A) and A. grandis and concolor
(Figure 8B). Furthermore, the young forests exhibit substantial
heterogeneity with patches of near complete dominance of P.
ponderosa.

Discussion

The literature regarding tree species classification has been
expanding but is usually too localized to form the basis for forest
inventory or regional approaches (Fassnacht et al.,, 2016). The
current research provides a regional approach to tree species
community mapping while also addressing the multi-scale
drivers of coniferous tree species occurrence and abundance
in eastern Washington, USA. The differences in predictive
capacity of models with and without remote sensing observed
in this study imply that abiotic environmental drivers, such as
climate and topography, are insufficient to explain geographic
patterns of tree community structure for 10 coniferous tree
species in eastern Washington, USA. In our eastern Washington
study region, incorporating remote sensing into modeling and
mapping improved proportional basal area predictions, but not
necessarily presence and absence predictions (Figures 2, 3),
results similar to others in the region. For example, the addition
of height information from lidar with satellite imagery and
environmental data for GNN resulted in little improvement
in species basal area predictions in central Oregon (Zald
et al,, 2014). In western Washington, climate, topography, and
location without remote sensing explained most of the patterns
of species presence and absence (Ohmann and Gregory, 2002;
Ohmann et al., 2007). Therefore, results from this and previous
studies indicate that the addition of remote sensing is most
useful for species abundance as opposed to species occurrence
in the Pacific Northwest, USA.

The substantial increases in R? for the proportional basal
area (0.24-0.45; Figure 3) further supports the concept that
remote sensing (e.g., forest height and spectral properties)
provide valuable improvements to tree species distribution
predictions (Zimmermann et al., 2007; He et al., 2015), including
relative abundance related to forest stand structure. As noted for
tree species distribution modeling (Canham and Thomas, 2010),
our forest mapping results support the idea that environmental
conditions constrain species ranges (e.g., Rehfeldt et al.,, 20065
Ohmann et al., 2007; Coops and Waring, 2011), but local forest
dynamics processes, such as disturbance, post-disturbance
seed production and regeneration, and fine-scale variation in
topo-edaphic conditions, may be more important for species
abundance and dominance. Such multi-scale drivers form the
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FIGURE 8

Example of spatial variation in the proportional basal area of (A) P. menzeisii, (B) A. grandis and A. concolor, and (C) P. ponderosa compared to

(D) total basal area. This area is northeast of Trout Lake, WA, United States.

basis of metacommunity ecology frameworks for integrating
local and regional ecological dynamics (Thompson et al., 2020).

Geographic patterns in tree species’ proportional basal area
implied the dominant controls on tree community structure
depended on the scale of inference. Across the entire study
region, species exhibited distinct distributions and areas of
community dominance (Figure 5), which might be related to
plant functional traits. When species were aggregated based
on drought or fire tolerance (Table 1), very intolerant and
very tolerant groups’ tree proportional basal area were better
predicted compared to moderate tolerance groups (Figure 4),
indicating potentially common drivers of species distribution
and dominance for species specialized to specific moisture
conditions, either wet or dry. The mean proportional basal
area for intolerant and very intolerant drought and fire species
decreased with water deficit and the very tolerant group
increased (Figure 6), indicating that water limitation was an
important broad-scale constraint on tree species community
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composition. Additionally, the proportional basal area of some
species increased and other decreased with canopy height across
the entire study region (Figure 7). The patterns were generally
consistent with the increasing dominance of P. menziessi,
T. heterophylla, T. plicata, and A. amabilis (Figure 5) in
taller forests often associated with the western extent of our
study region (Figure 1). That gradient may reflect broad-scale
differences in plant community associated with the influence of
moisture limitation on forest productivity. However, at smaller
scales (e.g., sub-kilometer), proportional basal area patterns
appeared to be related to forest biomass, perhaps reflecting the
local role of forest disturbance in shaping species dominance
(Figure 8).

