
ffgc-06-1130721 May 27, 2023 Time: 12:48 # 1

TYPE Original Research
PUBLISHED 02 June 2023
DOI 10.3389/ffgc.2023.1130721

OPEN ACCESS

EDITED BY

Paal Krokene,
Norwegian Institute of Bioeconomy Research
(NIBIO), Norway

REVIEWED BY

Johannes Schumacher,
Norwegian Institute of Bioeconomy Research
(NIBIO), Norway
Roman Sitko,
Technical University in Zvolen, Slovakia

*CORRESPONDENCE

Aleksei Trubin
trubin@fld.czu.cz

RECEIVED 23 December 2022
ACCEPTED 19 May 2023
PUBLISHED 02 June 2023

CITATION

Trubin A, Kozhoridze G, Zabihi K, Modlinger R,
Singh VV, Surový P and Jakuš R (2023)
Detection of susceptible Norway spruce
to bark beetle attack using PlanetScope
multispectral imagery.
Front. For. Glob. Change 6:1130721.
doi: 10.3389/ffgc.2023.1130721

COPYRIGHT

© 2023 Trubin, Kozhoridze, Zabihi, Modlinger,
Singh, Surový and Jakuš. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Detection of susceptible Norway
spruce to bark beetle attack using
PlanetScope multispectral
imagery
Aleksei Trubin1*, Giorgi Kozhoridze1, Khodabakhsh Zabihi1,
Roman Modlinger1, Vivek Vikram Singh1, Peter Surový1 and
Rastislav Jakuš1,2

1Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia,
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Climate change-related acute or long-term drought stress can weaken forest

ecosystems and result in widespread bark beetle infestations. Eurasian spruce

bark beetle (Ips typographus L.) infestations have been occurring in Norway

spruce [Picea abies (L.) Karst.]-dominated forests in central Europe including

the Czechia. These infestations appear regularly, especially in homogeneous

spruce stands, and the impact varies with the climate-induced water stress

conditions. The removal of infected trees before the beetles leave the bark is

an important step in forest pest management. Early identification of susceptible

trees to infestations is also very important but quite challenging since stressed

tree-tops show no sign of discolouration in the visible spectrum. We investigated

if individual spectral bandwidths or developed spectral vegetation indices (SVIs),

can be used to differentiate non-attacked trees, assumed to be healthy, from

trees susceptible to attacks in the later stages of a growing season. And, how the

temporal-scale patterns of individual bands and developed SVIs of susceptible

trees to attacks, driven by changes in spectral characteristics of trees, behave

differently than those patterns observed for healthy trees. The multispectral

imagery from the PlanetScope satellite coupled with field data were used to

statistically test the competency of the individual band and/or developed SVIs

to differentiate two designated classes of healthy and susceptible trees. We found

significant differences between SVIs of the susceptible and healthy spruce forests

using the Enhanced Vegetation Index (EVI) and Visible Atmospherically Resistant

Index (VARI). The accuracy for both indices ranged from 0.7 to 0.78; the highest

among all examined indices. The results indicated that the spectral differences

between the healthy and susceptible trees were present at the beginning of

the growing season before the attacks. The existing spectral differences, likely

caused by water-stress stimuli such as droughts, may be a key to detecting forests

susceptible to early infestations. Our introduced methodology can also be applied

in future research, using new generations of the PlanetScope imagery, to assess

forests susceptibility to bark beetle infestations early in the growing season.
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1. Introduction

Forests worldwide are becoming increasingly more sensitive
to dieback due to physiological stress driven by heat and drought
(McDowell et al., 2008), which is frequently coupled with increased
growth of forest insect pests (Allen et al., 2010; DeRose et al., 2013).
Several studies found two most significant abiotic factors, wind
and drought, have been impacting the health of spruce forests in
Europe, (e.g., Komonen et al., 2011; Kärvemo et al., 2014; Marini
et al., 2017). However, the physiological processes underlying
conifer survival and mortality under drought conditions are
yet to be fully understood (McDowell et al., 2008). Conifers
have a wide range of drought tolerance; however, prolonged
water deficit frequency in trees may significantly increase their
susceptibility to bark beetle infestation (Krokene, 2015). Critical
environmental factors thought to expedite bark beetle outbreaks
are the combination of more frequent droughts and warmer
temperatures, directly impacting insect population dynamics and
host plant development and resistance (Jactel et al., 2012; Weed
et al., 2013; Bentz and Jönsson, 2015; Meddens et al., 2015; Raffa
et al., 2015). For example, prolonged dry periods accompanied by
high temperatures might decrease tree water supplies and make
them more vulnerable to Ips typographus L. attacks (Wermelinger,
2004; Netherer et al., 2015). Plant defense chemicals may rise
during periods of moderate drought whereas these chemicals may
decrease during prolonged severe drought (Gely et al., 2020).

One of Eurasia’s most economically significant forest
pests (Wermelinger, 2004) is the European spruce bark beetle
(I. typographus), which is severely damaging coniferous forests in
the Palearctic region (Christiansen and Bakke, 1988).

For most bark beetle species, the females deposit their eggs
inside the bark and intracortical layer of trees, consisting of
phloem and cambium zone tissues, where larvae develop (Keeling,
2016). The first generation of bark beetle exits the bark when
the accumulated thermal sum on average passes a threshold for
several weeks (Öhrn et al., 2014), highly variable on regional- and
continental-scales, starting from the early growing season (May to
October; Zabihi et al., 2021b).

