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Biodiversity monitoring represents a major challenge to supporting proper forest

ecosystem management and biodiversity conservation. The latter is indeed

shifting in recent years from single-species to multi-taxon approaches. However,

multi-taxonomic studies are quite rare due to the effort required for performing

field surveys. In this context, remote sensing is a powerful tool, continuously

providing consistent and open access data at a different range of spatial and

temporal scales. In particular, the Sentinel-2 (S2) mission has great potential to

produce reliable proxies for biological diversity. In beech forests of two Italian

National Parks, we sampled the beetle fauna, breeding birds, and epiphytic

lichens. First, we calculated Shannon’s entropy and Simpson’s diversity. Then, to

produce variables for biodiversity assessment, we exploited S2 data acquired in

the 4 years 2017–2021. S2 images were used to construct spectral bands and

photosynthetic indices time series, from which 91 harmonic metrics were derived.

For each taxon and multi-taxon community, we assessed the correlation with

S2 harmonic metrics, biodiversity indices, and forest structural variables. Then,

to assess the potential of the harmonic metrics in predicting species diversity

in terms of Shannon’s and Simpson’s biodiversity indices, we also fit a random

forests model between each diversity index and the best 10 harmonic metrics

(in terms of absolute correlation, that is, the magnitude of the correlation) for

each taxon. The models’ performance was evaluated via the relative root mean

squared error (RMSE%). Overall, 241 beetle, 27 bird, and 59 lichen species were

recorded. The diversity indices were higher for the multi-taxon community than

for the single taxa. They were generally higher in the CVDA site than in GSML,

except for the bird community. The highest correlation values between S2 data

and biodiversity indices were recorded in CVDA for multi-taxon and beetle

communities (| r| = 0.52 and 0.38, respectively), and in GSML for lichen and

beetle communities (| r| = 0.34 and 0.26, respectively). RMSE% ranged between

2.53 and 9.99, and between 8.1 and 16.8 for the Simpson and Shannon index,
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respectively. The most important variables are phase and RMSE of red-Edge bands

for bird and lichen communities, while RMSE and time of tassel cap and from

EVI indices for beetles and multi-taxon diversity. Our results demonstrate that

S2 data can be used for identifying potential biodiversity hotspots, showing that

the herein presented harmonic metrics are informative for several taxa inhabiting

wood, giving concrete support to cost-effective biodiversity monitoring and

nature-based forest management in complex mountain systems.

KEYWORDS

ecological indicators, forest structure, mountain forests, species diversity, remote
sensing

1. Introduction

Biodiversity assessment and monitoring represent crucial
challenges in many ecosystems (Lindenmayer and Likens, 2010),
being decisive in countering the biodiversity global decline
(Butchart et al., 2010; Gustafsson et al., 2012; Oettel and Lapin,
2021). In this context, sustainable management and conservation
of forest ecosystems, hosting 80% of terrestrial biodiversity
(FAO, 2012), are of primary importance. Nature-based forest
management approaches, incorporating components, structures,
and processes characteristic of natural forests (i.e., conservation
measures) may help increase the biodiversity in forest ecosystems,
where saproxylic taxa (i.e., dependent on deadwood) are major
components (Paillet et al., 2010; Parisi et al., 2018).

For biodiversity monitoring studies, field surveys are required
for measuring multi-taxon communities’ characteristics with high
accuracies, such as the distribution or the diversity of species,
though demanding and challenging for both data acquisition and
analysis (Buchanan et al., 2009; Rondeux et al., 2012). Indeed,
multi-taxonomic sampling requires relevant resources in terms of
money, time, and expertise (Tomppo et al., 2010), especially in the
case of large geographical areas (Sabatini et al. (2016); Burrascano
et al., 2018). In addition, multi-taxonomic samplings involve
different spatio-temporal scales and various schemes, which make
the integration of multi-taxon information challenging. Indeed, the
heterogeneity in approaches limits comparability across studies or
ecosystems and broad-scale analysis (Burrascano et al., 2021).

The abovementioned challenges are being increasingly
addressed at the local and regional scale, especially in assessment
studies focused on evaluating the effects of forest structure and
management on biodiversity (Van Loy et al., 2003; Király et al.,
2013; Sabatini et al., 2016). For these reasons, multi-taxonomic
samplings are usually not included in forest inventories, and
multi-taxonomic studies remain quite rare (Burrascano et al.,
2018).

Within this context, remote sensing (RS) is increasingly
employed in biodiversity monitoring and assessment, providing
cost-efficient observations across broad scales (Marín et al.,
2021). Indeed, RS provides a means to overcome issues related
to heterogeneous sampling coverage and field assessment of
biodiversity indices (Nagendra, 2001; Chao and Jost, 2012; Chirici
et al., 2012), as well as to the spatial dynamics of resource use by

multiple taxa across forest stands (Paillet et al., 2010; Westgate et al.,
2014). Studies using RS to measure biodiversity-related properties
cover a broad range of applications, study areas, types of data,
and methods. For instance, spatial information is usually obtained
promptly (Reiche et al., 2018; D’Amico et al., 2021), consistently
(White et al., 2014), comprehensively (Saarela et al., 2022), and
freely (Gorelick et al., 2017; Gomes et al., 2020), which may help
build harmonized databases through standardized protocols.

Despite these potentialities, studies that link multi-taxon
groups with RS techniques are still rare (e.g., Lindberg et al., 2015;
Klein et al., 2020). Indeed, coarse spatial and spectral resolution
imagery has been used for a long time, hindering local-scale
interpretation of biodiversity (Anderson, 2018). However, with
increasingly detailed information, continued advances in satellite
or airborne sensors provide objective, time-efficient, and reliable
proxies for biological diversity (Mura et al., 2015; Hauser et al.,
2021) at both local and large scales (Ustin, 2016; Udali et al.,
2021). These approaches can be used for wall-to-wall mapping
of biodiversity (Mura et al., 2016; Mao et al., 2018) and provide
essential guidance for monitoring biodiversity in forest ecosystems,
supporting forest planning and adaptive management (Groves,
2003; Hoekstra et al., 2005). Regular monitoring and assessment
of forest responses to management interventions and disturbance
events are required to adjust management strategies aimed at
improving the resilience of forest ecosystems, e.g., addressing trade-
offs between management for climate mitigation and biodiversity
conservation (Tognetti et al., 2022).

