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Following one of the driest years on record, millions of hectares of forests in

southeast Australia were burned in the 2019–2020 “Black Summer” wildfires. In

addition to the areas burned, drought related canopy collapse, dieback and tree

mortality was widely observed. In this paper, we present a method to map canopy

damage due to drought and fire across a large area. Sentinel-2 satellite imagery

was used in a monthly time series to highlight areas of forest where the Normalized

Burn Ratio index was significantly below a pre-disturbance “stable” period. The stable

period was defined as the 3 years prior to 2019 and the disturbance thresholds are

based on bioregion specific standard deviations below pre-disturbance means. The

novel methods enabled drought impacted forests to be identified, including those

which were subsequently burned by wildfire. Across the 20 Mha of forests studied,

9.9 Mha (49%) fell below the disturbance threshold. Of that, 5.8 Mha was disturbed

by fire and a further 4.1 Mha by drought outside of the fire extent. Within the fire

extent, almost 0.9 Mha was identified as being significantly drought affected prior

to being burned. An analysis of spectral recovery following substantial rainfall from

February 2020 onward indicates that most of the areas impacted by both drought

and fire have similar rates of recovery to those impacted only by fire. There are some

areas, however, where the combined effects of the “double disturbance” appears

to be hindering recovery. The methods presented here are easily transferrable and

demonstrate an approach for monitoring forest disturbance at higher temporal and

spatial scales than those typically used.
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1. Introduction

Drought and associated hot and windy weather conditions were major drivers behind the
2019–2020 mega-fires in southeast Australia (Nolan et al., 2020; Bowman et al., 2021). The fires
have been described as unprecedented in size and severity (Nolan et al., 2020; Collins et al.,
2021) and may be representative of global shifts in fire regimes due to climate change (Nolan
et al., 2021a). The fires, and their impacts, have received much attention, both in the media and
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among the academic community (Boer et al., 2020; Nolan et al., 2020,
2021a; Bowman et al., 2021). In addition to the fire impacts, the
drought itself caused widespread canopy collapse, dieback and tree
mortality in some areas (Nolan et al., 2021b).

Fire and drought are a regular fixture in southeast Australia, often
interspersed with flooding rains. The fluctuating weather patterns are
largely driven by the El Niño–Southern Oscillation (ENSO) and to
some degree, the Indian Ocean Dipole and the Southern Annular
Mode (Pui et al., 2012). The links between drought, fuel dryness
and the propensity of southeast Australian forests to burn are well
established (Bradstock, 2010) and much of the native vegetation has
evolved alongside regular fire, with adaptive mechanisms such as
epicormic resprouting and other fire response traits that support
recovery (Collins, 2020). However, there is a concern, that, due to
climate change, the resilience of Australian forests may be challenged
by more frequent droughts and fires (Bowman et al., 2021; Nolan
et al., 2021b), a concern echoed across the world (Anderegg et al.,
2016; Miralles et al., 2019).

In many regions of the world, drought stress can trigger
secondary causes of disturbance and tree mortality, such as bark
beetle infestations (Negrón et al., 2009; Fettig et al., 2019; Netherer
et al., 2019). In Australian native forests, insects and pathogens
are not generally implicated in large scale disturbances (Montreal
Process Implementation Group for Australia and National Forest
Inventory Steering Committee, 2018). Under extreme drought, it is
more likely that failure of the plant hydraulic system is the principal
mechanism leading to crown death and mortality (Choat et al.,
2018). The duration of the drought also impacts the ability of trees
to survive, due to the ongoing demand for carbohydrate reserves
(Mitchell et al., 2013). While a number of studies have investigated
the impacts of drought on native Australian vegetation at the tree
and plot level (Matusick et al., 2013; Mitchell et al., 2014; Nolan et al.,
2021b), in simulated modeling scenarios (De Kauwe et al., 2020) and
using coarse resolution satellite data (Jiao et al., 2020), methods for
broadscale, high resolution mapping and monitoring are lacking.