Factors such as tree aging and density, and drought effects were
found to be important in weakening trees’ resistance to bark beetle
attacks (Christiansen and Bakke, 1988; Raffa, 1988; Fettig et al.,
2007; Bentz et al., 2010). The tree- and stand-level factors such as
tree vigor and size and stand density are critical in the endemic
level of infestation at which infestation occurs locally (Raffa and
Berryman, 1983; Simard et al., 2012). However, landscape-level
factors facilitate the transition of infestation from a local eruption
toward regional outbreaks (Wallin and Raffa, 2004; Raffa et al.,
2008; Simard et al., 2012). Some of the influential landscape-level
variables on beetle outbreaks were found to be favorable climatic
conditions, adjacency to the incipient populations, surface terrain,
an abundance of mature host trees, and former disturbances,
such as fire and outbreaks (Aukema et al., 2006). The spread of
outbreaks was also found to be autocorrelated within the spatial-
and temporal-scales despite the host tree vigor (Aukema et al., 2006,
2008; Simard et al., 2012).

Recent bark beetle outbreaks in spruce-dominated forests
have significantly outperformed previously known frequencies and
consequences, despite their crucial role in forest regeneration and

succession (Bače et al., 2015; Zeppenfeld et al., 2015; Zabihi et al.,
2021a). The number of I. typographus generations per year may
increase due to climate change (i.e., increased temperature) which
could also drive further outbreaks than previously documented
(Hlásny et al., 2011; Marini et al., 2013). For example, at least
two generations and sister broods were found to occur in central
European forests due to favorable summer temperatures (Netherer
et al., 2019). The most devastating I. typographus outbreak in
Central Europe to date was found to be in the Czechia from 2014
to 2015, which was initialized and led mainly by climatic factors
(Hlásny et al., 2021). Due to the shift of climatic conditions in
Europe, with more extreme weather anomalies, such as severe
droughts, storms, floods (Lindner et al., 2010), and intense heat,
mortality for most tree species in forests, including spruce, is
expected to rise (Hlásny et al., 2022).

Precise up-to-date spatial information on the presence and
dynamics of infestations is essential to make an efficient plan for
the removal and sanitation of infested trees, aiming to keep the
remaining forest intact. Gathering such data in large areas with
limited access is still challenging (Stereńczak et al., 2019). The
spatio-temporal dynamics of the bark beetle population have been
investigated in Europe, (e.g., Kärvemo et al., 2014; Havašová et al.,
2017; Mezei et al., 2017), and in North America, (e.g., Meddens and
Hicke, 2014; Senf et al., 2015). However, the success in detecting
and mapping tree mortality related to bark beetle infestations
highly depends on the forest composition and structure (Koontz
et al., 2021). For example, the detection and monitoring of infested
forest stands composed only of coniferous host species are rather
straightforward. In such stands or forests, newly infested trees
appear mostly in large and easily definable groups as bark beetles
continue to attack mostly nearby infested trees (Lausch et al., 2011).
One of the most effective ways to track vegetation stress is using
remote sensing (RS) data (Lawley et al., 2016). Multispectral aerial
and satellite imagery has been successfully used for mapping insect
outbreaks and other forest disturbances (Väisänen and Heliövaara,
1994; White et al., 2007; Long and Lawrence, 2016). To characterize
tree health status, the integrated approach of using RS data from
different sources, such as imagery acquired by active (e.g., synthetic
aperture radar; SAR) and passive sensors (e.g., multi- and hyper-
spectral imagery) could be applied (Niemann et al., 2015). For
example, Ortiz et al. (2013), Abdullah et al. (2019a), and Ali et al.
(2021) used satellite imagery, and Ortiz et al. (2013) used X-band
SAR, to detect early infestations.

The availability of RS data at various spectral, temporal, and
spatial resolutions plays an important role in detecting forest
infestation phenomena (Zabihi et al., 2021b). For example, coarse-
resolution Landsat imagery (Meddens et al., 2013), medium-
resolution SPOT-5 and Sentinel-2 imagery (Abdullah et al., 2019a),
and fine-resolution aerial photography (Minařík and Langhammer,
2016; Brovkina et al., 2018; Klouček et al., 2019; Abdollahnejad
and Panagiotidis, 2020) have been used to map infested trees.
PlanetScope imagery with a spatial resolution of 3.7 meters (Planet
Labs, Inc, 2022), allows better tracking of small changes in the land
cover within a relatively broad area. The daily image acquisition
of the PlanetScope (at the nadir) allows prompt monitoring
of forests susceptible to beetle attacks. All these specifications
of the PlanetScope help to avoid or minimize labor-intensive
visual surveys and/or costly UAVs- or aircrafts-use to detect
susceptible- or already attacked trees. The PlanetScope satellite
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FIGURE 1

The study area, located in The School Forest Enterprise in Kostelec nad Černými lesy, in the Czechia. The forest management layer, cropped by the
border of the study area, is marked in purple on the RGB true-color composite of planet imagery (9 April 2020).

initially launched in 2014, and its second generation that we
used, known as Dove-R or PS2.SD, provides imagery at four
spectral bands, including Blue, Green, Red, and near-infrared (NIR)
wavelengths (Planet Labs, Inc, 2022).