Segregating forest areas for nature conservation and integrating
conservation measures into adaptive management are both needed
to conserve forest biodiversity (Larsen et al., 2022). RS data have
been used to identify biodiversity hotspots, moving from local
ground-based surveys to remotely collected landscape-scale data
(Mura et al., 2015; Giannetti et al., 2020). These results may
allow conservation managers to plan preservation efforts more
effectively (Bombi et al., 2019). Among RS technologies, the multi-
taxon analysis within forests was mainly performed with airborne
laser scanning (ALS) and terrestrial laser scanning (TLS), which
describe the vegetation structure [e.g., bird and lichen richness
(Klein et al., 2020), insect species richness (Jacobsen et al., 2015) and
their abundance (Knuff et al., 2020), birds and beetles abundance
(Lindberg et al., 2015), arthropod diversity (Müller et al., 2018)].
However, as highlighted in Wallis et al. (2017), ALS data exhibit
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limitations, mainly related to spatial and temporal coverage. For
these reasons, the latter authors recommended the use of optical
satellite data.

Multitemporal remote sensing approaches allow the
monitoring of long-term dynamics and identifying changes (Kacic
and Kuenzer, 2022). Several studies have focused on biodiversity
monitoring through remote sensing, addressing the identification
and distribution of habitats and species, the analysis of functional
diversity, and the estimation of structural and spectral diversity
(Lausch et al., 2016; Wang and Gamon, 2019). An effective source
of remote sensing data is the open archive of Landsat imagery
(Kacic and Kuenzer, 2022), whose multispectral data enabled
the investigation, among others, of tree species diversity (Arekhi
et al., 2017; Torresani et al., 2019), birds richness (Farwell et al.,
2020), saproxylic beetle distribution (Parisi et al., 2022a), helping
the selection of monitoring areas. However, Landsat spatial and
temporal resolution can be insufficient for capturing micro-spatial
and temporal variations in the distribution of many taxa, which
can be characterized by high dispersal capacity.

The Sentinel-2 (S2) mission overcomes these limitations by
offering higher spatial resolution, with bands up to 10 m, a denser
time series, with a revisit time between 2 and 5 days, depending
on the latitude, and a higher spectral resolution, with ten useful
bands for the study of vegetation (Francini et al., 2022). Although
the new possibilities offered by the S2 mission, no study on multi-
taxa abundance has yet been developed. While S2 time series cannot
replace field data, we hypothesize they can be an excellent source of
complementary information for increasing the spatial scale of the
analysis, while decreasing the effort required for field surveys.

This study aims to explore the capability of the S2 time
series to monitor multi-taxon biodiversity in different forest
environments, by analyzing the relationships between RS-derived
predictors and multi-taxon biodiversity measured on the field.
Accordingly, to demonstrate that S2 data can be used to identify
potential biodiversity hotspots, we first calculated the Pearson
correlation between S2 multitemporal predictors and biodiversity
indices. Secondly, we used the 10 most correlated predictors
with the random forests model to predict biodiversity. Lastly, we
assessed the models’ performance and we critically discussed the
results and outcomes.

2. Materials

2.1. Study area

The study was carried out in two national parks in the
central and southern Apennines (Italy), both characterized
by Mediterranean mountainous forest ecosystems. These areas
provide representative examples of natural dynamics typical of
unmanaged and old-growth forests and are, therefore, explanatory
case studies for assessing biodiversity. The two protected areas
are involved in the project LIFE+“FAGUS” (11/NAT/IT/135),
focused on two habitats of European priority interest, according
to the EU Habitats Directive (92/43/EEC), which occur in these
protected areas and are often found in contact with each other:
9210∗ – Apennine beech forests with Taxus and Ilex, and 9220∗ –

Apennine beech forests with Abies alba and beech forests with
Abies nebrodensis.

The Gran Sasso e Monti Della Laga National Park (GSML)
covers approximately 149,000 ha in the central Apennines, between
the Marche, Lazio, and Abruzzo regions. Forests cover over 60%
(about 87,000 ha) of the total protected area. The main forest types
are stands dominated by beech (Fagus sylvatica L.), occasionally
with Abies alba Mill., Ilex aquifolium L., and Taxus baccata L.

The Cilento, Vallo di Diano e Alburni National Park (CVDA),
extending for over 181,000 ha, is one of the largest protected areas
in south-eastern Europe. It is covered mainly by deciduous forests,
dominated by Quercus cerris L., Q. pubescens Willd., Acer spp.,
Ostrya carpinifolia Scop., Carpinus spp., Fraxinus ornus L. and
Castanea sativa Mill. At higher elevations, higher than 1,000 m
a.s.l., the forest is dominated by beech (Sabatini et al., 2016; Parisi
et al., 2021).

2.2. Field data for biodiversity sampling

The forest structure and multi-taxon biodiversity were sampled
through a non-aligned systematic sampling method. Firstly, the
area of interest of each park was defined, i.e., the fraction of the
study area where both habitats 9210∗ and 9220∗ occurred. Then, a
100× 100 m square grid was overlapped to the area of interest, and
a sampling plot was randomly located within each cell of the grid
see Sabatini et al. (2016). For two study areas located in CVDA (i.e.,
“Corleto Monforte” and “Ottati”), the sampling design was slightly
different to be coherent with the methods applied in a previous
project (Blasi et al., 2010). In this case, the sampling plots were
located at the nodes of a 500× 500 m square grid and the two sites
were analyzed together as “Alburni.”

