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Vegetation greenery is essential for the sensory and psychological wellbeing of

residents in residential communities. To enhance the quality of regulations and

policies to improve people’s living environments, it is crucial to effectively identify

and monitor vegetation greenery from the perspective of the residents using

effective images and methods. In this study, Baidu street view (BSV) images and

a Normalized Vegetation Greenery Index (NVGI) based method were examined

to distinguish vegetation greenery in residential communities of Beijing, China.

The magnitude of the vegetation was quantified and graded, and spatial analysis

techniques were employed to investigate the spatial characteristics of vegetation

greenery. The results demonstrated that (1) the identified vegetation greenery

using the proposed NVGI-based method was closely correlated with those of the

reference classification (r = 0.993, p = 0.000), surpassing the comparison results

from the SVM method, a conventional remote sensing classification means; (2)

the vegetation greenery was distributed unevenly in residential communities and

can be categorized into four grades, 63.79% of the sampling sites were found with

relatively low (Grade II) and moderate (Grade III) vegetation greenery distribution,

most of the districts in the study area contained zero-value green view index

sites; and (3) there was significant spatial heterogeneity observed in the study area,

with low-value clustering (cold spots) predominantly located in the central region

and high-value clustering (hot spots) primarily concentrated in the peripheral

zone. The findings of this study can be applied in other cities and countries

that have street view images available to investigate greenery patterns within

residential areas, which can help improve the planning and managing efforts in

urban communities.
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1. Introduction

The vegetation greenery in residential communities, such as
arbor trees, shrubs, bamboos, and lawns, has favorable effects
on residents’ sensory and psychological wellbeing (Wolch et al.,
2014; Engemann et al., 2019; Wu et al., 2021; Ma et al., 2022).
However, greenery in residential areas is more likely to be removed
or destroyed as a result of private appropriation. The green
vegetation in residential communities should be classified and
monitored using an appropriate profile dataset and classification
methodology, enabling planners to utilize the information as a
guide for developing more specialized planning and management
strategies. However, few studies have focused on identifying
the spatial heterogeneity of vegetation greenery in residential
communities.

Satellite-based multi-spectral remote sensing images
can cover large-scale regions and be used to fulfill canopy
extraction and greenery estimations (Cai et al., 2019; Wei
et al., 2020). While most of these images are acquired from
the aerial perspective, the greenery computed using the
satellite remote sensing images reflects the characteristics and
situation of the canopy from the top to the bottom, which
may different from residents’ common view of greenery
observed at ground. Additionally, commonly used multi-spectral
remote sensing images are acquired through passive detecting
technology, which is subjective to the influences of clouds,
precipitation, haze, and green vegetation thickness (Woodhouse,
2017).

Profile imaging systems, such as Google street view, Tencent
street view, and Baidu street view (BSV), have similar view angles
to residents, and they can present the greenery environment at
a very high-resolution level (Gu et al., 2019; Liu et al., 2020;
Li et al., 2021). As a result, the street view images can be used
to map and quantify the amount of street-side greenery. For
instance, Yang et al. (2009) developed a green view index based
on Google street view images to evaluate the visibility of urban
forests in Berkley, California, USA. Griew et al. (2013) developed
and tested a street audit tool using Google street view in Wigan,
England to measure environmental supportiveness for physical
activity, and found that Google street view images are reliable to
be used to measure the urban street greenery. Li et al. (2015) used
Google street view images to assess urban greenery in New York
City, and proposed a green view index to measure the street-
side greenery that people can see when standing or walking on
the street; Ye et al. (2019) measured the daily accessed street
greenery in Singapore using the Google street view images and deep
learning method to achieve an accurate measurement on visible
greenery. In China, as an alternative to Google street view, the
BSV dataset is free to download using the Baidu API. It has a
broader coverage and contains more up-to-date images than other
profile datasets. BSV imagery is so far available in 424 China’s cities
with a total distance of more than 3 million kilometers (Baidu,
2020), which has been used to effectively quantify and monitor
the street-side greenery supportiveness in the metropolis, such
as Shanghai (Xiao et al., 2020), Shenzhen (Zhong et al., 2021),
Chongqing (Deng et al., 2021), Sanya (Chen et al., 2019), Tai’an
(Yu et al., 2019), Harbin, and Changchun (Xiao et al., 2021).
Therefore, the BSV image system is predicted to be a valuable

source of information for precisely detecting and evaluating
vegetation greenery from people’s perspectives. However, the use of
the BSV imaging system to study the vegetation characteristics in
enclosed spaces, especially residential communities, has not been
involved.