Most individual bandwidths [e.g., visible, red-edge, NIR, and
shortwave-infrared (SWIR)] and several SVIs that were developed,
were found to be useful for detecting changes in needle pigments,
including chlorophyll content, degree of greenness, and water
content due to bark beetle attacks (Zabihi et al., 2021b). In general,
beetle-induced water-stressed trees reflect a higher amount of
visible light than healthy trees (Ortiz et al., 2013). The severe
stress in infested trees causes chlorophyll loss that consequently
reduces the absorption rate of visible light by photosynthetically
active pigments (Blackburn, 1998, 2006; Carter and Knapp, 2001;
Mullen, 2016; Mullen et al., 2018). Similarly, water-stressed trees
reflect more red-edge light than healthy trees due to a decrease
in chlorophyll a contents (Ortiz et al., 2013), and changes in
the structure of spongy mesophyll (Mullen et al., 2018). The
changes in the structure of spongy mesophyll, so-called foliage
desiccation, also reduce the absorption rate of NIR wavelengths
in water-stressed infested trees (Ortiz et al., 2013; Mullen et al.,
2018), and a similar pattern was observed for SWIR wavelengths
(Immitzer et al., 2016).

Some of the top-ranked indices used to represent changes
in needle pigments and greenness were found to be Red-Edge
NDVI (RENDVI or NDVI705; Ortiz et al., 2013), and Normalized

Difference Red-Edge (NDRE 2 and 3; Abdullah et al., 2019a,b).
Disease-Water Stress Index (DWSI), Normalized Difference Water
Index (NDWI), Leaf Water Content Index (LWCI), Ratio Drought
Index (RDI), and Moisture Stress Index (MSI) were found to
be top-ranked indices, used in former research (Abdullah et al.,
2019a,b; Yang, 2019) to detect changes in leaf water contents
due to bark beetle attacks (Zabihi et al., 2021b). A normalized
distance red and shortwave infrared (NDRS; Huo et al., 2021),
developed based on red and SWIR wavelengths, was found to
be a useful index to estimate forest susceptibility to bark beetle
attacks in April, or to detect infested trees during the attacks
from May to October. However, changes in forest parameters affect
the reflectance of longer wavelengths such as SWIR, greater than
shorter wavelengths such as visible lights in healthy coniferous
forests (Rautiainen et al., 2018). Those forest parameters include
forest structure, needle age and intracellular structure of air-to-
cell wall interfaces, moisture content of forest floors, and tree
physiological changes over the growing seasons (Rautiainen et al.,
2018; Zabihi et al., 2021b). Thus, SWIR-dependent indices may
propagate uncertainty to some extent in the model developments
and validations (Zabihi et al., 2021b). In a recent review by Zabihi
et al. (2021b), using visible bands such as RGB and red-edge (a
bandwidth close to NIR) were recommended to develop SVIs
in order to map the early stage of bark beetle infestations. We
based our study on the assumption that some trees may be more
susceptible to I. typographus attacks, than others, in uninfested
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TABLE 1 Day number in 2020 with the associated dates of planet images
used; imagery after July 14 were removed at the later stage of analyses
because of having clearcuts due to bark beetle attacks.

# Day number in 2020 Date

1 93 2 April 2020

2 100 9 April, 2020

3 108 17 April 2020

4 114 23 April 2020

5 129 8 May 2020

6 139 18 May 2020

7 153 1 June 2020

8 180 28 June 2020

9 183 1 July 2020

10 194 12 July 2020

11 196 14 July 2020

12 204 22 July 2020

13 214 1 August 2020

14 218 5 August 2020

15 226 13 August 2020

16 229 16 August 2020

17 246 2 September 2020

18 249 5 September 2020

19 257 13 September 2020

20 259 15 September 2020

21 266 22 September 2020

forests. And, those trees can be detected/predicted using SVIs
derived from high spatial and multispectral resolution imagery
acquired by PlanetScope satellite. We also assumed non-attacked
trees, within the vicinity of attacked trees, as healthy trees over
a growing season.

We proposed to investigate if trees susceptible to beetle attacks
can be detected before or early in the growing season. If so,
what spectral bands and/or SVIs, developed using individual
wavelengths, could be used to indicate significant differences
between healthy trees and those susceptible to attacks. We
eventually aim to develop a methodology for using remotely-
sensed and ground-truth data to characterize the health status of
Norway spruce on a temporal scale before and during the course
of infestations.

2. Materials and methods

2.1. Study area

The study was conducted in forests, approximately 50 km
southeast of Prague (Czechia or the Czech Republic) (Figure 1),
owned and managed by the Czech University of Life Sciences
(CULS). The CULS forests cover a total area of ∼ 5,700 ha, lie in
the temperate climate zone. The mean annual temperature and sum
of precipitation ranged 7–7.5◦C and 600–650 mm, respectively,

with a vegetation period lasts 150–160 days (Tolasz et al., 2007).
In recent years, periodic droughts negatively affected the vitality
of forests (Remeš, 2017). The forest stands consist of 70% conifers,
mainly spruce (50%) followed by pine (16%), and the rest for other
species. In terms of broadleaved trees (the remaining 30% cover),
beech covers the most, 14%, followed by oak at 10%, and the
rest for other species. If the area was not managed by the CULS,
beech and oak may have been dominated, followed by pine and
spruce trees, similar to nearby unmanaged forest composition. The
CULS forests are managed using a clearcutting silvicultural system
in a combination with the shelterwood system (Remeš, 2017).
Due to the extreme drought in 2018, the whole area was affected
by the bark beetle outbreak, mainly by I. typographus; however,
other species such as I. duplicatus, I. amitinus, and Pityogenes
chalcographus may have been infesting some local spots (Hlásny
et al., 2021). The forest management strategy has been recently
focusing on sanitary logging to promptly remove infested trees, as
soon as observed.