Overall, a total of 33 circular plots (13 m radius) were sampled,
19 in GSML and 14 in CVDA (Figure 1 and Table 1). For each plot,
UTM datum WGS 1,984 coordinates (Zone 33 N), and elevation (m
a.s.l.) were recorded using the Juno SB Global Positioning System
(GPS) (Trimble, Sunnyvale, California, USA).

In each plot, the species diversity of different taxa was estimated
using ad-hoc protocols for each taxon.

2.2.1. Saproxylic and non-saproxylic beetles and
breeding birds

A sampling of beetle fauna was carried out using two methods:
window flight traps for flying beetles and emergence traps for
beetles moving on the surface of dead trunks/branches; both trap
types were positioned at the center of each plot. Flight traps were
checked approximately every 30 days for a total of four surveys
from June to October 2016. Emergence traps were emptied only
once at the end of the sampling period. All the monitoring systems
were removed at the end of October. Systematics and nomenclature
followed Bouchard et al. (2011), Audisio et al. (2015). All the
taxa collected during the field surveys are alphabetically listed in
Supplementary Table 1. In particular, species strictly considered
as saproxylic (sensu Carpaneto et al., 2015) are reported together
with their risk category at the Italian level see Audisio et al. (2015),
Carpaneto et al. (2015).

For breeding birds, to coincide with the bird breeding season,
surveys were carried out from May to June 2016, when the
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FIGURE 1

On the left, the National Parks where the study areas are located (GSML, Gran Sasso e Monti della Laga National Park; CVDA, Cilento, Vallo di Diano
e Alburni National Park). In the magnification, black dots represent the study areas investigated in each park: in GSML, “Prati di Tivo”, “Venaquaro”,
and “Incodara”; in CVDA, “Ottati”, “Corleto Monforte”, and “Motola”. On the right, the green and yellow dots represent the locations of the plots
sampled in GSML and CVDA, respectively.

TABLE 1 Main characteristics of the study areas from Sabatini et al. (2016).

National park Municipality (study
area)

Coordinates
(degrees)

Elevation
(m a.s.l.)

Habitat
type

Extension of
the area (ha)

Number of
sampling plots

GSML Pietracamela (Prati di Tivo) 42.5096 N
13.5679 E

1500 9210* 7.86 5

Pietracamela (Venacquaro) 42.4988 N
13.5139 E

1250 9210* 17.45 7

Crognaleto (Incodara) 42.5123 N
13.4735 E

1400 9220* 11.23 7

CVDA Corleto Monforte (Alburni) 40.4705 N
15.4317 E

1300 9210* 20.21 3

Ottati (Alburni) 40.5136 N
15.3292 E

1350 9210* 11.82 8

Teggiano (Motola) 40.3761 N
15.4694 E

1200 9220* 1.3 3

The habitat type refers to Annex I of the EU Habitats Directive (92/43/EEC): 9210*–Apennine beech forests with Taxus and Ilex; 9220*–Apennine beech forests with Abies alba and beech
forests with Abies nebrodensis.

activities and the birdsong production intensify. Count points were
positioned in each sampling plot, and the survey was carried out
on three consecutive days in CVDA, and on 4 consecutive days in
GSML. For discerning the bird species with a small home range,
count points were at least 150 m apart. Each sample consisted of
a 10-min count point, during which we recorded the richness and
abundance of every species detected both visually and by hearing
(Balestrieri et al., 2015). The species nomenclature follows Brichetti
and Fracasso (2015) (see Supplementary Table 2).

2.2.2. Epiphytic lichens
Epiphytic lichens were sampled on the three beech trees

(DBH ≥ 16 cm) nearest each plot’s center, using a portable
10× 50 cm frame composed of five 10× 10 cm quadrats. The frame
was placed on the tree trunk facing the four cardinal directions,
with the bottom part at a height of 1 m from the ground. All the
species inside the frames were considered; thus, at the plot level,
lichen richness equaled the total number of species occurring across
the three sampled trees. While species frequency was computed as
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the proportion of 60 quadrats (10 × 10 cm) in which the species
occurred. The protocol follows the European guidelines for lichen
monitoring (Asta et al., 2002), while nomenclature and general
information on species’ biological traits and ecology were retrieved
from Nimis (2021) (see Supplementary Table 3).

2.3. Sentinel-2 data

Sentinel-2 (S2) is a European Space Agency (ESA) wide-swath,
fine-resolution, multispectral imaging satellite mission. The revisit
frequency is 5 days at the global scale, while 2 to 3 days at
mid-latitude. The S2 Multispectral Instrument (MSI) samples 14
spectral bands (B): visible (B2, B3, B4) and nir (B8) at 10 m, red-
Edge (B5, B6, B7, B8a), and swir (B11, B22) at 20 m, and four
atmospheric bands (B1, B9, B10, QA60) at 60 m spatial resolution.
QA60 is a bitmask band with dense and cirrus cloud information
(Cloud mask). The complete S2 imagery archive can be found in
Google Earth Engine GEE (Gorelick et al., 2017), with a detailed
description of data, available bands, image properties, and terms of
use.1

We selected all S2 imagery acquired over the study area between
2017-09-01 and 2021-08-31, with a cloud cover smaller than 70%.
A so long time series – combined with the 5-day revisitation time
of the S2 mission–ensures having a large number of imagery, that
is needed to properly calculate harmonic metrics (Shumway and
Stoffer, 2017). To mask out clouds and cirrus from imageries, we
used the S2 cloud probability dataset, which was created using the
gradient boost base algorithm. More information on the Sentinel-2
cloud detector algorithm can be found on GitHub.2 We resampled
all bands to the finest spatial resolution of 10 m. Finally, the pixel

1 https://developers.google.com/earth-engine/datasets/catalog/
sentinel-2

2 https://github.com/sentinel-hub/sentinel2-cloud-detector

values were extracted at the center location of each plot using
a buffer of 13 m radius. The final values reported for each plot
were the mean value of all pixels inside the buffer weighted by the
coverage fraction of each pixel.