As our results indicate, accurate and scalable predictions
of species composition based on satellite imagery remain
challenging (sensu Walsh, 1980). In terms of species occurrence,
commission errors were substantial, though censoring small
basal area predictions (<1 m? ha~!) to zero dramatically
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improved performance while having little effect on proportional
basal area predictions (Figure 2). It seems likely to us that pixel
aggregation (25 pixels forming the plot footprint) contributed
to the commission errors, which would also explain why
excluding low basal area species seems to dramatically improve
accuracy for species occurrence predictions but have little
influence of proportional basal area (Figure 2). Substantial
uncertainties in predicting forest composition and dominance
(e.g., Figure 4) were observed even when examining better-
predicted species (e.g., PIPO). There was some indication
of improvements in accuracy when grouping by drought
or fire tolerance (Figure 4), implying that communities of
tree species may be constrained by common environmental
filters.

We anticipate several areas for improvement of species
composition mapping in the Pacific Northwest and elsewhere.
Our current study was limited by the available plot pool
due to the area where data were available (Figure 1) and
the time frame for which we had plot data (2012-2016).
Temporal mismatches between the remote sensing (2017) and
the plot data may also have contributed to modeling and
mapping errors which we expect would improve as additional
years of remote sensing become available. As additional plot
measurements and remote sensing years are integrated into
mapping frameworks, we anticipate improved maps. We expect
reduced noise in Sentinel-2 imagery going forward as surface
reflectance calculations are being applied to the backlog of
imagery and temporal smoothing associated with change
detection algorithms can be applied as the satellite’s tenure
approaches a decade (Kennedy et al., 2018; Bell et al,, 2021). As
that time series grows longer, the rapid return frequency of the
Sentinel-2 constellation will facilitate improved characterization
of phenological metrics useful for species mapping with
multispectral data (Wilson et al, 2012; Pasquarella et al,
2018; Puletti et al., 2018; Grabska et al., 2019; Adams et al.,
2020).

High-resolution aerial photography, upon which DAP
is based, may also provide a basis for characterizing sub-
pixel forest structures relevant to identifying tree species.
Texture metrics of NAIP imagery can be useful in mapping
canopy and sub-canopy tree species, such as in montane and
subalpine forests in southern Colorado (Savage et al., 2017).
Furthermore, if DAP can become a common extension of
the existing state-wide imagery acquisitions of NAIP, there
will be opportunities to incorporate wall-to-wall vegetation
height information into interannual and decadal monitoring
programs.

This research focused only on eastern Washington, USA,
and the 10 coniferous tree species that dominate those
landscapes. Across these landscapes, forests differ dramatically
in structure, from open woodlands to closed canopy, multi-
layered forests, and climate varies substantially, with for
example mean annual temperature ranging from —6.7 to 12.3°C
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(Figure 1). However, it is possible that our results would
not be replicated in other geographies where different species
dominate or different processes shape species composition
and community structure. Community ecology in general has
recognized the importance of multiscale drivers of community
assembly and structure (Brown et al,, 2017), but there is still a
need to understand how the importance of differing processes
variy across landscapes with different species pools, climates,
and disturbance histories. Additionally, location variables used
in modeling may perform as a proxy for other environmental
drivers, including climate and topography, soils, historical
patterns of disturbance associated with human activity, and
limitations to dispersal not explicitly represented in the
analyses. In particular, it would be interesting to examine
species distributional patterns as a function of proximity to
human population centers as those areas may differentially
impact disturbance dynamics. Future research should examine
variation in the predictive capacity of environmental vs. remote
sensing data for tree species composition across other regions to
assess the generality of our results.

Conclusion

This study highlights the utility of remote sensing as a
foundation for mapping tree species composition, especially
when the proportional basal area of tree species and their
dominance in local communities must be assessed. We found
that in eastern Washington, USA, differing combinations
of environmental data (climate and location) were typically
sufficient to predict the occurrence of 10 temperate coniferous
tree species, but that topography and remote sensing were
also required to predict tree community structure and
composition. Differences in model performance, specifically
the greater contribution of remote sensing to the prediction
of proportional basal area vs. presence and absence, show
how different ecological processes may constrain species
abundance (forest disturbance and structure) vs. occurrence
(environmental niche). Further work is needed to assess
the generality of these results across biomes and plant
functional types. However, new remote sensing, such as
Sentinel-2 and DAP, appears promising as a basis for mapping
as well as making inferences on the fine and broad-scale
processes contributing to spatial patterns in biodiversity and
community structure.
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