Compared to satellite remote sensing images, street view
images only provide spectral information in the red (R), green
(G), and blue (B) bands (Toaha et al., 2020). Due to the
absence of near-infrared (NIR) data, conventional algorithms
used for remote sensing image classification are prone to
misclassifying vegetation as other urban landscape elements
such as buildings, vehicles, and shade (Li et al., 2019; Kumar
et al., 2020), which can negatively impact the accuracy of
green vegetation extraction and evaluation (Yu and Qi, 2021;
Yu et al., 2022). An effective method for identifying vegetation
greenery is requisite to address this issue. Additionally, the
monitoring of vegetation greenery involves processing a large
amount of data due to the impact of road alignment on
residents’ visual ranges, requiring thousands of images to be
processed. The same characteristics in images may exhibit
different values for image elements due to variation in weather
condition during image capture, such as cloudy and sunny days.
Therefore, it is imperative to investigate methods for minimizing
the difference between green vegetation and other features in
BSV images, enabling effective extraction during image batch
processing. Additionally, maximizing the contrast of image element
values between greenery and other features should also be
explored.

This study aimed to investigate the potential of BSV images and
a Normalized Vegetation Greenery Index (NVGI)-based method as
the source of information for identifying and evaluating vegetation
greenery in residential communities, as well as exploring its
spatial characteristics. Sampling sites were randomly created in
the residential communities, BSV images were acquired from the
sampling sites, and the proposed method was used to identify
green vegetation in these images and examine its feasibility in
the BSV image classification. The vegetation greenery index was
computed to measure the magnitude of vegetation greenery in the
residential communities and compare their spatial characteristics.
The findings of this study are expected to be a reference for
residential community greenery estimation and planning.

2. Study area

Beijing (115.7–117.4◦ E and 39.4–41.6◦ N) is the capital of
China, it contains sixteen districts, i.e., Changping District (CP
hereinafter), Chaoyang District (CY), Dongcheng District (DC),
Daxing District (DX), Fangshan District (FS), Fengtai District
(FT), Haidian District (HD), Huairou District (HR), Mentougou
District (MTG), Miyun District (MY), Pinggu District (PG),
Shijingshan District (SJS), Shunyi District (SY), Tongzhou District
(TZ), Xicheng District (XC), and Yanqing District (YQ), with a
total area of 16,396.54 km2 (Figure 1). According to the seventh
census of China, the study area had ∼22 million residents through
the end of 2021, which ranked seventh around the world. Such a
large population size makes it an ideal area for green vegetation
identification in residential communities.
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FIGURE 1

Study area in Beijing. (a) Location of the study area; (b) 16 districts in the study area, the red lines are the road networks in each district; (c) an
example of a residential community, the red lines represent the roads in the community, and the leaf green dots represent the locations of sampling
sites to obtain BSV images.

3. Materials and methods

3.1. BSV image acquisition

Due to the varying names of residential communities and the
absence of applicable programming rules for extracting residential
community areas, all the residential communities covered with
BSV images in the study area were identified manually, and
so were their inner road networks. A total length of 79.40 km
road network was delineated in the study communities using
the professional geographical information system software ArcGIS
Desktop R© 10.1 (Environmental Systems Research Institute, Inc.,
Redlands, CA, USA). Considering the visible distance in the
residential community, a minimum distance of 100 m was
established between two adjacent sampling sites. A total of 7,940
sampling sites were thus randomly selected throughout the road
networks. Subsequently, these sites were thoroughly examined
and 245 candidates that were situated too close to other sites
at the intersections were eliminated. Finally, a total of 7,695
sampling sites were selected and assigned sequential BSV-ID (0-
7694) for investigation and analysis (Table 1). It should be noted
that “greenery” is constantly used in this study to characterize
the amount of green vegetation and to differentiate it from
the “greenness” of the tasseled cap transition in remote sensing
processing method.

To reduce the impact of fluctuations in road width on the
assessment, this study used BSV images that were taken along
the road direction. For instance, all the sampling sites distributed
along the north-south (N-S) oriented roads would have BSV images
heading northwards; BSV images facing east were chosen and
acquired for the roads with an east-west orientation (E-W). Each
available BSV image can be requested in an HTTP URL form using

TABLE 1 Distribution of sampling sites in the study area.

District Number of residential
community

Number of
sampling sites

CP 92 1,062

CY 107 1,376

DC 22 227

DX 33 426

FS 27 280

FT 94 1,028

HD 68 689

HR 30 294

MTG 8 47

MY 22 266

PG 27 179

SJS 49 467

SY 14 228

TZ 75 884

XC 24 165

YQ 9 77

Total 701 7,695

BSV Image API.1 In this study, the obtained BSV images have a
160◦ horizontal coverage and 0◦ vertical coverage, which is similar
to people’s optic angle and view.

1 http://lbsyun.baidu.com
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TABLE 2 Equation combinations of the original and normalized green,
red, and blue band information in the BSV images.