3. Methods

3.1. Sentinel-2 harmonic metrics and
seasonal composites

Using the mentioned S2 images, we calculated a set of 91
harmonic metrics. First, we increased the number of variables
for each S2 image by augmenting available bands [blue, green,
red, red-Edge (redE)1, redE2, redE3, nir, redE4, swir1, swir2] by
calculating the Normalized Difference Vegetation Index NDVI, the
Normalized Burnt Ratio NBR, the Enhanced Vegetation Index EVI,
and the Tasseled Cap Brightness TCB, Wetness TCW, Greeness
TCG and Angle TCA indices. While several additional indices
can be calculated using S2 data,3 those selected in this study
represent a standard in remote sensing analysis and are those
most commonly exploited (Hermosilla et al., 2015; Jönsson et al.,
2018). In particular, the NDVI has become a standard since its
introduction by Rouse et al. (1973) and has been applied to
a wide range of practical remote sensing applications (Tucker
et al., 1985; Wang et al., 2005; Zarco-Tejada et al., 2005; Beck
et al., 2006). The NDVI index (Eq. 1) has been among the most
popular indices used to delineate vegetation and vegetative stress
quickly. Hence, it shows dense vegetation with high positive values,
soil with low positive values, and water with negative values
(Huang et al., 2021). The EVI index is instead known as it does
not saturate as rapidly as NDVI in dense vegetation and it has

3 https://www.indexdatabase.de/db/s-single.php?id=96

FIGURE 2

Example of NDVI pixel time series (red) and the corresponding fitted harmonic function (blue).
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been shown to be highly correlated with photosynthesis, plant
transpiration, and vegetation biomass in a number of studies
(Sims et al., 2006; Jiang et al., 2008). Finally, the NBR is the
most commonly used index for forest disturbance monitoring,
including forest fires, harvestings, and drought (Kennedy et al.,
2010; Hansen et al., 2013; Francini et al., 2021), and it was
exploited in this study to detect eventual stress status over our study
areas.

Exploiting those indices, harmonic metrics were calculated
(Figure 2). Four harmonic function coefficients were then
calculated to identify the pixel harmonic trend (Shumway and
Stoffer, 2017). Each pixel harmonic trend function was further used
to calculate the amplitude, the phase, and the root mean square
error (RMSE). As a result, we obtained a set of 13 (the bands
plus the indices) ∗ 7 (the harmonic function coefficients plus the
amplitude, phase, and RMSE) = 91 harmonic metrics.

3.2. Diversity indices

Species diversity was calculated separately for each taxon and
among taxa, using univariate diversity indices, incorporating the
number of species and their relative abundance. We computed two
different indices:

(i) Shannon’s entropy index (Eq. 1), which considers species
frequency in the plot and can be interpreted as the effective number
of species in the community.

H
′

= −

∑S

i=1
pi log pi (1)

Where S is the number of species in the assemblage, and pi is the
relative abundance of ith species.

(ii) Simpson’s diversity index (Eq. 2), which places more weight
on the frequencies of abundant species, discounting rare species. It
can be interpreted as the effective number of dominant species in
the assemblage.

D =
∑S

i=1
p2
i (2)

We also compared the species diversity across assemblages, using
rarefaction and extrapolation curves, provided by Hsieh et al.
(2016) for the two members of the Hill number.

Finally, we compared the two study areas regarding species
diversity. Firstly, we analyzed the variance and distribution of
variables with the F-test and Shapiro-Wilk test, which are useful
to check whether to use a parametric or non-parametric test. Then,
the variables normally distributed that satisfied the conditions of
homogeneity of variance were compared with the independent
T-test. At the same time, the remaining variables were tested with
the Wilcoxon-Mann-Whitney test.

3.3. Multi-taxon communities and
relationships between harmonic metrics

For each taxon and the whole multi-taxon community, we
verified possible relationships between harmonic metrics and the
species diversity in terms of Shannon’s and Simpson’s biodiversity
indices. Pearson’s product-moment correlation (r) matrix between

each harmonic metric, species diversity, and structural variables was
calculated separately for each study site to test the generalizability
and consistency of the results when different remotely sensed
imagery acquired in different conditions are available.

3.4. Random forests

Correlations are often not sufficient to estimate the predictive
ability of the proposed metrics, as well as potential biases in
a modeling task. To assess the potential of these metrics in
predicting species diversity in terms of Shannon’s and Simpson’s
biodiversity indices and to simplify the computation time for a
regular application of this method, we fitted a random forests
(RF) model between each diversity index and the best 10
harmonic metrics (in terms of absolute correlation, that is, the
magnitude of the correlation) for each taxon combining data
from the two study areas. Differently from the correlations, the
limited number of samples per study area (19 in GSML and
14 in CDVA) was not sufficient to properly train and validate
the model robustly.

Random forests (RF) is a popular machine-learning model that
generates a set of decision trees ensembled to produce predictions.
Each decision tree in the “forest” is built using different training
subsets generated from the initial training dataset by a bootstrap
procedure and a randomly chosen subset of predictors at each
splitting node to minimize the correlation among trees. RF can
reduce the output variance and the overfitting problem with respect
to other machine-learning approaches, improving model stability
and accuracy (Breiman, 2001).

Random forests (RF) permits the in-built estimation of
variables’ importance from the out-of-bag (OOB) samples, that
is, the samples randomly left out in the bootstrap procedure,
by calculating the percent increase in the mean squared error
(%incMSE) when the OOB data for each variable are permutated.
The more the MSE increases from the permutation of a given
variable, the more important the variable is in the model.

Models’ performance was evaluated using the leave-one-out
(LOO) cross-validation technique (also known as Jack-knife),
where each observation in the training set is left out in sequence,
and its value is predicted using the remaining observations
(McRoberts et al., 2015). For each model, we calculated the LOO
root mean square error (RMSE) relative to the mean values of the
observation:

RMSE =

√∑n
i = 1 (yi − ŷi)2

n

Where n is the number of filed plots, yi is the observed value
and ŷi is the predicted one.

