
ffgc-06-1157340 June 2, 2023 Time: 13:11 # 1

TYPE Original Research
PUBLISHED 09 June 2023
DOI 10.3389/ffgc.2023.1157340

OPEN ACCESS

EDITED BY

Zuoqiang Yuan,
Northwestern Polytechnical University, China

REVIEWED BY

Yibo Liu,
Nanjing University of Information Science
and Technology, China
Haijun Deng,
Fujian Normal University, China

*CORRESPONDENCE

Yi He
yihe@nwu.edu.cn

Wanqing Liu
liuwqing@nwu.edu.cn

RECEIVED 02 February 2023
ACCEPTED 22 May 2023
PUBLISHED 09 June 2023

CITATION

Jia L, He Y, Liu W, Li Y and Zhang Y (2023)
Drought did not change the linear relationship
between chlorophyll fluorescence
and terrestrial gross primary production under
universal biomes.
Front. For. Glob. Change 6:1157340.
doi: 10.3389/ffgc.2023.1157340

COPYRIGHT

© 2023 Jia, He, Liu, Li and Zhang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Drought did not change the linear
relationship between chlorophyll
fluorescence and terrestrial gross
primary production under
universal biomes
Liping Jia1,2,3, Yi He1,2,3,4*, Wanqing Liu1,2,3*, Yanlin Li1,2,3 and
Yaru Zhang1,2,3

1College of Urban and Environmental Sciences, Northwest University, Xi’an, China, 2Institute of Qinling
Mountains, Northwest University, Xi’an, China, 3Yellow River Institute of Shaanxi Province, Xi’an, China,
4The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of
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Introduction: Satellite observations of sun-induced chlorophyll fluorescence (SIF)

are increasingly considered a “probe” for photosynthesis. In recent years the

emergence of SIF has facilitated regional and global monitoring of vegetation

photosynthesis. On the one hand, there is still controversy about the liner or non-

linear SIF-GPP relationship and whether high-temperature events will change the

linear relationship. On the other hand, it is unclear whether different vegetation

types will affect the SIF-GPP. We used GOSIF and MOD17A2 GPP to study the

different relationships under five vegetation types during the long-term climate

change period and the extreme drought in 2009/2010 in southwest China.

Methods: In this study, curve fitting was used to explore the relationship of SIF

and GPP under long time series and extreme drought period.

Results: We found that during the long-term climate change period, there was a

generally linear SIF-GPP relationship under five vegetation types. The correlation

is almost universally maintained at the r2 = 0.92 level. During the drought, the

extremely high temperature did not change the linear relationship. Besides the

farmland ecosystem, the correlation remained at the r2 = 0.85.

Discussion: Our study shows that the linear relationship of SIF-GPP is not

influenced by drought on a large scale, and there is a general SIF-GPP relationship

in different vegetation types. In the case of extreme drought, irrigation measures

adopted by farmers in response to heat conditions may affect the SIF-GPP

relationship of farmland.

KEYWORDS

sun-induced chlorophyll fluorescence (SIF), gross primary productivity (GPP), normalized
difference vegetation index (NDVI), drought monitoring, southwest China
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1. Introduction

Gross primary productivity (GPP) is a critical ecological
process in the terrestrial carbon cycle, involving the fixation of
carbon dioxide (CO2) by vegetation through photosynthesis (Shi
et al., 2016; Fu et al., 2019). It represents the most significant carbon
flux between the atmosphere and land, influencing the carbon-
water cycle and energy balance (Keenan et al., 2013; Jiao et al.,
2021). However, accurately estimating GPP remains a challenge in
global carbon budgeting for terrestrial ecosystems (Guanter et al.,
2012, 2014). In recent decades, the impacts of drought, driven by
global climate change and rising temperatures, have threatened
global carbon balance and food security (Song et al., 2018). Drought
events are increasingly recognized as a significant threat to land
carbon uptake (Frankenberg et al., 2011; Sun et al., 2015). The
recent Intergovernmental Panel on Climate Change (IPCC) Sixth
Assessment Report Working Group I report (IPCC, 2021) indicates
that extremely high temperatures and uncertain precipitation
events are expected to increase in frequency and intensity in
the future. As a result, more GPP losses are anticipated due to
high temperatures, heatwaves, and precipitation uncertainties, with
potential implications for water quality, food production, and
biodiversity (Running et al., 2004; Porcar-Castell et al., 2014; Su
et al., 2018; Sun et al., 2018). Therefore, there is a pressing need
to deepen our understanding of the impacts of drought scenarios
on GPP and improve the accuracy of GPP prediction (Joiner et al.,
2011, 2013; Xiao et al., 2019).