ID Algebra operation

1 R, G, B; R′ , G′ , B′

2 R + G, G + B, R + B; R′ + G′ , G′ + B′ , R′ + B′

3 R + G + B; R′ + G′ + B′

4 R− B, B− G, R− G; R′ − B′ , B′ − G′ , R′ − G′

5 R− G− B, G− R− B, B− R− G; R′ − G′ − B′ , G′ − R′ − B′ ,
B′ − R′ − G′

6 R / G, G / B, R / B; R′ / G′ , G′ / B′ , R′ / B′

7 (R− G)/(R + G), (G− B) / (G + B), (R− B) / (R + B);
(R′ − G′) / (R′ + G′), (G′ − B′) / (G′ + B′), (R′ − B′) / (R′ + B′)

8
√

R × G,
√

G × B,
√

R × B;
√

R × G,
√

G × B,
√

R × B

9 R
√

G × B
, G
√

R × B
, B
√

R × G
; R
√

G × B
, G
√

R × B
, B
√

R × G

3.2. Image classification and comparison
with a conventional method

Similar to other profile image systems, BSV imagery includes
no NIR information but captures only R, G, and B band
information. The spectral ranges of landscape features in the
residential community, including sky, shade, pole, vehicle, building,
and pavement, largely overlap with each other’s, which makes the
images less useful as the source of information for vegetation
classification. Thus, image classification methods that employ NIR
band information or NIR-based vegetation indices may not be able
to effectively identify vegetation in BSV images and distinguish
vegetation from other artificial features.

This study compared the various combinations of the three
band information (Table 2). The information of R, G, and B, and
the sum, subtract, and divide of these three bands were computed
respectively. The R, G, and B band values were normalized using
Equation 1 to minimize the pixel value difference of the same
commonly seen features. The value ranges of vegetation greenery
and other features using the equations in Table 2 were compared
to examine the separation possibility in the BSV images. Finally,
a NVGI (Equation 2) in the line of ID 9 in Table 2 was proposed
to detect and monitor the vegetation greenery in the BSV images.

R =
Rpixel − Rmin

Rmax − Rmin
G′ =

Gpixel − Gmin

Gmax − Gmin
B′ =

Bpixel − Bmin

Bmax − Bmin
(1)

NVGI =
G′

√
R′ × B′

(2)

where G, R, and B represent the normalized G, R, and B band values
of the BSV images; Gpixel, Rpixel, and Bpixel are the corresponding
band values; Gmin, Rmin, and Bmin denote the minimum band
values, and Gmax, Rmax, and Bmax are the maximum band values.

Subsequent to the NVGI calculation, the grayscale images
were obtained and the NVGI value ranges of green vegetation
and other features can be identified. The green vegetation area
in each image was then distinguished based on the segmentation
method (AlSaeed et al., 2016), in which the pixels of each image
are represented in L gray levels [1,2,. . .L], the number of pixels at

level i is represented by ni, and the total number of pixels using
N = n1+n2+. . ..nL. The probability distribution is:

pi =
ni

N
, pi ≥ 0,

L∑
i = 1

pi = 1 (3)

If the image is classified into two classes C0 and C1 by a
threshold at level t, C0 is the pixels with gray levels [1,2. . .,t] and C1
is [t+1,. . ..L]. The probability of class occurrence and class means
are:

ω0 = pr (C0) =

t∑
i = 1

pi = ω(t)µ0 =

t∑
i = 1

ipi(i\C0) (4)

=

t∑
i = 1

i
pi

ω0
=

µ(t)
ω(t)

ω1 = pr (C1) =

L∑
i = t+1

pi = − ω(t)µ1 = (5)

L∑
i = t+1

ipr(i\C1) =

tL∑
i = t+1

pr

ω1
=

µT−ì(t)
1− ω(t)

where ω0 and µ0, ω1 and µ1 are the zeroth and first-order
cumulative moments of the histogram up to the t-th level and are
defined as follows:

ω(t) =
t∑

i = 1

piµ(t) =
t∑

i = 1

ipi (6)

µT is the total mean level of the original image which is computed
as:

µT = ì (L) =

t∑
i = 1

ipi (7)

µ0ω0 + µ1ω1 = µT, ω0 + ω1 = 1 (8)

The class variances and total variance are computed using the
equations below:

σ0
2
=

t∑
i = 1

(i− µ0)
2pr(i\C0) =

t∑
i = 1

(i− µ0)
2 pi

ω0
(9)

σ1
2
=

L∑
i = t+1

(i− µ1)
2pr(i\C1) =

t∑
i = 1

(i− µ1)
2 pi

ω1
(10)

To evaluate the threshold (at level t), the within-class variance
(σw

2) and between-class variance (σB
2) is used as measures of class,

separability, and their equations are as follows.