2.2. Satellite data acquisition and
processing

We used 22 PlanetScope imagery [instrument–Dove Classic
(PS2)] from April 2 to 5 September 2020 (Table 1). Only cloud-
free images were used for further analysis; the image acquired on
Day 145 was excluded due to having cloud cover. All imageries
were downloaded in the GeoTIFF format and surface reflectance
data type (harmonized to Sentinel-2 for consistent radiometry) was
selected as the initial product option. Every image had four bands
including Red, Green, Blue (RGB), and Near Infrared (NIR) with a
spatial resolution of 3 m.

For each acquisition in the time series (Table 1), we calculated
23 SVIs (Table 2) using the Raster Calculator plugin in QGIS
version 3.16.16 (QGIS Development Team, 2009).

The individual four bands and the SVIs computed from Table 2
were used to differentiate two defined classes. These two classes
were non-attacked trees during our year of study, assumed and
considered as the “Healthy” class, and trees were attacked in the
later stages of the growing season, assumed and considered as the
“Susceptible” class.

All individual bands and SVIs (Table 2) developed using
individual bands, were merged into a single GeoTIFF file to make a
cube image of 27-bands, for further statistical analysis.

2.3. GIS data collection and validation

The spatial position (X- and Y-coordinates) of attacked trees,
named as susceptible trees, were recorded by foresters and
researchers using the ArcGIS Collector application developed and
installed on smartphones. The date of the attack, the name of
the bark beetle species, and the number of attacked trees per
day were also recorded using the ArcGIS Collector app. Foresters
have been detecting early infestations on a weekly basis in their
designated areas. Researchers from the EXTEMIT-K project were
also recording the same datasets around six experimental plots
designed and established by the EXTEMIT-K project. Researchers
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TABLE 2 Spectral vegetation indices (SVIs), their acronyms, equations, and publishers, used to detect trees susceptible to bark beetle attack.

Spectral vegetation index Acronym Equation References

Difference Vegetation Index DVI NIR− R Tucker, 1979

Enhanced Vegetation Index EVI 2.5 ∗ (NIR−R)
(NIR + 6 ∗ R − 7.5 ∗ B + 1) Huete et al., 2002

Green Chlorophyll Index GCI
( NIR

G
)
− 1 Gitelson et al., 2003

Green Difference Vegetation Index GDVI NIR− G Sripada, 2005

Global Environmental Monitoring Index GEMI eta ∗ (1− 0.25 ∗ eta)− R − 0.125
1−R

eta = 2(NIR2
−R2) + 1.5 ∗ NIR + 0.5 ∗ R

NIR + R + 0.5

Pinty and Verstraete, 1992

Green Normalized Difference Vegetation Index GNDVI NIR−G
NIR + G Gitelson et al., 1996

Green Optimized Soil Adjusted Vegetation Index GOSAVI NIR−G
NIR + G + 0.16 Sripada, 2005

Green Ratio Vegetation Index GRVI NIR
G Sripada et al., 2006

Green Soil Adjusted Vegetation Index GSAVI 1.5 ∗ (NIR−G)
(NIR + G + 0.5) Sripada, 2005

Infrared Percentage Vegetation Index IPVI NIR
NIR + R Crippen, 1990

Modified Soil Adjusted Vegetation Index MSAVI2 2 ∗ NIR + 1−
√

(2 ∗ NIR + 1)2
−8(NIR−R)

2 Qi et al., 1994

Modified Simple Ratio MSR
( NIR

R
)
−1(√

NIR
R

)
+ 1

Chen, 1996

Normalized Difference Vegetation Index NDVI NIR−R
NIR + R Rouse et al., 1973

Normalized Difference Water Index NDWI G−NIR
G + NIR Gao, 1995

Non-Linear Index NLI NIR2
−R

NIR2 + R Goel and Qin, 1994

Optimized Soil Adjusted Vegetation Index OSAVI NIR−R
NIR + R + 0.16 Rondeaux et al., 1996

Perpendicular Vegetation Index PVI NIR−a∗R−b√
(1+a2)

a—slope of the soil line, b—gradient of the soil line

Richardson and Wiegand,
1977

Renormalized Difference Vegetation Index RDVI NIR−R
√

NIR + R
Roujean and Breon, 1995

Soil Adjusted Vegetation Index SAVI 1.5∗(NIR−R)
(NIR + R + 0.5) Huete, 1988

Simple Ratio SR NIR
R Birth and McVey, 1968

Transformed Soil Adjusted Vegetation Index TSAVI (s ∗ (NIR−s ∗ R−a))
(a ∗ NIR + R−a ∗ s + X ∗ (1 + s2))

s—a slope of the soil line, a— the soil line intercept, X - the
adjustment factor that is set to minimize soil noise.