Satellite remote sensing offers the most practical and affordable
means of undertaking whole-of-landscape assessments into the
impacts of major drought and fire events. One of the key advantages
of satellite Earth observation is the continuous and repeatable
measurements on offer. Consequently, the use of satellite time series
for characterizing forest disturbances and subsequent recovery is
increasing (Kennedy et al., 2012; White et al., 2017; Nguyen et al.,
2018). Landsat satellites, in particular, have been used extensively,
due to the free and accessible archive and data from 1972 onward
(Zhu, 2017). The Sentinel-2 satellites (launched in 2015 and 2017)
provide comparable multispectral data to Landsat, enabling similar
techniques to be applied and the potential for cross-platform
harmonization (Claverie et al., 2018; Wulder et al., 2019; White and
Gibson, 2022).

Many of the established Landsat time series techniques,
particularly those operating across large areas, use one representative
image per year, typically from the summer months (White et al.,
2014). A time series of a single band, or a spectral index derived
from multiple bands, is then analyzed through time at a pixel level
to detect disturbances and trends (Kennedy et al., 2010; Hermosilla
et al., 2015a). By undertaking the temporal analysis on every pixel
in the image stack, maps of disturbance at an annual time step can
be created (White et al., 2017). This type of analysis is well suited to
large areas and abrupt disturbances. For example, White et al. (2017)
presented a nationwide characterization of wildfire and harvesting

disturbances across Canadian forests, while Kennedy et al. (2012)
investigated four disturbance types (fire, harvest, insect, and other)
in the Pacific northwest, USA. Gradual trends, which may indicate
ecosystem changes, can also be extracted from satellite time series by
using regression techniques (Vogelmann et al., 2012).

Few studies have used moderate resolution satellites to
specifically target drought related forest disturbance. Moreno-
Fernández et al. (2021) used Landsat time series to explore
drought related dieback in Pinus pinaster forests in Spain, while
Brouwers et al. (2013) created change maps from Landsat images
to map drought impacts in Jarrah forests in Western Australia.
Other large area studies of drought impacts used lower spatial
resolution data from sensors like the Moderate Resolution Imaging
Spectroradiometer (MODIS), and the Advanced Very High
Resolution Radiometer (AVHRR). For example, Jiao et al. (2020)
used both MODIS and AVHRR data to explore vegetation changes
across the Australian continent during a protracted drought period
from 1997 to 2009. Caccamo et al. (2011) assessed the sensitivity
of various MODIS-derived vegetation indices to drought in high
biomass ecosystems in southeast Australia. While coarse resolution
satellite data can provide valuable insights into broadscale trends, the
finer spatial detail offered by satellites like Landsat and Sentinel-2 is
required for many ecological applications (Kennedy et al., 2014).

The common approach of using an annual time step to monitor
forest disturbance and recovery is well suited to places like Canada
and Scandinavia, where many trees are deciduous or covered in snow
during winter, and recovery from disturbance is slower (Bartels et al.,
2016; White et al., 2018). However, these techniques have limitations
in southeast Australia, where forests often recover remarkably quickly
(Gibson and Hislop, 2022) and disturbance is a frequent occurrence
(Hislop et al., 2021). Australian vegetation also has unpredictable
seasonal phenology, driven by large variations in weather patterns
(Moore et al., 2016). Furthermore, when two or more disturbances
occur in the one season, an annual time series will only detect a
single event and, therefore, the opportunity for a deeper analysis into
causal processes is forfeited. While there are some change detection
algorithms that are designed to ingest all available images (Zhu and
Woodcock, 2014) or a dense time series (Verbesselt et al., 2010), their
ability to characterize multiple disturbances in a short time frame
is questionable. In order to disentangle drought and fire impacts,
such as those experienced in southeast Australia in 2019–2020, both a
dense time series and the ability to identify two disturbances in quick
succession is required.

We postulated that there were four distinct drought-fire scenarios
that broadly impacted southeast Australian forests during the
summer of 2019–2020: drought only, fire only, drought followed by
fire and fire followed by drought. The aim of this study was therefore
to approach the question of how medium resolution satellite imagery
could be used to distinguish between these different categories,
particularly highlighting areas of forests showing major drought
stress prior to being burned. In this paper, we present a novel method
using a monthly time series of Sentinel-2 imagery, in conjunction
with auxiliary fire information, to identify areas of predominantly
eucalypt forest disturbed by drought and/or fire during a monitoring
period between August 2019 and March 2020. We defined a pre-
disturbance (stable) state in terms of the mean and standard
deviation over the preceding 3 years (2016–2018) and characterized
disturbance impacts by the number of standard deviations below this
mean value. By using this approach, we were able to define areas
impacted by drought and fire, along with areas that were drought

Frontiers in Forests and Global Change 02 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1018936
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1018936 January 28, 2023 Time: 14:26 # 3

Hislop et al. 10.3389/ffgc.2023.1018936

impacted prior to being burned (a double disturbance). Fires which
occurred in the previous season (2018–2019) were also identified (fire
followed by drought) and forest spectral recovery in each category
was investigated.