σw
2
= ω0σ0

2
+ ω1σ1

2 (11)

σB
2
= ω0(µ0 − µT)2

+ ω1(µ1 − µT)2
= ω0ω1(µ1 − µ0)

2

(12)
in which

η =
σB

2

σT 2 (13)

σT
2
= σw

2
+ σB

2 (14)
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As σB
2 is dependent on first order statistics, while σw

2 depends
on the second order statistics. Therefore, σB

2 is the simplest
measure for t. Thus, η(t) is adopted as the criterion measure
to select the best threshold value (t) which is determined by a
sequential search using the following functions.

η(t) =
σB

2(t)
σT 2 (15)

σB
2 (t) =

[µTω (t)− µ (t)]2

ω (t) [1− ω (t)]
(16)

Considering σT
2 is not a function of threshold (t), the optimal

threshold should be the value that maximizes the between-class
variance [σB

2(t)]. Thus the optimal threshold value (t∗) can be
computed with the equation below.

σB
2 (t∗) = max

[
σB

2(t)
]
, t ≥ 1 and < L (17)

The support vector machine (SVM) classification method was
used as a comparison to distinguish the green vegetation pixels
based on the spectral information of the BSV images, which is
a typical conventional classification approach for multi-spectral
images (Ding et al., 2016). To maximize the distance between
the hyperplane and the nearest pixel in each of the two groups,
it divides pixels into two groups using hyper planes (Vapnik,
1999). Up until a pair of pixels has the closest distance in various
classes, the SVM classification operations are repeated. The key
issue that makes SVM difficult to automate is that it is a type
of supervised classification approach that requires the user to
designate classes of interest and train the classifier before the
classification (Woodard, 1992; Samiappan and Moorhead, 2015). In
this study, the kernelType was RBF, the gamma was set to 0.5, and
the cost was 10. Another 200 randomly chosen BSV images were
visually interpreted in this study to create a set of reference data for
training the SVM classifier (Lillesand et al., 2015).

Two hundred new BSV images were used to create the
verification dataset, which served as a means of validating the
identification findings obtained using the NVGI-based and SVM
methods. These BSV images’ green vegetation was manually
portrayed and utilized as a reference. The confusion matrix
(user’s, producer’s, and overall accuracy) and the Kappa coefficient
were used to evaluate the correctness of the results generated
by the NVGI and SVM methods. When compared to the total
number of pixels, the user’s accuracy indicates how many pixels
accurately reflect a given class; the producer’s accuracy indicates
how many portions of a given class were correctly represented in
the categorized image (Tung and LeDrew, 1988). The proportion
of correctly categorized pixels to all pixels is known as the
overall accuracy. Along with the overall consistency between the
reference and classified images, the Kappa coefficient also considers
incorrectly classified pixels from the error matrix (Rosenfield and
Fitzpatrick-Lins, 1986).

k̂ =
N
∑r

i = 1 Xii −
∑r

i = 1 Xi+X+i

N2 −
∑r

i = 1 Xi+X+i
(18)

where r represents the number of rows and columns in the
confusion matrix, N is the total number of elements, Xii is the
elements in row i and column i, Xi+ is the marginal total of row
i, and X+i is the marginal total of column i.

TABLE 3 Criteria green view index derived system of vegetation greenery
in the study site.

Level Green view
index

(percent)

Green vegetation pattern

Grade I <10 A zero or small portion of green vegetation was found
in the image, which delivers a strong impression of
the man-made landscape

Grade II 10–20 A relatively low portion of green vegetation exists in
the image, have an impression of the man-influenced
landscape

Grade III 20–30 A moderate percent of vegetation coverage was found
in the image, the environment is natural and
acceptable

Grade IV >30 A high percent of vegetation coverage is found in the
image, which shows strong visual and spiritual
pleasure, and is most beneficial to residents’ health

3.3. Greenery quantification and
gradation

The green view index (Deng et al., 2021) was used here
to quantitatively describe and compare the green vegetation
distribution pattern of each sampling site. The green view index
is defined as the proportion of green vegetation pixels in the BSV
image, its computation equation is shown below.

Green view index =
Nveg

Ntotal
× 100 (19)

where Nveg represents the pixel amount of green vegetation in
each BSV image, it can be identified using the NVGI method and
counted automatically; Ntotal means the total pixels of each BSV
image, which is a constant value in this study (1,521,216 pixels).
After the procedure of green view index computation, the sampling
sites were further classified into four different levels based on the
green view index computation results and the gradation system of
extant studies (Aoki, 1987; Yu et al., 2019) with an interval of 10%
(Table 3).