Baret and Guyot, 1991

Visible Atmospherically Resistant Index VARI G−R
G + R−B Gitelson et al., 2002

Wide Dynamic Range Vegetation Index WDRVI (a ∗ NIR−R)
(a ∗ NIR + R)

a - the weighting coefficient
Gitelson, 2004

TABLE 3 List of sampling (training) and ancillary data used, with their types, stage and method of collection, application or software used to drive data
from, required for further steps in the statistical analyses and classifications.

Data Type Stage of
collection

Collection
method

Application/
software
used

Additional
data used

Data derived
from

Number
of plots

Final purposes

Infested trees Vector and
categorical

Mid-growing season
and later on

Field survey/
sampling

ArcGIS collector
app

UAV imagery, used
as base imagery in
collector app

Creating polygons of
susceptible class

61 Training data for the
“Susceptible” class

Non-attacked
trees

Vector and
categorical

N/A Random
sampling points

QGIS PlanetScope Imagery Creating polygons of
Healthy class

61 Training data for the
“Healthy” class

Forest
management
units

Vector and
categorical

N/A Provided by the
Forestry
Department

QGIS N/A Average area, age,
and percent category
of Norway Spruce

2,541 Area for the “Healthy”
class, with similar
characteristics found for
the “Susceptible” class

used both visual observations and detection by a sniffer dog to
detect early-attacked trees within the 500-m zone around the
experimental plots (Vošvrdová et al., 2023).

The EXTEMIT-K project was proposed to conduct research
experiments aiming to provide potential science-based approaches

to deal with current and future challenges of protecting forest
ecosystems in the Czechia. The bark beetle infestations and
drought effects on spruce trees and beetle activities were found
to be the core challenges, and have been investigated by
the research team.
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FIGURE 2

Sample size scatterplot of the time-series dataset of the “Susceptible” class. Five images with a sample size of 2, records after day no. 196
corresponding to July 14, were excluded from the analyses (highlighted in the rectangle).

FIGURE 3

The frequency of bark beetle infestations observed throughout the 2020 growing season (May to October).

Every experimental plot consisted of four subplots, with 8–10
neighbor trees selected within (Özçelik et al., 2022; Stříbrská et al.,
2022). All the field survey data were stored and visualized in the
Online Web version of ArcGIS. This allowed us to export field
survey data for further analyses in QGIS at the end of the season.

The spatial positions of total sample points of 61 areas with
attacked trees, at the later stages of the growing season, were
used to create polygons/boundaries of these trees, which were
assumed as susceptible to attacks before and during the first half
of the growing season.
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FIGURE 4

Behavior of the single bands (mean and standard error) before and during the first half of the growing season for healthy trees and trees predicted to
be attacked by bark beetles. Solid vertical lines on the trend lines represent the standard error of the mean and dashed vertical lines represent the
monthly division.

On the last PlanetScope imagery in the dataset (September
22), the K-means clustering algorithm was performed to detect
unbiased, square-like (pixelated) borders of 61 objects, based
on the clear-cut year in 2020 detection cluster (which has
different spectral features, comparing to forest stand) and
points locations of areas with attacked trees using the open-
source Orfeo ToolBox (OTB) package (version 7.2.0; Grizonnet
et al., 2017). Sizes and shapes of the 61 areas, identified
as clear-cuts on the last imagery in the dataset were used
for further analysis on the other imageries. We overlaid each
PlanetScope image with very high spatial resolutions (20-cm)
UAV orthophotos to ensure the accurate spatial positioning of
target objects. The vectorization of 61 boundaries was visually
validated to avoid any error in tree positions, collected by
the ArcGIS collector app, in addition to potential misclassified
areas among trees such as bare soil, using the Poligonize
(GDAL) plugin.

We generated a random sampling for the class “Healthy”
with similar characteristics found for the class “Susceptible”
(Table 3). For example, similarity in the age ranges, percentage
of Norway spruce (based on forest management data), sample
size, and average area (Table 3). Sixty-one circle-shaped samples
with an area of 0.165 ha each in forest management units at

the age ranging from 78 to 130 years were randomly selected
within the forest management units with 80–100% Norway spruce
cover. Based on forest inventory data, spruce cover in the
forest management units is more than 80%, therefore we assume
that the sample polygons and related spectral signal represent
spruce stands.

2.4. Data cleaning

The sample size of the “Healthy” class (61 trees) was the
same for every image, with no need for any data cleaning. For
the “Susceptible” class, we initially removed samples with traces
of later on logging found on any date of imagery, and thus, we
only kept those samples not reaching the start date of the green-
attack phase during our temporal-scale analyses. The criteria of
having a balanced sample size between two classes of “Healthy” and
“Susceptible” trees caused us to exclude the last five dates of imagery
from the time-series datasets (all imagery after July 14; Figure 2).
However, we kept imagery from days no. 180 to 196, to complete
our proposed temporal-scale analyses, even though the sample size
for the “Susceptible” class decreased more than twice that of the
earlier dates. The data cleaning and plotting were performed in
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FIGURE 5

The behavior of the spectral vegetation indices of the Enhanced Vegetation Index (EVI) and Visible Atmospherically Resistant Index (VARI) before and
during the first half of the growing season for healthy trees, and trees predicted to be attacked by bark beetles. Solid vertical lines on the trend lines
represent the standard error of the mean and dashed vertical lines represent the monthly division.