2. Materials and methods

2.1. Study area

The study area broadly consists of the eastern halves of Victoria
and NSW (including the Australian Capital Territory—ACT), located
between 28 and 39◦S latitude and 146◦ to 154◦ longitude (Figure 1).
The area is covered by 10 distinct bioregions, based on common
climate, geology and native vegetation (IBRA, 2017) and contains
approximately 20 Mha of predominantly native eucalypt forests.
The term “eucalypt” is typically used to refer to trees in three
genera (Angophora, Corymbia, and Eucalyptus), which together
comprise approximately 800 different species (Montreal Process
Implementation Group for Australia and National Forest Inventory
Steering Committee, 2018). The native forests across the region are
diverse, with forest structure and composition influenced by both
north-south and east-west climate gradients. In the more arid west,
dry sclerophyll woodlands dominate, whereas along the coast, forests
are denser and wetter, tending to subtropical in the north and cooler,
temperate forest in the south (Fisher et al., 2016). Also in Figure 1 is a
chart indicating rainfall variations for 2019, shown as the number of
standard deviations below the mean (1980–2018), based on gridded
data from the Bureau of Meteorology (2019). The drought occurred
from 2017 to 2019, with the most intense period in mid to late 2019
(Nguyen et al., 2021). Fires started in northern NSW as early as
August 2019 and progressed southwards over the next 5–6 months
(Bowman et al., 2021; Nolan et al., 2021a).

2.2. Forest and fire masks

Forest areas were delineated using a national forest extent map
(Australian Government, 2018), which is modeled from Landsat data
and provided at a 25 m resolution. It is based on the Australian
definition of forest: mature height greater than 2 m and canopy
cover greater than 20% (Montreal Process Implementation Group for
Australia and National Forest Inventory Steering Committee, 2018).

Burned areas in NSW and the ACT were defined using the
NSW Government’s fire history data (Department of Planning
Industry and Environment, 2020). The equivalent was used in
Victoria (Department of Environment Land Water and Planning,
2020). To establish the approximate date that areas burned, the
Moderate Resolution Imaging Spectroradiometer (MODIS) burned
area product (MCD64A1 Collection 6) was used. MCD64A1 is a daily
record of burned areas across the globe at 500 m pixel resolution
(Giglio et al., 2018). Some areas mapped as burned in the government
data were not identified in MCD64A1 (i.e., omission errors). To
approximate the date of burn for these areas, an iterative 3 × 3 pixel
filter was applied to MCD64A1 product to fill in the data gaps. This
involved each null-value pixel being given the mean value of its 8
surrounding pixels, effectively growing the size of the burned area
patches by one pixel in each iteration. The process was repeated 50
times until all missing areas were filled. The filled product was then

clipped to burned area extent from the government agencies. The
forest mask (25 m pixel), fire history layers (polygon) and MODIS
(250 m pixel) were all transformed to a common 20 m pixel grid in
an Albers Equal Area projection, to align with the Sentinel-2 satellite
data.

2.3. Sentinel-2 time series

Sentinel-2 level 1C images were acquired through Google Earth
Engine (Gorelick et al., 2017). Firstly, the Normalized Burn Ratio
(NBR) index was calculated for all available images in the pre-
disturbance baseline period of 2016–2018 (Eq. 1). Although NBR
was originally proposed for burn severity assessments (Key and
Benson, 2006), it has been widely adopted as a general purpose forest
disturbance index (Kennedy et al., 2012, 2018; Hermosilla et al.,
2015a; Hislop et al., 2021). NBR makes use of short-wave infrared
reflectance, which has been shown to be sensitive to forest structure
and moisture (Schroeder et al., 2011).