Each model was fitted using all field plots available (i.e., 33) to
ensure the statistical robustness of the results.

The RF analysis was conducted using the randomForest R
package within the R software version 4.2.0 (Liaw and Wiener,
2002).4 The hyperparameters were left to their default values, that
is, 500 number of trees and a mtry values of p/3 where p is the
number of predictors.

4 https://www.r-project.org
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4. Results

4.1. Saproxylic and non-saproxylic
beetles, and breeding birds

In GSML and CVDA, a total of 2,076 and 1,353 beetle
specimens were collected, respectively, as well as 35 and 36 families.

In GSML, Elateridae was the most common family (32% of
the total specimens collected): one species, Nothodes parvulus,
represented over 22% of the family sampled, with 472 sampled
specimens. Elateridae were followed by Cerambycidae (17.6%),
Melyridae (11.6%), and Curculionidae (9.4%). The remaining
families represent less than 29% of the total sampled families.

Whereas in CVDA, the most abundant species were Dalopius
marginatus (Elateridae), with 142 specimens,Dasytes (Mesodasytes)
plumbeus (Melyridae) were 125, while Phyllobius (Dieletus)
argentatus (Curculionidae), with 83 specimens, corresponded to
the 25.8% of the total sampled species. Similarly to GSML,
Elateridae represented 0.7% of the total specimens, followed by
Curculionidae (14.5%), Melyridae (10%), Tenebrionidae (7.4%),
Staphylinidae (6.7%), and Cerambycidae (3%). The remaining
families represented 23% of the total [see Supplementary Table 1,
data reported by Campanaro and Parisi (2021)].

In addition, among the 164 collected species in GSML, 76
(46.3%) were saproxylic, and among them, 25 species (32.8%) are
included in the Italian Red List for saproxylic beetles (Carpaneto
et al., 2015). Of these, 17 species belong to the Near Threatened
(NT), two to the Vulnerable (VU), and two to the Critically
Endangered (CR) categories. One refers to each of the Endangered

(EN), and four species are attributable to the DD (Data Deficient)
category (Supplementary Table 1).

According to the trophic categories in GSML,
saproxylophagous represented 27.6% of the total sampled families,
followed by Xylophagous (18%), Mycophagous (18.4%), Predators
(17%), Mycetobiontic (5%), while for the trophic categories:
Sap-feeder, HW (associated with small water pools inside hollow
trees), NI (inhabiting birds “and small mammals” nests in hollow
trees) and Unknown only one specimen was collected.

Instead, in CVDA, on a total of 183 collected species, 76 (41.5%)
were saproxylic. Among them, 25 species (32.8%) are listed in the
Italian Red List for saproxylic beetles (Carpaneto et al., 2015): 17
species belong to the NT, while three to the VU and two to CR
categories. One refers to each EN, and two species are attributable
to the DD category (Supplementary Table 1). Only one specimen
was collected from Saprophytophagous and HW.

Regarding the breeding birds, twenty-seven bird species (21
in GSML and 20 in CVDA) and 17 families were recorded.
Furthermore, two species are included in the Red List Categories.
In particular, Emberiza citrinella (Emberizidae) for the VU category
was recorded in GSML, and the Fringillidae Pyrrhula pyrrhula
for the NT category was observed in both national parks. Finally,
two species are exclusive for GSML and five for CVDA (see
Supplementary Table 2).

4.2. Epiphytic lichens

For lichens, 59 species were totally recorded for both the study
areas, 43 in GSML and 51 in CVDA. Specifically, seven species are

FIGURE 3

Rarefaction curves with 95% confidence intervals (shaded areas) for two biodiversity indices (Shannon and Simpson) for the three taxa considered.
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exclusive in GSML and 15 in CVDA. Regarding the families, 15
and 17 families were respectively sampled. The Parmeliaceae family
was the most common in both areas, followed by the Lecanoraceae.
The most frequent species were Lecidella elaeochroma, followed
by Lecanora intumescens and L. albella (Lecanoraceae) in GSML,
and Phlyctis argena (Phlyctidaceae) followed by L. ealeochroma
and Parmelia saxatilis (Parmeliaceae) in CVDA. Among the
species registered, a few are of conservation interest. Anaptychia
crinalis and Lepra slesvicensis are included in the Italian Red List
of epiphytic lichens as VU and DD, respectively (Nascimbene
et al., 2013); in addition, Bryoria nadvornikiana is considered

as an indicator of forest oldgrowthness (Holien, 1989). Lobaria
pulmonaria was also observed: it is an "umbrella species," since its
frequency is strongly related to the number and frequency of other
species in the ecological community of its habitat (Nascimbene
et al., 2010) (see Supplementary Table 3).

4.3. Diversity indices

The values of the Shannon’s and Simpson’s diversity indices
in the two study areas are shown in Supplementary material

TABLE 2 Differences between the study areas in terms of species diversity.

Variable Test Statistic p Significance

N◦ Species lichens Wilcoxon-Mann-Whitney 206.500 0.00674 **

Shannon index beetles Wilcoxon-Mann-Whitney 196.000 0.02130 *

Simpson index lichens Wilcoxon-Mann-Whitney 202.000 0.01110 *

Simpson index Multi-taxon Wilcoxon-Mann-Whitney 208.000 0.00545 **

Shannon index Multi-taxon T-test 3.123 0.00387 **

Shannon index lichens T-test 3.023 0.00498 **

*p > 0.05; **p < 0.05.

FIGURE 4

CVDA: Pearson’s product-moment correlation (r) between biodiversity indices of each taxon (y-axis) and the best Sentinel-2-derived temporal
metrics (x-axis). The color in each cell represents the correlation value between the corresponding variables in the two axes.
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(Supplementary Figure 1), for the whole communities and
grouped by taxa.