FIGURE 6

Welch’s t-test p-values between two classes of healthy and susceptible trees to attacks, on different days before and during the first half of the
growing season, using individual bands.
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FIGURE 7

The overall classification accuracy (CA), using leave-one-out cross-validation on the LDA test for individual bands, to differentiate two classes of
healthy and susceptible trees to attacks, on different days before and during the first half of the growing season.

VSCode 1.73.1 in Jupiter Notebook using, Python programming
language (ver. 3.8.5; Van Rossum and Drake, 2010), and pandas
1.5.0 and Matplotlib 3.6.0, respectively.

2.5. Statistical analyses

We extracted the mean value for 4 bands of spectral reflectance
and the proposed 23 SVIs (Table 2) for every polygon of the
“Healthy” and “Susceptible” class, using the Zonal Statistics-plugin
from the OTB package in QGIS.

The Welch’s t-test was used to determine if the means of
spectral reflectance of individual bands and developed SVIs for the
“Healthy” and “Susceptible” classes were statistically different for
each date of imagery, using the SciPy library (ver. 1.7.1; Virtanen
et al., 2020).

Linear discriminant analysis (LDA) was used to evaluate
the separability of individual bands and/or SVIs to differentiate
two classes, using the scikit-learn library (ver. 1.1.2; Pedregosa
et al., 2011). The LDA is a supervised classification that uses a
linear classifiers algorithm based on the distribution of features
(Hastie et al., 2009).

The LDA maximizes the distance among classes and minimizes
the variance within classes, and was performed on every band
of the 27-bands-cube imagery. The leave-one-out cross-validation
accuracy (LOOCV) was performed to examine the overall
classification accuracy (CA) of the performed LDA on either
individual bands or SVIs of two designated classes.

3. Results

Based on the frequency plot of daily attacks, using the datasets
from the ArcGIS Collector app., the emergence and initial attacks
of bark beetles on trees were found to be from April 27 to 4 May
2020 (Figure 3). There seemed to be two peaks of beetle swarming
and infestations during the growing seasons; the first peak occurred
around mid-June and the second peak seemed to be around mid-
July to early-August (Figure 3).

The class of trees susceptible to attacks generally revealed a
higher mean value, for individual bands, than the class of healthy

trees, before and during the first half of the growing season (early
April to late July; Figure 4 and Supplementary Table 1).

For the top-ranked SVIs, EVI and VARI, the observed patterns
between the two classes were opposite to that observed in individual
bands; the “Healthy” class generally revealed higher values than the
“Susceptible” class (Figure 5 and Supplementary Table 1).

The differentiation between the mean value for the polygons of
the two classes followed a more steady pattern for the EVI, similar
to the NIR, whereas the values sometimes overlapped for the VARI,
mostly after May 18 (Figure 5 and Supplementary Table 1).

3.1. Individual bands

Individual bands showed statistically significant differences
between the two classes of healthy and susceptible trees, mostly for
Days 93 to 114 (p < 0.05 for the Welch’s t-test; Figure 6).

Results for the linear discriminant analysis, LDA, showed
high accuracy for individual bands on only days 194 and
196 (CA 64–76%; Figure 7). However, we may not be able
to validate these results as the sample size of the susceptible
class for these days dropped more than twice that for earlier
dates. Therefore, “Healthy” and “Susceptible” classes may not be
sufficiently distinguished using only individual bands (Figure 7)
as the CA values from the LDA test did not reach the 70%
threshold for any bands.

3.2. Spectral vegetation indices (SVIs)

Spectral vegetation indices, such as DVI, EVI, MSAVI, NDVI,
PVI, SAVI, TSAVI, VARI, and WDRVI, showed statistically
significant differences between two classes of healthy and
susceptible trees, mostly for Days 93 to 129, at a different rate of
type I error for the Welch’s t-test (Figure 8). However, the EVI
and VARI were the only two indices showed significant differences
between classes at other dates during the first half of the growing
season (Figure 8).

Results for the linear discriminant analysis, LDA, were showing
high accuracy for the most of SVIs on days 194 and 196 (CA
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FIGURE 8

Welch’s t-test p-values between two classes of healthy and susceptible trees to attacks, on different days before and during the first half of the
growing season, using different spectral vegetation indices.

68–83%; Figure 9). However, we may not be able to validate
these results as the sample size of the susceptible class for these
days decreased more than twice that for earlier dates, similar to
individual bands. Beyond these dates, the accuracy of the LDA test
passed or almost reached the 70% threshold only for the VARI and
EVI, respectively, at days 93 to 114 (Figure 9).

3.2.1. Evaluations of SVIs using combined Welch’s
t-test and LDA

The two classes were found to be differentiated at most using
two SVIs based on combined evaluations of using Welch’s t-test and
LDA; the EVI on Days 114 and 183, and the VARI on Days 93, 100,
108, 114, and 183 resulted in the LDA accuracy greater than 0.7 and
p-value for the Weltch’s t-test less than 0.05 (Figures 8, 9).