NBR =
Band 8− Band 12
Band 8+ Band 12

(1)

The mean and standard deviation of the NBR across the entire
baseline period were then calculated. This operation was undertaken
on a per pixel basis after cloudy pixels were masked with the Sentinel-
2 cloud probability layer. The years of 2016 to 2018 were chosen to
represent a stable pre-disturbance baseline across the entire region.
Although the drought began in 2017, the most intense period was in
mid to late 2019 (Nguyen et al., 2021), thus we made the assumption
that the worst drought impacts were not evident until 2019, but it
may not hold true in all cases. The standard deviation was used as
an indicator of the natural variation of the pixel through time. An
alternative might have been to first remove the seasonality with a
harmonic model (e.g., Verbesselt et al., 2010). However, this approach
is much more computationally intensive. In addition, the vegetation
in Australia is strongly influenced by irregular rainfall patterns
(Moore et al., 2016) and thus may not adhere to regular seasonal
profiles.

In the next step, for each month from August 2019 to March
2022 (the disturbance “monitoring” period), a NBR composite image
was constructed using the median of all cloud-free pixels. Typically,
around 1000 images per month contributed to the composite,
resulting in a single representative monthly image. NBR values were
then normalized using Eq. 2.

z =
x− µ

σ
(2)

Where µ and σ are the mean and standard deviation of the NBR
values from 2016 to 2018 and x is the median NBR value from each
month (August 2019 onward). The time series of z-values forms the
basis for the main analysis in this paper (Figure 2).

2.4. Identifying drought and fire affected
areas

The monthly NBR time series was analyzed to establish areas
impacted by drought and fire between August 2019 and March
2020. Principally, this involved flagging pixels that dropped below a
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FIGURE 1

Study area, indicating bioregions and forest cover. Rainfall variations from the annual average (1980–2018) are also shown for 2019.

certain z-value threshold in any given month. In the context of this
study, the drought related disturbance targeted was that of “canopy
collapse,” where the tree foliage has died. This may be followed by
tree dieback and mortality in some cases, but canopy collapse was the

initial symptom that we aimed to detect. Because forest types vary
across the region, they naturally have different spectral and temporal
signatures. Therefore, different disturbance threshold values were
used for each bioregion.
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FIGURE 2

Example of an individual pixel through time. Sentinel-2 NBR values are shown in gray and the monthly median values for 2019 onward in blue. The
horizontal lines are the mean and standard deviation for the stable period (2016–2018), used to calculate the z-values (see Eq. 2), as shown on the
secondary y-axis.

To objectively define appropriate threshold values, a previously
collected human interpreted reference dataset was used (Hislop et al.,
2021). The dataset consists of 500 randomly selected 1 ha plots in the
forested areas of each bioregion (5,000 in total), which were visually
interpreted using Landsat data and available ancillary information to
establish disturbance history from 1988 to 2020. Due to the large areas
disturbed by either fire or drought during 2019–2020, the reference
dataset contained adequate samples to compute baseline thresholds
to use in this study.

The threshold computation was achieved by first creating a
Sentinel-2 composite image based on the median NBR value from
January and February 2020 (the period when the area disturbed was
greatest across the entire study area). The composite image was then
converted to z-values, using the method described in section 2.3. The
corresponding z-values were then extracted for each sample in the
reference dataset. Each sample was based on the mean value of all
20 m pixels whose center was within the 1 ha plot. The result of
this exercise was a reference dataset with two classes (disturbed and
undisturbed), along with corresponding z-values. For each bioregion,
the optimal threshold value was computed by incrementally changing
the threshold value until the class errors (sensitivity and specificity)
were balanced (Table 1).

Following the establishment of the bioregion specific thresholds,
each month between August 2019 and March 2020 was analyzed
to identify areas that were below the threshold values. Each month
was then cross-referenced with the monthly fire extent layer (see
section 2.3) to assign a label of either fire or drought. This enabled
areas within the final fire extent to be classified as drought impacted
prior to being burned. A pragmatic decision was made to label
disturbances as either fire or drought. Other disturbance agents may
have been present, but these were expected to affect a comparatively
small area and therefore have little effect on overall results. For

example, timber harvesting in any given year has been estimated to
impact less than 0.15% of the forest estate (Hislop et al., 2021). To
account for outliers (e.g., data anomalies due to unmasked cloud
contamination), pixels needed to meet the threshold at least twice
during the period from August 2019 to April 2020 (1 month extra
than the monitoring period). In addition to capturing the 2019–
2020 fires, areas that were flagged as disturbed but corresponded
with fire boundaries from the previous season (2018–2019) were
also identified, so that they were not incorrectly labeled as drought.
Note that the disturbed areas are defined purely with the Sentinel-
2 satellite imagery. The fire datasets, which often include unburnt
patches and non-forest, were only used to assign the disturbance type
label.