3.4. Spatial analysis methods

Moran’s I and Getis-Ord GI∗ analysis were employed to
analyze the spatial distribution patterns of the green view index.
The global Moran’s I is a measure of the overall clustering
of the spatial data (Moran, 1950). Compared with the global
spatial autocorrelation, the local Moran index calculates the spatial
correlation degree between each spatial object in the analysis
region and its neighboring objects, analyzes the local characteristic
differences in the distribution of spatial objects, and reflects the
spatial heterogeneity and instability in the local region (Anselin,
1995). They are defined as:

I =
N
W

∑N
i = 1

∑N
j = 1 wij(xi − x)(xj − x)∑N

j = 1 (xi − x)2 I =
N∑

i = 1

Ii

N
(20)

where I is the Global Moran’s I measuring global autocorrelation,
and Ii is local; N is the number of spatial units indexed by i and j; x
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FIGURE 2

Normalized Vegetation Greenery Index value ranges of common features existing in the BSV image. (A) Original pixel values of the common features
in the BSV images, (B) normalized pixel values of the common features, and (C) NVGI values of the common features.

is the variable of interest; x is the mean of x; wij is a matrix of spatial
weights with zeroes on the diagonal; and W is the sum of all wij.

The hot spot analysis tool calculates the Getis-Ord Gi∗ statistic
for each feature in a dataset. It is an effective means to explore
the characteristics of local spatial clustering distribution, which can
distinguish the degree of clustering of variable spatial distribution
by cold and hot spots (Getis and Ord, 2010). The Gi∗ statistic
returned for each feature in the dataset is a z-score. For statistically
significant positive z-scores, the larger the z-score is, the more
intense the clustering of high values (hot spots); the lower the
z-score is less than 0, the more intense the clustering of low values
(cold spots).

The Getis-Ord local statistic is given as:

G∗i =

∑n
j = 1 wi,jxj − X

∑n
j = 1 wi,j

S

√ [
n
∑n

j = 1 w2
i,j−(

∑n
j = 1 wi,j)

2
]

n−1

X =

∑n
j = 1 wi,j

n
(21)

S =

√∑n
j = 1 x2

j

n
− (X)

2

where xj is the attribute value for feature j, wi,j is the spatial weight
between feature i and j, n is the total number of features.

4. Results

4.1. NVGI calculation

The original value ranges of the 200 BSV images were shown
in Figure 2A. Spectral ranges of vegetation greenery and other
common features, including shade, poles, vehicles, buildings, and
pavement, are largely overlapped, which reduces the value of the
images as a source of data for identifying vegetation. After the
normalization process, the features can be separated into two
groups, as shown in Figure 2B, the pixel values of vegetation
greenery and green shade were different from those of other
features. The NVGI computation results were obtained using
Equation 2 and shown in Figure 2C. The NVGI value range of
green vegetation in the study area is 1.06–1.32, which is different
from that of the sky, shade, pole, vehicles, building facade, and

pavement. Based on the NVGI differences, the green vegetation
pixels in the BSV images can be identified.

4.2. Verification of vegetation greenery
identification

The NVGI method was applied to the 7,695 BSV images,
and the findings were saved in the GIS database for subsequent
study. In two randomly chosen BSV images, shown in Figure 3,
the vegetation greenery was extracted using the NVGI, SVM, and
manual identification methods to display the extraction findings.
White was used to symbolize the green vegetation, while black
was used to represent the other features. Green vegetation in the
BSV images may be distinguished in the NVGI-based method
with high accuracy when compared to the SVM and the reference
(the manual method). When employing the NVGI approach, for
example, it is possible to identify artificial green features as non-
vegetation, such as the vehicles (Figure 3b). However, the SVM-
derived results incorrectly classify the green vegetation with other
features (Figures 3c, g).

To further verify the accuracies of the NVGI-based and the
SVM method, another 200 BSV images were randomly selected
from the BSV image dataset. All the images were manually
classified by using the polygon partitioning function in the ArcGIS
Desktop R© 10.1 (Environmental Systems Research Institute, Inc.,
Redlands, CA, USA). The classification accuracies of these images
were computed, and the green vegetation identification results
(dependent variable) with the manual depiction ones (independent
variable) were compared. As shown in Table 4, the NVGI method
improved the accuracy of vegetation greenery identification by 18%
(Kappa of 0.85 vs. 0.72) and 20% (Overall Accuracy of 0.91 vs.
0.76), compared to the SVM methods (Table 4), which is more
suited for vegetation greenery identification in the street view
images. The results using NVGI-based and SVM methods were
then compared with the manually depicted maps. In the fitting
results (Figure 4), the red dashed lines are the fitting ones between
the independent and dependent variables. The regression line of the
NVGI-based method and manual results is close to the diagonal
line, and Pearson’s r = 0.993, with p = 0.000, shows that the green
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FIGURE 3

Comparison of green vegetation identification results of the BSV images. (a,e) The original BSV images, (b,f) extraction results using NVGI-based
method, (c,g) SVM method, and (d,h) manual results.

vegetation classification made using the NVGI method was closely
correlated with those of the reference classification (Figure 4A); the
SVM extracted green view indexes were overestimated compared to
the manual ones (Figure 4B). The vegetation greenery index values
computed using the NVGI-based method were consistent with the
artificial refinement, which can be used in further spatial analysis.