The diversity indices analyzed were consistently higher for
the multi-taxon community than for the single taxon; moreover,
they were generally higher in CVDA than in GSML, except
for the bird community, where all the indices were higher in
GSML. Regarding Shannon’s entropy index, the number of equally
common species was generally higher in CVDA, except for the
bird community. The Simpson’s diversity index showed a similar
pattern for each taxon but with a narrower distribution around the
highest value in CVDA.

Figure 3 shows the rarefaction and extrapolated curves for each
taxon in relation to the two diversity indices. The Shannon’s and
Simpson’s biodiversity indices showed similar patterns for each
taxon, indicating that the number of equally common species and
the dominant ones was higher in CVDA than in GSML, for the
beetle and lichen communities. In contrast, the bird community
reached the same diversity level in both study areas. From the

extrapolated curve, it can be stated that the sampling effort was
adequate to describe the species diversity in each taxon and for both
the sampled areas.

Regarding the two study areas, the analysis of the T-test
and the Wilcoxon-Mann-Whitney test revealed that the diversity
indices were always significantly different for the multi-taxon and
lichen communities (Table 2). The beetle community differed in
terms of Shannon’s biodiversity index, while minor discrepancies
were observed for the Simpson’s diversity index, indicating
similar dominant species diversity between areas. In contrast, no
significant differences were found between areas regarding all the
diversity indices analyzed in the bird community.

Based on the relationships between S2 harmonic’s temporal
metrics (TMs) and diversity indices among the taxa communities,
the strongest correlations were reached in CVDA. The multi-taxon
and beetle communities reached the highest correlation values,
with a median absolute correlation of 0.52 and 0.38, respectively,
followed by the lichen and bird communities with 0.28 and

FIGURE 5

GSML: Pearson’s product-moment correlation (r) between biodiversity indices of each taxon (y-axis) and the best Sentinel-2-derived temporal
metrics (x-axis). The color in each cell represents the correlation value between the corresponding variables in the two axes.
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0.15, respectively. Shannon’s biodiversity index reached similar
correlation values, regardless of the community, while Simpson’s
diversity index generally obtained lower correlations. The bands
that obtained the strongest correlation were swir1 and 2, followed
by the redE bands and the photosynthetic indices (firstly, the
tasseled cap indices, followed by NDVI and NBR), all with an
absolute correlation coefficient (hereinafter referred to | r|) > 0.3.
Finally, the best harmonic metrics were the cosine, phase, and
amplitude (| r| > 0.35), followed by constant and sine, and the
RMSE reached the lowest absolute median correlation (| r| = 0.18).
Figure 4 shows Pearson’s product-moment correlation (r) between
the diversity of each taxon, in terms of Shannon’s and Simpson’s
biodiversity indices, and the seven harmonic TMs calculated for
each S2 band and index in the CVDA site.

Figures 4, 5 present the highest correlation achieved by
each combination of harmonic metrics and diversity index for
CVDA and GSLM, respectively. In CVDA (Figure 4), correlations
were generally lower. However, absolute maximums were similar
between the two study areas (maximum positive correlation of
0.8 between Shannon’s diversity index for the beetle community
and the amplitude of the red-Edge 2, and maximum negative
correlation of −0.81 between the Simpson’s diversity index for
the lichen community and the sine of TCG index). In GSML, the
highest median absolute correlation was obtained by the lichen
community (| r| = 0.34), followed by the beetle and multi-taxon
communities (| r| = 0.26 and | r| = 0.19, respectively), with the bird
community reaching the lowest value (| r| = 0.10). Results did not
match between areas, also in terms of diversity indices. In GSML,
all diversity indices reached similar correlation values (| r| between
0.19 and 0.21). The correlation achieved by photosynthetic indices
exceeded that of all the other S2 bands, with EVI, NDVI, and NBR
overcoming tasseled cap indices, swir, and red-Edge bands. Finally,
the harmonic metric, which obtained the highest median absolute

correlation, was the constant (| r| > 0.23), followed by amplitude,
cosine, sine, and RMSE (| r| > 0.21). At the same time, time and
phase achieved the lowest absolute median correlation (| r| < 0.20)
(Figure 5).

4.5. Random forests

According to the importance of the variables, the phase
and RMSE of red-Edge bands were the most important for
describing the diversity of birds and lichens communities, while
beetles and multi-taxon diversity were better predicted from
RMSE and time of tasseled cap and EVI indices (Figure 6). The
% of variance explained was internally calculated by RF from
the OOB observations and ranged between 17.0 and 35.8 and
between 16.7 and 22.2 for Shannon’s and Simpson’s diversity
indices, respectively. The maximum was reached by the multi-
taxon and bird communities for the Shannon and the Simpson
index, respectively (Table 3; see Section “3.4. Random forests”).
The RMSE% were generally lower for Simpson’s diversity index,
spanning from 2.53 to 9.99 (for the multi-taxon and beetles
community, respectively), while for Shannon’s diversity index
ranging between 8.1 and 16.8 (for the multi-taxon and lichens
community, respectively) (Figure 7).

5. Discussion

5.1. Diversity indices

The Shannon’s and Simpson’s diversity indices showed higher
values for beetles and lichens in CVDA, while in GSML, the

FIGURE 6

Variables importance for each of the eight random forests (RF) models.
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TABLE 3 Leave-one-out (LOO) root mean square error (RMSE)% and % of variance explained obtained by random forests (RF) models fitted with the
best 10 harmonic metrics for each diversity index.

Shannon index Simpson index

RMSE% % of var. explained RMSE% % of var. explained

Beetles 14.4 25.2 9.99 20.5

Birds 14.7 30.3 4.34 22.2

Lichens 16.8 17.0 8.57 16.7

Multi-taxon 8.1 35.8 2.53 21.1

diversity indices had comparatively higher values for birds. No
significant differences were found between the two areas regarding
diversity as a whole (multi-taxon). The biodiversity indices showed
similar and homogeneous diversity and species richness values in
GSML and CVDA. This was confirmed by Shannon’s diversity
index, which indicates a lack of similarity in the distribution
of dominant species. On the other hand, the diversity indices
suggested differences in species composition between these two
protected areas (GSML and CVDA).