2.5. Forest recovery

Across the region, substantial rainfall started falling from
February 2020 and all major fires were out by March. The period from
March 2020 to February 2022 was analyzed to explore forest recovery
in terms of spectral response. Each month was processed as above
to determine how long areas remained under the thresholds (i.e.,
in a “disturbed” state). In addition to this analysis, 10,000 random
pixels were selected in each of five categories: (1) undisturbed, (2)
disturbed by drought only, (3) fire in 2018–2019, (4) fire in 2019–
2020, and (5) both drought and fire. The extracted z-values of
these pixels at different time periods represented: (i) just-disturbed
(January–February 2020), (ii) 1-year post-disturbance (November–
December 2020), and (iii) 2-years post-disturbance (November–
December 2021). The months of November and December were
used to represent 1- and 2-year recovery because the earlier
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TABLE 1 Mean and standard deviation of z-values (see Eq. 2) derived from reference data samples and a January–February 2020 NBR composite image,
along with the calculated threshold values for each bioregion.

Bioregion Disturbed
mean

Standard
deviation

Undisturbed
mean

Standard
deviation

No. of disturbed
samples

No. of undisturbed
samples

Threshold

Australian Alps −4.34 2.28 −0.80 0.65 174 237 −1.8

Brigalow Belt South −2.15 0.82 −1.39 0.44 136 311 −1.7

Nandewar −2.49 1.00 −1.59 0.56 168 243 −1.9

New England Tablelands −3.72 1.73 −1.66 0.80 280 150 −2.3

NSW North Coast −5.22 2.71 −2.03 0.97 295 171 −2.9

NSW South Western Slopes −3.23 2.46 −1.37 0.40 104 346 −1.7

South East Corner −7.66 3.54 −2.16 0.88 324 117 −3.5

South Eastern Highlands −4.95 2.85 −1.37 0.63 117 311 −2.0

South Eastern Queensland −4.17 2.53 −1.59 1.07 247 210 −2.3

Sydney Basin −5.12 3.13 −1.27 0.59 239 214 −2.2

TABLE 2 Area of forest (‘000 ha) disturbed in each category and bioregion.

Bioregion Bioregion area Forest area Fire 18–19 Fire 19–20 Drought Drought and fire Total disturbance

Australian Alps 1233 1188 23 309 51 35 418 (35)

South Eastern Highlands 8226 4976 128 761 569 131 1589 (32)

Sydney Basin 3623 2635 2 1029 185 71 1286 (49)

Brigalow Belt South 5623 1608 1 2 848 11 862 (54)

Nandewar 2073 698 0 26 367 17 410 (59)

New England Tablelands 2857 1313 58 242 501 124 925 (70)

NSW North Coast 3997 2937 9 884 623 301 1818 (62)

NSW South Western
Slopes

8681 1389 3 97 435 11 546 (39)

South East Corner 2532 2173 13 1056 60 103 1232 (57)

South Eastern
Queensland

1655 1044 12 170 460 133 775 (74)

Total 40500 19961 250 4577 4098 938 9862 (49)

Percentage of forest area disturbed shown in brackets.

analysis suggested that, due to seasonal effects, this was the optimal
assessment window across the study area as a whole.

2.6. Accuracy assessment

The final maps of drought and fire disturbance were assessed by
an independent expert with no previous involvement in the methods
development or analysis. For this assessment, 200 random sample
pixels were drawn from the samples used in the forest recovery
analysis, stratified equally by four categories: (1) undisturbed, (2)
disturbed by drought only, (3) fire in 2019–2020, and (4) both
drought and fire in 2019–2020. The 2018–2019 fire areas were not
assessed, as these events happened before the monitoring period. The
reason these areas were identified is that they had not yet recovered by
the start of the monitoring period. The interpreter visually inspected
monthly Sentinel-2 images and an extracted NBR time-series to
assign the correct class for each sample, an approach conceptually
similar to previous Landsat-based studies (Cohen et al., 2010; Senf
et al., 2018; Hislop et al., 2021). The validation dataset was compared
against the final maps by way of a confusion matrix to determine

accuracy. The balanced accuracy for each class is presented, which
refers to the average of the sensitivity (true positive rate) and the
specificity (true negative rate), as recommended by Gibson et al.
(2020).