4. Discussion

4.1. Wavelengths and spectral vegetation
indices suitable for prediction of bark
beetle attack

Our results show that all four wavebands of PlantScope,
including Red, Green, Blue, and NIR, have the potential to detect
susceptible trees and thus predict the occurrences of bark beetle

attacks (Welch’s t-test; Figure 6). Nevertheless, the CA for none
of them passed the defined 70% threshold. Considering the overall
temporal patterns from early April to late July, the differentiation
between the two classes of healthy and susceptible trees followed a
more steady pattern for NIR than other visible bands (Figure 4).
This may indicate that the NIR could be a more reliable spectral
reflectance than other visible lights to detect susceptible trees,
before and during the first half of a growing season (Figure 4).

Among all spectral vegetation indices we investigated, EVI and
VARI were found to be the best indices to detect trees susceptible
to attacks (Figures 8, 9; the lowest Welch’s t-test p-value and the
highest CA), similar to Huo et al. (2021). The VARI Index on
Day 183 was significantly different between healthy and susceptible
trees (significant Welch’s t-test and LDA with the CA higher than
70%) so the values for the susceptible trees were much higher
than the healthy/control trees. However, the EVI shows the best
performance during the entire season. In contrast to the VARI,
susceptible trees were always showing lower values for the EVI
than healthy trees. The observed patterns may indicate that the
EVI could be the best index for the prediction of bark beetle attack
occurrences within a forest, which could also be used for general
applications in forest pest management to detect water-stressed
trees. For example, Kim (2013) found EVI sensitive to drought and
rising temperatures in the ecosystems of northern Arizona, USA.
In addition, Scots pine (Pinus sylvestris L.), a sensitive species to
drought effects (Seidel et al., 2016), showed early signs of vitality
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FIGURE 9

The overall classification accuracy (CA), using leave-one-out cross-validation on the LDA test for SVIs, to differentiate two classes of healthy and
susceptible trees to attacks, on different days before and during the first half of the growing season.

decline in Italy, which may be remotely detected using the EVI
(Vacchiano et al., 2012).

4.2. Seasonal changes of spectral
characteristics of susceptible trees to
attacks

The overall patterns of the SVIs behavior before and during
the first half of the growing season were found to be increasing,
without any significant declines from early April to mid-season.
However, the patterns slowed down by late July and early August.
Most of the SVIs, even the most significant (for both classes), had
declines as well.

Generally, the value of SVIs has been showing a seasonal trend
(Karkauskaite et al., 2017; Yang et al., 2017). We found all the
mean values of EVI of the predisposed trees were significantly

lower than for non-attacked trees (Figure 5), and thus, suggesting
the EVI as a potential spectral vegetation index to predict bark
beetle-infestation occurrences.

4.3. Limitations of the study

The spectral resolution of the available remote sensing products
that we used was limited by the choice of the sensor with 4 bands
due to the year of our observation, a period in 2020. For future
research, it is preferable to use datasets with SWIR band in addition
to NIR, visible, and red-edge spectral reflectances due to their
effectiveness in tracking early stressed trees, though with different
levels of detection uncertainty (Zabihi et al., 2021b). This could
be achieved with the PlanetScope products of the 3rd generation
sensors, known as SuperDove or PSB.SDafter, available from mid-
March 2020. The 3rd generation sensors acquire imagery at eight
bands, including Coastal Blue, Green I, Yellow, and Red Edge plus
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the four bands we have already used (Planet Labs, Inc, 2022). The
specified 8-bands allow computing more spectral vegetation indices
than we were able to. In addition to the PlanetScope imagery, there
are other satellites, e.g., Sentinel-2, which acquires imagery in the
SWIR band even though its spatial resolution is coarser than the
PlanetScope. Given this very important advantage, we recommend
comparing products, e.g., SVIs, developed on imagery acquired
from Sentinel-2 and the 3rd generation of PlanetScope, for future
research investigations. Vegetation indices such as PVI, TSAVI
and WDRVI have additional coefficients, which are not connected
with band values. Those coefficients, such as slope, gradient, and
intercept of the soil line and others, were set as recommended
(default) values due to limitations in GIS data collection campaigns.
More precise ground truth data with these additional parameter
records could improve index performances.

Ground truth data with the locations of all bark beetle
infestations were identified by foresters and researchers on a weekly
frequency. Nevertheless, the cause of the infestation has not been
determined. Each bark beetle infestation area potentially could be
triggered by the internal and/or neighboring tree(s), attacked but
not harvested in 2019.

The mechanism of bark beetle-induced Norway spruce
mortality under drought conditions, such as changes in the
physiological and biochemical processes of trees susceptible to
attacks, is yet to be fully understood (Netherer et al., 2021).
However, our findings of two spectral vegetation indices, EVI
and VARI, may offer key indices to detect trees that are under
water-stressed conditions, causing changes in the physiological and
biochemical processes in trees. For example, Wei et al. (2023) found
a positive correlation between spatial and temporal variations of
tree-ring width (TRW) and the Enhanced Vegetation Index (EVI).
The relationship between the TRW and EVI became stronger in
more arid regions where trees were under more drought and
subsequent water-stress conditions (Wei et al., 2023).

5. Conclusion

In the warming climate, drought and drought-induced bark
beetle outbreaks may become more severe. Therefore, forest
managers and policymakers need to provide monitoring of
forest health status on a continuous, e.g., bidaily to weekly
basis with subsequent sanitation measures, which otherwise may
result in further bark beetle infestations with its ongoing rapid
developments (Zabihi et al., 2021b). Our study was conducted to
examine and thus offer the best indices, EVI and possibly VARI,
to detect trees susceptible to attacks, likely due to water-stress
conditions, before and/or during the first half of the growing
season. Thus, a proactive management strategy can be practiced at
this stage to better suppress or control the infestations.