The beetle community included abundant and threatened
species (see Supplementary Table 1). Elateridae (beetles)
dominated both areas, with two different species (Nothodes
parvulus and Dalopius marginatus, respectively, in GSML and
CVDA) being the most abundant (22% of the total species). The
abundance of the two taxa probably influenced the diversity
analysis as total individuals for this group.

Few differences were found between the areas when
considering birds (21 in GSML and 20 in CVDA) and lichens (43 in
GSML and 51 in CVDA). Overall, CVDA showed a more uniform
number of individuals per species than GSML, as confirmed by the
biodiversity indices (i.e., number of taxa). This might depend on
the presence of large trees, hosting a great abundance of lichens
and providing numerous microhabitats for the fauna, ensuring
essential habitat and resource availability over time and space
often missing from small trees see Sabatini et al. (2016), Parisi
et al. (2021). Thus, growing large trees might allow more stable
environmental conditions in terms of ecological continuity and
promote the stability of the multi-taxon communities (Basile et al.,
2020), though their vulnerability to disturbances (e.g., windthrow)
needs to be considered. As reported by Feest et al. (2010), a site
may have a biodiversity quality that is dominated by the high
biomass of a few species (low species richness), in contrast to
another site where the opposite prevails. Finally, the two areas were
highly different in terms of mean of growing stock volume (GSV)
(688 m3 ha−1 for GSML and 331 m3 ha−1 for CVDA) see Parisi
et al. (2021).

5.2. Remote sensing metrics

From the analysis of RS metrics, the bands that obtained
the strongest correlation between variables in CVDA were swir1
and 2, and the red-Edge bands, followed by the photosynthetic
indices, while the best harmonic metrics were the cosine, phase,
and amplitude (Figure 4). In contrast, in GSML, the strongest
correlation between variables was achieved by photosynthetic
indices, followed by swir, and red-Edge bands, while the best

harmonic metric, were the constant, amplitude, cosine, sine, and
RMSE (Figure 5).

Within RS metrics, NDVI, being related to forest structure, was
associated with the abundance of the different taxonomic groups.
Indeed, since some families of saproxylic and non-saproxylic
beetles need direct solar radiation and low tree cover (low NDVI) to
perform their biological functions, an inverse correlation between
RS metrics and species abundance could be expected. The same
considerations could be made for epiphytic lichens, whose richness
should be higher in forests with higher light penetration. On
the other hand, S2 indices related to the photosynthetic activity
(EVI, NDVI, and NBR) could directly or indirectly be linked
to the diversity and abundance of saproxylic species, depending
on the biological activity of adults and pollination (Thorn et al.,
2020).

The relationship between satellite variables and multi-taxon
biodiversity has been rarely explored, especially considering a
comprehensive spatial extension (Müller and Brandl, 2009; Bae
et al., 2019; Knuff et al., 2020; Parisi et al., 2022a). Indeed, when the
spatial scale is large, a greater environmental variability is sampled
and, therefore, the models of the different taxa are more likely
to work better, also because of the common biogeographic and
evolutionary history shared by taxa (Gioria et al., 2011; Rooney and
Azeria, 2015). Furthermore, larger species pools provide greater
biological resolution to detect changes in environmental conditions
(Rooney and Azeria, 2015; Sabatini et al., 2016).

In this context, our analysis considered a data set with a limited
number of sampling plots (33) and was focused on relatively well-
preserved and low-intensively managed Mediterranean mountain
forests dominated by beech; moreover, we only explored the
relationship between taxa and S2 temporal series. It is possible to
exclude that sampling comprised a broad environmental gradient,
resulting in stronger correlations between the S2 temporal series
and forest variables. When populations characterized by different
conservation statuses, management regimes, or disturbance legacy
are considered, stronger relationships between taxa and time series
are more probable to occur than when considering relatively
similar populations, as in the present case see Parisi et al.
(2022a).

Likewise, a larger number of sampling areas may also
improve results. Satellite data providing canopy-level information
cannot fully describe the biodiversity of an ecosystem and
cannot completely replace field surveys. On the other hand,
based on highly repeatable and freely available RS data, they
can be used at different spatial and temporal scales supporting
the fieldwork limitations (Turner et al., 2003; Cerrejón et al.,
2020). In the context of conservation priorities, the S2-derived
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FIGURE 7

Scatterplot of predicted vs. observed values for each diversity index and taxon, obtained with random forests (RF) models. Colors represent the point
density.

harmonic metrics provided detailed and free information that
might comprehensively complement ground data (Parisi et al.,
2022b). While 10 m resolution may limit the capability to
monitor small-scale relevant components of forest biodiversity,
high-resolution images present some limitations. First, they are
usually acquired with a lower revisitation time, compromising the
capability to perform time series analysis and effective monitoring.
Second, they are not open access and, therefore, unsuitable
for large-scale biodiversity monitoring or nature-based forest
management.

In this study, S2 variables were found to be a crucial component
for the occurrence and distribution of the taxa examined. Indeed,
our analyses show that some S2 variables (amplitude, cosine,
sine, and RMSE) were related to the abundance of beetles, birds,
and lichens (see Supplementary Tables 1–3) in Mediterranean
mountain forests and highlight the potential of RS in forest
biodiversity monitoring. Consequently, we suggest that, given the
valuable products of S2 images, also integrating structure-related
RS data (i.e., lidar data), RS metrics and in situ monitoring activities
should be combined for a highly cost-effective comprehensive
assessment and regular monitoring of forest biodiversity. S2 data
can, indeed, be an excellent source of complementary information
to that acquired in the field, allowing to increase in the spatial
and temporal scale of the analysis, while decreasing the effort
required for field surveys. On the other hand, we stress that
RS data may not replace data acquired in the field, which will
be always needed for a complete and detailed monitoring of
forest biodiversity.