3. Results

3.1. Area disturbed

The analysis of the Sentinel-2 imagery using the bioregion specific
z-value thresholds identified 9.86 Mha (49%) of forest impacted
across the study area between August 2019 and March 2020 (Table 2).
Of that, 5.51 Mha was disturbed by fire in 2019–2020, 250,000 ha by
fire in 2018–2019 and 4.10 Mha by drought outside of the fire extent.
Within the fire extent, 938,000 ha was identified as being significantly
drought affected prior to being burned in 2019–2020. Across the
different bioregions, the NSW North Coast, South Eastern Highlands,
South East Corner, and Sydney Basin recorded the greatest amount of
forest disturbed (Table 2). Drought impacts were found to be more
widespread in the north than in the south (Figure 3). The timing and
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FIGURE 3

Map of disturbed areas in each class and the corresponding aggregated areas of disturbance across 50 km slices of latitude, where the darker colors
indicate a greater area under the threshold. A zoomed in map of a small area is also shown.

duration (time spent under the threshold) is shown in Figure 3 for
slices of latitude that correspond with the map (i.e., disturbed area
totals were aggregated for every 50 km in the north-south direction).
This shows that the event impacts started earlier in the north and
gradually moved south as spring and summer progressed. It also
indicates that forests remained under the thresholds for longer (i.e., in
a disturbed state) in the south compared with the north. A “zoomed
in” map of an example area is also shown in Figure 3 to indicate the
spatial detail of the final product.

3.2. Disturbance-recovery time series

The peak disturbance period with respect to the largest area of
forest being in a disturbed state was January 2021, where over 8 Mha
of forests were below the bioregion specific disturbance thresholds

(Figure 4). By April, following significant rainfall from February
onward, two thirds of the disturbed forests no longer fell below
the relevant thresholds, indicating substantial and rapid spectral
recovery. Figure 4 also indicates that spectral recovery is influenced
by seasonal effects, with increased areas of forest switching back to
below the threshold around November 2020 and a similar pattern
occurring in November 2021.

3.3. Drought-fire impacts on recovery

An analysis of 50,000 random pixels (10,000 in each category)
indicated that there was a greater change in NBR immediately
post-disturbance for areas impacted by fire compared with those
impacted by drought (Figure 5). Areas identified as impacted by
both drought and fire showed larger spectral changes (along with a
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FIGURE 4

Area disturbed (below the bioregion specific thresholds) in each category across time. Note that the drought and fire class has been separated into
pre-fire and post-fire categories.

FIGURE 5

Boxplots showing z-values (see Eq. 2) of 50,000 samples for the four disturbed categories and an undisturbed category in January–February 2020,
November–December 2020 (∼1 year recovery) and November–December 2021 (∼2 years recovery).

greater variability) than areas flagged as fire only. Due to the peak
area below the threshold occurring around November in the recovery
period (Figure 4), images from November–December 2020 and 2021

were chosen to represent 1 and 2 years post-disturbance, respectively.
After ∼2 years recovery, most areas impacted only by drought had
returned to their pre-disturbance NBR values. Areas identified as
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FIGURE 6

Boxplots showing z-values (see Eq. 2) for each bioregion for the four disturbed categories and an undisturbed category in January–February 2020,
November–December 2020 (∼1 year recovery) and November–December 2021 (∼2 years recovery).

burned in either 2018–2019 or 2019–2020 and those that were flagged
as impacted by both drought and fire appear to be recovering at much
the same rates, when viewed overall. However, in some bioregions
(New England Tablelands, South East Corner, and Sydney Basin),
areas with the double disturbance (drought followed by fire) are
showing signs of delayed recovery (Figure 6).

3.4. Accuracy assessment

The balanced class accuracies of the final disturbance map
compared against the independent interpreter’s visual assessment
ranged from 0.74 for the drought class to 0.83 for the fire class

(Table 3). The sensitivity (true positive rate) ranged from 0.61 for
drought to 0.75 for fire. Overall accuracy was found to be 0.67.