4.3. Spatial distribution of vegetation
greenery

The green view index of each sampling site was computed and
shown in Figure 5. The dot color represented the percentage of

green vegetation in each sampling site, in which red and orange
colors indicated low and relatively low green vegetation in the study
area, respectively, and green and blue color dots represented the
moderate and high green vegetation distribution. It can be found
that the sample sites were not evenly distributed within green
index grades (Table 5). Sampling sites classified as Grade II and
III accounted for more than 60% of the total sites, which indicated
that the communities in the study area were not green enough
for residents’ sensory and psychological health. Among them,
2,440 sampling sites (31.70%) were classified as Grade II, which
had relatively low proportions (10–20%) of vegetation greenery
in these BSV images, the residents in the communities may have
an impression of relatively low greenery and high man-influenced
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TABLE 4 Accuracy of vegetation greenery classification using the NVGI
and SVM methods.

Feature
type

Accuracy
assessment type

Classification method

NVGI SVM

Vegetation
greenery

User’s accuracy 0.91–0.93 0.78–0.82

Producer’s accuracy 0.90–0.92 0.77–0.79

Other features User’s accuracy 0.91–0.92 0.77–0.80

Producer’s accuracy 0.90–0.91 0.71–0.78

All Overall accuracy 0.91–0.93 0.76–0.80

Kappa coefficient 0.85–0.88 0.72–0.78

landscape; 2,469 sites (32.09%) were classified as Grade III, i.e.,
moderate greenery with 20–30% portions in the BSV images, in
which the artificial environment is natural due to the relatedly high
proportion of greenery (Table 5). In addition, 584 sites (75.90%)
were found to have small proportions of green vegetation (0–10%)
in the images, in which 211 sampling sites were found with no green
vegetation planted (0%), residents standing or walking past these
sites will have a strong perspective of the man-made landscape.
A total of 28.62% (2,202) sites had a high percentage of vegetation
coverage, showing strong visual and spiritual pleasure.

The vegetation greenery among the sixteen districts varied
and showed different spatial distribution patterns, which can be
classified into three categories (Table 6): (1) In CP, SJS, FS, HD,
DX, and TZ, the prevalent green view index grades were Grade IV
(green view index ≥30%), and Grade III (green view index ∈[20%,
30%), Table 6), residents living in these districts may encounter
more visible green vegetation when they stand or walk along the
inner roads of the communities. (2) In CY, DC, FT, HR, MTG,
PG, SY, and XC, the main grades of the green view index were
Grade III [green view index ∈(20%, 30%)] and Grade I [green view
index ∈(10%, 20%)], the residential communities in these eight
districts appeared less green than those in the aforementioned six
districts (Figure 5). (3) As for the left two districts (MY and YQ),
the dominant grades were Grade I (green view index less than 10%),
which meant the residential communities in these two districts
lacked green vegetation.

4.4. Spatial analysis of vegetation
greenery

The Moran’s I value of all green view index values based
on the NVGI method in the study area (0.476, p = 0.000)
demonstrated that the green view index values have positive spatial
autocorrelation. Local Moran’s I analysis showed that High-High
and Low-Low cluster types prevailed in the study area (Figure 6 and
Table 7). Among the 467 sample sites in SJS, 260 exhibited a high-
high cluster, accounting for 55.7%, which is the highest percentage
in the high-high cluster type. A high-high cluster was present in 557
sample sites in CP, accounting for 52.4%; which was also present in
FS and DX, accounting for 32.8 and 32.1%, respectively. In terms of
the low-low cluster type, 213 of 266 sample sites in Miyun showed
a low-low cluster, accounting for 80.1%. HR and CY followed, with
68 and 59.6%. Five hundred eighty-five of 1028 sample sites in FT

showed a low-low cluster, accounting for 56.9%. In addition, the
percentage of PG low-low clustering sites was 56.4% (Table 7).

The Getis-Ord GI∗ analysis was used to detect cold and hot
spots of green view index values in the study area. Figure 6b showed
whether the spatial clustering of the sampling sites was significant
and, if so, at what level (0.01, 0.05, and 0.1 levels). The spatial weight
matrix was calculated based on the Euclidean distance between
sampling sites, the distance threshold was 485.447 m. The spatial
heterogeneity analysis found that the core region of the study area
(DC and XC), the core area of the suburban district, such as HR,
MY, PG, and MTG, presented low-value clustering (cold spots,
3,205 sampling sites). Conversely, the peripheral zone (e.g., CP
and SJS) surrounding the core area mainly presents high-value
clustering (hot spots, 2,304 sites).