Random forests (RF) model highlighted the importance of
different harmonic metrics in the prediction of Shannon’s and
Simpson’s diversity indices for the different taxa combining data
from the two study areas. On the other hand, although the

correlation analysis between remote sensing data and ground
data was conducted individually for each study area to check
the generalizability of the results, the number of samples per
study area (19 in the GSML and 14 in the CDVA) was too small
to adequately train and validate the random forest model. In
particular, the results obtainable in the two study areas separately
would depend on the limited training data available. The most
relevant metrics for predicting diversity indices were: rmse TCA
and time TCG for beetles, phase redE4 and time redE3 for birds,
rmse redE2 and phase redE3 for lichens and time TCW and
time EVI for multi-taxon (Figure 6). Indeed, harmonic metrics
of redE, specifically sensitive to chlorophyll levels and their
variations (Immitzer et al., 2019), and harmonic metrics of TC,
indicators of forest dynamics and stand development over time
(Lastovicka et al., 2020), are valuable for identifying ecosystem
biotic diversity. Finally, based on the best 10 harmonic metrics
identified for each taxon, the prediction models of Shannon’s
and Simpson’s indices remarked the robust predictive ability
of S2 data, with RMSE% always lower than 15% and down
to 2.5%, which resulted in an agreement between predictions
and observations with R2 values consistently greater than 90%
(Figure 7).

5.3. Ecological significance of the
multi-taxon approach

The diversity of the species and taxa sampled in this work
was reflected in their different ecological roles and features within
the community. For instance, most of the sampled lichens are
known to be common on beech (Ravera et al., 2006; Nimis,
2021) and the number of recorded species was comparable to
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similar studies done on the Apennines (Ravera et al., 2010;
Frati et al., 2021). Significant differences between the two study
areas were reflected in the frequency of crustose pioneer lichens
(e.g., Arthoniaceae and Lecanoraceae) and common generalist
species (e.g., Lecidella elaeochroma, Physcia adscendens), while
most of the species of conservation interest were exclusive of the
CVDA. Lobaria pulmonaria, found abundant and fertile in CVDA
(Brunialti et al., 2015), has a long vegetative cycle (Scheidegger et al.,
1998; Denison, 2003) and known to be an indicator species of forest
areas characterized by long ecological continuity (Barkman, 1958;
Gauslaa, 1985, 1994, 1995; Rose, 1988). The rarefaction curves show
that a small number of lichens were sampled sufficiently to describe
the diversity in the two areas (Figure 3).

The harmonic variables presented in this study allowed
the diversity of saproxylic and non-saproxylic beetles to be
analyzed. Sun exposure is an important ecological parameter for
the development of saproxylic beetles since it determines the
occurrence of different ecological niches and food substrates and,
therefore, different trophic categories of insects (Parisi et al., 2019,
2022a). The areas with the greatest irradiance were characterized
by a greater abundance of flowering and fruit plants, representing
a key resource for many saproxylic beetles (Bouget et al., 2014;
Sabatini et al., 2016). In fact, many beetles have a saproxylic
behavior during their larval stage, while the adults are often found
on flowering plants in the arboreal and herbaceous layers (Sabatini
et al., 2016; Parisi et al., 2021). For instance, the Cerambycidae feed
on decaying wood during the larval stage, while adults feed on
the pollen of herbaceous species belonging to the Asteraceae and
Apiaceae families.

Furthermore, Blasi et al. (2010) found a similarity between
lichens and beetles in terms of light requirements in beech forests
on the Apennines. Indeed, in forests with open overstory, where
more light for photosynthesis is available, and the microclimate is
relatively warmer, a greater density and diversity of undergrowth
vegetation and epiphytic lichens are expected (Aragon et al.,
2010; Sabatini et al., 2014; Klein et al., 2020). By contrast, birds
usually require a denser understory, which provides protection
from predators and suitable nesting sites (Klein et al., 2020).

6. Conclusion

We studied the capability of Sentinel-2 time series to monitor
communities of beetles, birds, and lichens, both as individual
taxonomic groupings and as multi-taxon in two beech forests in
Mediterranean mountain areas. Results encourage researchers and
managers to use RS data to identify, assess, and monitor potential
biodiversity hotspots and, thus, to reduce the effort required for
ground data acquisition. This is particularly relevant in impervious
environments, such as those in mountain areas. S2 data may help
improve the identification of areas for nature conservation and the
management of threatened species by recognizing and quantifying
habitat preferences and habitat-specific thresholds. Therefore, areas
that should be prioritized as set-aside or core areas in forest stands
and conservation plans could be identified by combining optical
information with different RS data, such as ALS (Lindberg et al.,
2015) or radar data (Bae et al., 2019). This may help achieve a multi-
functional landscape, ensuring multiple uses of forests to balance

biodiversity conservation and forest production at the landscape
level (Muys et al., 2022).

We found seven species of beetles, two birds, and two lichens
included in the IUCN Red List. The scarce and threatened taxa
were collected only in some sites and with few individuals and
could hardly be used as indicators (Supplementary Tables 1–
3). In the next future, S2 time series analysis should evolve for
creating statistically rigorous spatial estimation of indicators for
monitoring forest structural complexity and multi-taxon forest
communities (Mura et al., 2016), including threatened species,
thus informing nature-based forest management. Such efforts will
contribute to (i) achieving the objectives of the EU Biodiversity
Strategy for 2030 (EU Biodiversity Strategy for 2030, 2020),
(ii) implementing climate-smart forestry, (iii) planning strategies
to conserve biodiversity in protected environments, and (iv)
balancing conservation measures and silvicultural practices.

Finally, we suggest including other taxonomic groups, and the
relative biomass proportions of each species (Feest et al., 2010),
closely related to forest structural traits in future studies (e.g.,
small mammals, spiders, amphibians, fungi, and bryophytes), for a
comprehensive ecosystem monitoring and, therefore, to track down
biodiversity hotspots more effectively.
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