4. Discussion

The recent drought and wildfires in southeast Australia had
an enormous impact on the region’s forests. Satellite imagery from
medium resolution sensors onboard satellites like Sentinel-2 provide
an opportunity to quantify the extent and timing of canopy damage,
monitor recovery and identify areas of concern. Our results indicated
that almost 10 Mha (∼50%) of forests in the study area were impacted
by either or both fire and drought. A defining feature of this study was
to highlight areas of forest that were significantly drought affected
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TABLE 3 Confusion matrix and accuracy statistics from the independent evaluation of 200 sample pixels.

Reference

Drought Drought + Fire Fire Undisturbed Sensitivity Specificity Balanced accuracy

Map Drought 30 4 0 16 0.61 0.87 0.74

Drought + Fire 3 34 12 1 0.65 0.89 0.77

Fire 1 13 36 0 0.75 0.91 0.83

Undisturbed 15 1 0 34 0.67 0.89 0.78

before being burned. Using a monthly Sentinel-2 time series, cross-
referenced with auxiliary information from MODIS and government
fire records, provided a way to approach this problem. Our method
highlighted 938,000 ha of forest that had drought related canopy
damage prior to being burned. This approach contrasts with other
satellite-based change detection studies, which are typically geared
toward detecting annual disturbances (e.g., Kennedy et al., 2012;
Hermosilla et al., 2015b). Using an annual time step means that high
severity abrupt disturbances, such as fire, are often given precedence
(Hislop et al., 2021) and more subtle or short-lasting disturbances
may be missed. This is particularly relevant in an Australian context,
where the native forests can recover from disturbances extremely
quickly, as shown previously (Gibson and Hislop, 2022) and in this
study.

The overall accuracy assessment undertaken by an independent
expert showed that the maps have a reasonable accuracy, with
balanced accuracies ranging from 0.74 for the drought class to 0.83
for the fire class (Table 3). The overall accuracy, based purely on
the correctly classified pixels, was 0.67, which is comparable to other
satellite-based classification studies, particularly where more subtle
disturbances are included (Kennedy et al., 2012; Haywood et al.,
2016; Nguyen et al., 2018). Most of the disagreements between the
maps and the validation were found between the fire and fire plus
drought classes and between the drought and undisturbed classes.
The interpreter found 12 sample pixels that were not forest, due to
the original forest mask being a modeled product and therefore not
100% accurate. Most of these were mapped as undisturbed, which was
encouraging, given that the methods were designed specifically for
forest disturbance.

Normalization using the z-value approach is not particularly
common in forest related satellite time series literature. Coops et al.
(2009) used the technique with a MODIS based disturbance index,
while White et al. (2018) tested the method in terms of its ability
to represent spectral recovery. It also forms part of the Tasseled
Cap disturbance index proposed by Healey et al. (2005); however,
in this case the mean and standard deviation are derived from all
forested pixels within a certain area (i.e., spatially, not temporally).
In our study, the approach enabled us to highlight areas significantly
different from what could be considered their normal state, based
on a pre-disturbance baseline. The baseline period of 2016–2018 was
constrained by the availability of Sentinel-2 data (2A was launched
in 2015 and 2B in 2017). Although 2018 was also a year of drought
across the region, we made the assumption that the worst impacts
to forests were not widely apparent until 2019, when the drought
intensified (Nguyen et al., 2021). The use of a statistical approach for
selecting a stable period, as proposed by Verbesselt et al. (2012), may
be an alternative in future. However, in the context of our study and
given the authors’ knowledge of local conditions, manually selecting
the same stable period across the entire region produced the desired

outcome and was computationally efficient, particularly in the Google
Earth Engine environment.