5. Discussion

This is the first study that concentrated in monitoring greenery
characteristics in residential communities. The identification and
spatial analysis of vegetation greenery were conducted using an
NVGI-based method and street view images. The study area
consisted of all residential communities that have the street view
images. The results demonstrated that the proposed method
can extract additional spectral information from the street view
RGB images (i.e., BSV images) to improve the classification
and evaluation accuracy of vegetation greenery without NIR
information. The green vegetation exhibited distinct spatial
heterogeneity in the study area. The main contributions of this
study are (1) to propose a new path to monitor the spatial variations
of vegetation greenery in residential communities and (2) to
improve the accuracy of greenery classification and evaluation,
which is overlooked by existing studies.

5.1. Image acquisition

Baidu street view imagery uses people’s profile optic angle and
view, which is different from those of conventional satellite RS
images, to capture and record images. Consequently, BSV images
are unable to capture green spaces such as green roofs that cannot
be observed or detected from a road angle (Yu et al., 2022).
However, BSV images enable it to be used to measure vegetation
greenery from the viewpoint of people who are standing or walking
on the roads, it can be more useful in residential community
planning and management. During the image acquisition process,
BSV images captured in alignment with the direction of a road’s
heading were selected for analyzing vegetation’s greenery. This
approach to image selection can enhance the effectiveness and
accuracy of vegetation greenery analysis when dealing with varying
road widths (Han et al., 2013; Chen et al., 2020). Previous studies
employed multiple images (e.g., 18 images: 6 horizontal directions
and 3 aspects in each direction; or 12 images: 4 horizontal
directions and 3 aspects in each direction) to mitigate the impact of
road width on vegetation greenery at a specific location of interest
(Li et al., 2015; Chen et al., 2019; Yu et al., 2019). The extensive
requirements for image or data can result in time-consuming and
labor-intensive analysis of vegetation greenery. In contrast, the
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FIGURE 4

Agreement between the vegetation greenery index values obtained from the vegetation greenery classification made using the NVGI-based and
manual methods (A), SVM, and manual methods (B).

FIGURE 5

Spatial distribution of green view index Grade I (a), II (b), III (c), and IV (d).

TABLE 5 Gradation of green view index in the study area.

Grade Number of sites %

I 584 7.59

II 2,440 31.70

III 2,469 32.09

IV 2,202 28.62

Sum 7,695 100

proposed method only requires BSV images facing the direction of
the road while minimizing potential errors due to variations in road
width.

5.2. Comparison with existing methods

Using the grid-overlay method, the initial urban street green
vegetation studies manually identified and measured vegetation
greenery from profile images (e.g., Shafer et al., 1969; Nordh et al.,
2009). Multi-spectral classification techniques were also developed
in conjunction with the creation of RS images to increase the
effectiveness and precision of identifying green vegetation from
datasets of profile images (Li et al., 2017; Lu, 2019). However, the
direct application of the conventional supervised approaches (such
as SVM in this study) results in misclassification of vegetation
greenery with other common features in the BSV images due
to the absence of the NIR band and the spectral overlap of R,
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TABLE 6 The proportion of green view index gradation in each district (%).

Grade District

CP CY DC DX FS FT HD HR MTG MY PG SJS SY TZ XC YQ

I 3.86 0.44 9.69 7.04 3.57 1.85 7.69 5.10 27.66 54.89 6.15 7.28 19.74 15.27 7.27 31.17

II 9.23 53.85 27.31 23.47 19.64 50.19 17.27 55.44 31.91 29.70 67.60 14.35 30.26 22.51 35.76 28.57

III 25.89 42.81 38.77 30.52 27.86 37.55 32.95 38.78 29.79 9.77 25.70 19.27 26.75 26.36 39.39 18.18

IV 61.02 2.91 24.23 38.97 48.93 10.41 42.09 0.68 10.64 5.64 0.56 59.10 23.25 35.86 17.58 22.08

FIGURE 6

Local Moran’s I (a) and Getis-Ord GI* (b) of green view index in the study area.
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TABLE 7 Cluster types using local Moran’s I in the study area.

District Cluster type using Moran’s I Total

Not
significant

H-H H-L L-H L-L

CP 340 557 9 125 31 1,062

CY 484 33 33 6 820 1,376

DC 143 16 2 12 54 227

DX 156 137 15 65 53 426

FS 163 92 2 22 1 280

FT 356 42 34 11 585 1,028

HD 393 168 6 18 104 689

HR 86 \ 8 \ 200 294

MTG 29 \ 1 \ 17 47

MY 45 \ 8 \ 213 266

PG 76 \ 2 \ 101 179

SJS 94 260 2 94 17 467

SY 86 24 12 13 93 228

TZ 456 180 26 51 171 884

XC 121 \ 3 \ 41 165

YQ 39 7 3 5 23 77

Total 3,067 1,516 166 422 2,524 7,695

H-H, high-high cluster; H-L, high-low cluster; L-H, low-high cluster; L-L, low-low cluster.