We may still be able to distinguish the phase of attack from
the spot initialization, at which very few trees are attacked, toward
spot spreading, when the attacked area includes several adjacent
trees (Colombari et al., 2013). In the phase of spot initialization,
bark beetles attack stressed trees, while in the phase of spot
spreading, the infestation spreads to neighbor trees regardless
of their resistance to attack, considered as spatial and temporal
autocorrelation of attacks (Aukema et al., 2006, 2008; Jakuš et al.,

2011; Simard et al., 2012). These spatial and temporal patterns
of attack likely result in different spectral signatures observed
during different phases of attacks in addition to different spectral
signatures observed from non-attacked trees but highly susceptible.
This complexity may impact the level of uncertainty in detecting
susceptible trees, using a single SVI, during the period of beetle
flight activities at which different phases of attacks may co-
occur. Therefore, we recommend using an integrated approach of
employing several SVIs, e.g., sensitive to healthy vs. susceptible
trees, and different phases of attacks, simultaneously.

We finally recommend defining thresholds for these two
vegetation indices, EVI and VARI, to provide a classified map
for practical applications in forestry. The classified map would
be used as a spatial tool to predict trees vulnerable to attacks
and thus, to highlight hotspots regions with a high probability
of infestation occurrences. Our proposed methodology offers
an approach for future research to replicate using additional
bands coming from new generations of PlantScope satellites.
Further investigations of formulating and developing new
SVIs, more sensitive to water-stressed- and thus susceptible-
trees to attacks, are also recommended to improve the
mapping accuracy.

The spectral difference based on SVI could be used to detect
stress before attacks using the methods proposed in the present
paper. Also, the new broadband SVI formula should be researched
for more precise identification of predisposition to the bark
beetle infestations.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

AT, GK, KZ, VVS, PS, and RJ contributed to the conception
and design of the study. AT organized the database. AT and GK
performed the statistical analysis. AT and RJ wrote the first draft
of the manuscript. AT, GK, KZ, RM, VVS, and RJ wrote sections of
the manuscript. All authors contributed to the manuscript revision,
read, and approved the submitted version.

Funding

This research was supported by grant No.
CZ.02.1.01/0.0/0.0/15_003/0000433, “EXTEMIT–K project”,
financed by the Operational Program Research, Development
and Education (OP RDE), grant no. 43950/1312/3128, “Green
attack identification with the use of multi- and hyperspectral
data” financed by Internal Grant Agency FFWS CULS in
Prague and grant “Development of integrated modern and
innovative diagnostic and protection methods of spruce
stands with the use of semiochemicals and methods of
molecular biology”, No. QK1910480 financed by the Ministry
of Agriculture of Czechia.

Frontiers in Forests and Global Change 12 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1130721
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1130721 May 27, 2023 Time: 12:48 # 13

Trubin et al. 10.3389/ffgc.2023.1130721

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/ffgc.2023.1130721/
full#supplementary-material

References

Abdollahnejad, A., and Panagiotidis, D. (2020). Tree species classification and health
status assessment for a mixed broadleaf-conifer forest with UAS multispectral imaging.
Remote Sens. 12:3722. doi: 10.3390/rs12223722

Abdullah, H., Skidmore, A. K., Darvishzadeh, R., and Heurich, M. (2019a). Sentinel-
2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus.
L.) compared with Landsat-8. Remote Sens. Ecol. Conserv. 5, 87–106. doi: 10.1002/rse2.
93

Abdullah, H., Skidmore, A. K., Darvishzadeh, R., and Heurich, M. (2019b). Timing
of red-edge and shortwave infrared reflectance critical for early stress detection
induced by bark beetle (Ips typographus, L.) attack. Int. J. Appl. Earth Observ.
Geoinform. 82, 101900. doi: 10.1016/j.jag.2019.101900

Ali, A. M., Abdullah, H., Darvishzadeh, R., Skidmore, A. K., Heurich, M., Roeoesli,
C., et al., (2021). Canopy chlorophyll content retrieved from time series remote sensing
data as a proxy for detecting bark beetle infestation. Remote Sens. Appl. Soc. Envi.
22:100524.

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N.,
Vennetier, M., et al., (2010). A global overview of drought and heat-induced tree
mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259,
660–684. doi: 10.1016/j.foreco.2009.09.001

Aukema, B. H., Carroll, A. L., Zheng, Y., Zhu, J., Raffa, K. F., Moore, R. D., et al.,
(2008). Movement of outbreak populations of mountain pine beetle: Influences of
spatiotemporal patterns and climate. Ecography 31, 348–358.

Aukema, B. H., Carroll, A. L., Zhu, J., Raffa, K. F., Sickley, T., and Taylor, S. W.
(2006). Landscape level analysis of mountain pine beetle in British Columbia, Canada:
Spatiotemporal development and spatial synchrony within the present out-break.
Ecography 29, 427–441.
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Stereńczak, K., Mielcarek, M., Modzelewska, A., Kraszewski, B., Fassnacht, F. E.,
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