The previously collected reference dataset (Hislop et al., 2021)
that was used here for model calibration was primarily based on
Landsat seasonal data and not specifically targeted to the 2019–2020
fire-drought event. In earlier trials, we used the same thresholds
across the entire study area (z-values of both −2 and −3 were
tested). However, to better represent differences in the forests across
the region, bioregion specific thresholds were considered more
appropriate, and the reference dataset was an objective way to define
these. The z-value approach depends both on the statistics for the
stable period and the specific thresholds used. Both elements can
undoubtably be improved upon, perhaps with the application of
targeted reference data and/or vegetation specific thresholds. As
mentioned in section 2.3 removing the seasonal component via
harmonic modeling may also be a possibility. While the thresholds
used were likely conservative (i.e., between 2 and 3 standard
deviations below the mean), using smaller thresholds would result in
an even greater area of forest being identified as impacted. The aim in
this study was to locate areas where canopy collapse was substantial,
as opposed to general dryness, which was evident almost across
the entire region. Coincident field or high-resolution data would be
needed to more consistently verify whether the thresholds accurately
represented canopy collapse. However, given that this study was
undertaken retrospectively with limited resources, these data were
not available.

Both Figures 3 and 4 show interesting disturbance-recovery
patterns, with clear seasonal and latitudinal components. Areas in
the north, which are subtropical, spent less time under the thresholds
compared with areas in the south, which are more temperate.
However, the number of months spent under the threshold value may
be better thought of as the time the forest was in a “disturbed” state
rather than an indication of how it is recovering post-disturbance.

While spectral recovery is somewhat limited in its ability to
represent structural and compositional recovery (Bartels et al., 2016),
studies have demonstrated that it can act as a reasonable surrogate
(White et al., 2019) and it is an area of research that continues to
evolve. In Canada, spectral recovery has been defined as the number
of years to recover 80% of a pre-disturbance NBR value (e.g., White
et al., 2022), while earlier work in NSW used the number of years
to recover the full pre-disturbance NBR value (Hislop et al., 2021).
An approach which doesn’t rely on a pre-disturbance baseline at all,
but looks at rates of change in the post-fire environment, has been
proposed by Gibson et al. (2022).

One of the objectives of this paper was to investigate whether
forest spectral recovery over the last 2 years was influenced by the
type of disturbance that occurred (drought, fire, or both drought and
fire). Fires that occurred in 2018–2019 (the previous season) were
also included. These areas essentially experienced a year of drought
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after being burned, as opposed to the areas burned in 2019–2020,
which experienced drought prior to being burned, followed by above
average rainfall shortly after. In total, 50,000 random samples (10,000
in each category) were selected to compare spectral recovery after
1 and 2 years of recovery. The selection of 10,000 random pixels
was deemed sufficient to represent the class, even though it equates
to a small fraction of the population. It is also likely that spatial
clustering exists, especially in the smaller classes (Fires 2018–2019,
Drought and Fire); thus, results should be interpreted with caution,
as there may be other drivers affecting recovery. Overall, the analysis
suggests that areas impacted solely by drought have recovered faster
than areas burned in the wildfires (Figure 5). All three fire categories
(Fires 2018–2019, Fires 2019–2020, Drought and Fire) appear to be
recovering at similar rates, indicating that the earlier fires (2018–
2019) had a 1-year lag in recovery due to the post-fire drought. There
are signs in some bioregions that areas impacted by drought before
being burned are recovering more slowly (Figure 6); these areas may
warrant further investigations. It is also notable that these areas had
larger initial z-values, so the delayed recovery could be related to fire
severity rather than the double disturbance. Complicating matters
somewhat, the region studied here has had 2 years of above average
rainfall since the drought, which has likely led to increased understory
greening in many areas. Thus, the strong spectral recovery signal may
not always be related to canopy recovery. Nonetheless, it provides a
useful broadscale assessment, which cannot be readily achieved over
such a large area by any other means. There are opportunities moving
forward to explore the data at smaller spatial scales and consider
factors such as understory vs. overstory recovery.

5. Conclusion

In this paper, we presented a novel method that allowed us
to identify two disturbances in quick succession using a dense
time series of Sentinel-2 satellite imagery. This enabled us to
produce maps (and associated statistics) of forests disturbed by
drought, fire, and both drought and fire during an extreme climate
driven event. The different disturbance types were then analyzed to
explore broad recovery patterns in the 2 years following the event.
Although developed for a specific disturbance event, the time series
methods presented here are generally transferrable and demonstrate
an effective approach for characterizing two disturbances in quick
succession. The study demonstrates the enormous potential of
moderate resolution satellites such as Sentinel-2 for monitoring

the dynamic nature of forests across a range of spatial and
temporal scales.
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