G, and B bands. In contrast, the NVGI methodology efficiently
extracts more valuable spectral information from the BSV images
in comparison to the traditional SVM method, improving the
recognition accuracy of green vegetation.

Unlike previous studies that monitored urban street-side
greenery using satellite RS images, such as Landsat and Sentinel
series data, to compare the extracted green view index results with
the typical NDVI (Normalized Difference Vegetation Index), this
study did not utilize such methods due to the narrower roads within
the residential communities under study, which have a width of
less than 4 m. This is in contrast to trunk roads which can be
as wide as 30 m, secondary trunk roads at 12 m and side roads
at 8 m. Unfortunately, commonly used Landsat-8/9 and Sentinel-
2A/B satellite imagery that is available for free download have a
pixel size ranging from 10 to 60 m, rendering them unsuitable for
conducting comparisons due to their low resolution.

5.3. Cause of low green view indexes

Population growth in cities combined with urban planning
policies of densification may drive the conversion of vegetation-
planted areas into residential land (Kabisch and Haase, 2014; Weber
et al., 2017). The findings of this study indicated that more than
60% of the study sites had low green view indexes. According to the
data from the Bureau of Statistics, these residential communities
were constructed between 1995 and 2010. Due to their construction
period and design philosophy, the issue of massive car ownership
was not fully taken into consideration (Frank et al., 2010; Xiao et al.,
2021). In many regions of the study area, property management

skills and levels were also insufficient. Consequently, private
buildings have replaced the community’s open green space (Li
and Zhao, 2017; Mandeli, 2019). These factors contribute to the
comparatively low levels of greenery in the study area. To achieve
better community management and promote residential greenery
equality, it is essential to conduct timely and accurate community
greenery monitoring.

5.4. Application of the proposed
framework

The NVGI method was proposed to conduct vegetation
extraction, whereby the R, G, and B band values were initially
normalized to minimize the pixel value discrepancies of identical
features in the BSV images. Subsequently, the NVGI was employed
to amplify differences between distinct features and identify
greenery within the BSV images, as depicted in Figure 2. It
allows planners to identify the name and location of residential
communities that contain few green areas (especially the zero-
value areas). By analyzing the results, these areas can be identified
and improved through various measures such as clearing privately
occupied areas and implementing structural systems that facilitate
the growth of plants like trees, shrubs, and lawns on vertical
surfaces (Ghazalli et al., 2019; Chan et al., 2021). Currently, the BSV
images have covered 424 cities in China. The proposed framework
in this study can be directly applicable to multi-year BSV images,
facilitating landscape planners’ evaluation of urban vegetation
greenery and its variations. Furthermore, the proposed framework
can be utilized in other cities and countries that have street view
images (e.g., Google street view image, Tencent street view image,
etc.) to explore the greenery characteristics of residential areas.

5.5. Limitations

Although the proposed method enables monitoring of spatial
variations in vegetation greenery within residential communities
and improve the accuracy of greenery classification and evaluation,
this study is not without limitations. Firstly, due to the prolonged
impact of the COVID-19 pandemic in China, data on in situ
community characteristics such as the facade of the building
structure and resident opinions regarding green view index grading
were temporarily unavailable for collection. This issue will be
addressed in a future study through the implementation of
additional interviews and research. Furthermore, the utilization
of random sampling to establish study sites may have an
impact on the accuracy of Getis-Ord Gi∗ spatial analysis due
to variations in resident age grades and building construction
dates among communities. More comprehensive investigations
should be conducted to compare the outcomes obtained from
different spatial sampling modes. Additionally, in this study,
trees and grasses were not distinguished separately in BSV
images due to their similar impacts on human pleasure and
shared spectral change patterns within the study area. Future
research will focus on examining their variations during other
seasons and discussing their identification and correlation with
NVGI individually.
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6. Conclusion

This study examined the usability of an NVGI-based method
in the identification and monitoring of vegetation greenery in
residential communities. The results found that the combination
of BSV image and NVGI-based method can extract green
vegetation efficiently. Vegetation greenery exhibited spatial
heterogeneity in the study area. The finding of this study can
help understand vegetation greenery supportiveness and be
used as a reference for greenery management and planning
in residential communities. Further study will be done on the
seasonal and annual variation of vegetation greenery in more
residential communities to provide temporal reference information
for residential community planning.
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