Building a real-time Gross Primary Productivity (GPP)
tracking system is challenging due to two main reasons: the lack of
large-scale direct observations and the high uncertainty of model-
based GPP data (Chen S. et al., 2019). However, the emerging
vegetation index called sun-induced chlorophyll fluorescence (SIF)
holds great potential for real-time monitoring of GPP (Li et al,
2018). SIF is a spectral signal emitted by the photosynthetic center
of plants in the 650–800 nm wavelength range when exposed
to solar light conditions, and it can reflect changes in actual
photosynthesis of vegetation over time (Qiu et al., 2019; Marrs
et al., 2020). In comparison to traditional vegetation indices like
normalized difference vegetation index (NDVI) and enhanced
vegetation index (EVI), which are based on reflectivity and used
for large-scale drought monitoring, SIF has advantages in terms
of timeliness for GPP monitoring (Liu et al., 2018). Traditional
vegetation indices are sensitive to observed greenness but may
lack a timely response to changes in photosynthesis. For example,
NDVI may remain high despite severe short-term drought stress
on vegetation (Liu et al., 2018). In contrast, SIF has been shown
in previous studies to better predict and estimate GPP compared
to satellite-based vegetation indices (Frankenberg et al., 2011).
Field trials and research have demonstrated the potential of SIF
as a real-time monitoring tool for GPP, providing valuable insights
into the dynamics of photosynthesis in response to environmental
conditions such as drought stress. Incorporating SIF into GPP
tracking systems can potentially overcome the limitations of
traditional vegetation indices and improve the accuracy of real-time
GPP monitoring, addressing the challenges associated with the lack
of direct observations and uncertainties in model-based GPP data
(Li et al, 2018; Chen X. J. et al., 2019; Qiu et al., 2019).

Scientists are actively researching and examining the
relationship between Sun-Induced Chlorophyll Fluorescence

(SIF) and Gross Primary Productivity (GPP) in different biological
communities. Some studies have suggested a linear relationship
between SIF and GPP in certain ecosystems (Frankenberg et al.,
2011; Joiner et al., 2011, 2013, 2016; Guanter et al., 2012, 2014).
For example, Sun et al. (2017) found a generally linear relationship
between SIF and GPP in temperate forests, farmland, and grassland.
Li et al (2018) also reported a linear relationship between SIF and
GPP across seven biological communities from 64 EC flux sites
worldwide using data from the Orbiting Carbon Observatory-2
(OCO-2). However, more recent studies have indicated that the
relationship between SIF and GPP may be non-linear. Especially,
the idea that there is a non-linear relationship between SIF and
GPP at the hourly and proximal scales has also been widely
proposed (Liu et al., 2019; Marrs et al., 2020). Kim et al. (2021)
conducted experiments in temperate evergreen conifer forests
and found a significant non-linear relationship between SIF and
photosynthesis at the canopy level. Martini et al. (2021) studied
the effect of heatwaves on the GPP-SIF relationship in evergreen
broad-leaved trees in Europe and concluded that due to extreme
high temperatures, vegetation experienced non-photochemical
quenching (NPQ) saturation, leading to a robust non-linear
relationship between SIF and GPP. NPQ is the proportion of light
energy absorbed by the pigment in the PSa reaction center antenna
that cannot be used for photosynthetic electron transport, but
the excess light energy is dissipated in the form of heat. These
findings highlight the complexity of the SIF-GPP relationship and
the need for further research to better understand the underlying
mechanisms and potential non-linearities in different ecosystems
and environmental conditions. Continued efforts are being made
by scientists to characterize and model the SIF-GPP relationship
in order to improve our ability to accurately monitor and predict
GPP in real-time using SIF as a valuable tool.

The description of GPP and SIF is as follows (Monteith, 1972):

GPP = fPAR × PAR × LUEp = APAR × LUEp (1)

In the formula above, PAR is photosynthetically active radiation,
and fPAR is the fraction of PAR absorbed by the vegetation canopy.
LUEP is the light utilization efficiency of photosynthesis, which
represents the energy conversion efficiency of total carbon dioxide
(CO2) assimilation.

SIF = fPAR × PAR × LUEf = APAR × φ f × fesc (2)

Similarly, LUEf is the effective light utilization efficiency of canopy
fluorescence. APAR refers to the photosynthetic effective radiation
actually absorbed by the plant. LUEf is the product of the
actual canopy fluorescence yield (φf) and the fraction amount of
fluorescence escaping from the top of the canopy (fesc).

As can be seen from equations (1) and (2), the relationship
between SIF-GPP is mainly driven by the common factor APAR.
Thus, the relationship between SIF-GPP can be expressed as:

GPP = SIF ×
LUE

φf × fesc
(3)

The concept of SIF and GPP described by the above equation
simplifies a series of complex underlying mechanisms, and is a
simple model describing the coupling relationship between SIF-
GPP. The conclusion about the linear or non-linear relationship
between SIF and GPP cannot be drawn from this model, especially
the SIF-GPP relationship after experiencing extreme drought.
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The relationship between Sun-Induced Chlorophyll
Fluorescence (SIF) and Gross Primary Productivity (GPP)
is influenced by multiple factors, including Absorbed
Photosynthetically Active Radiation (APAR) canopy structure
(fesc), vegetation physiological and biochemical parameters (φf),
vegetgrowth stage, vegetation type, plant function type (C3 or C4)
and light use efficiency (LUEp). However, the relative importance
of APAR vs. LUEp in driving the SIF-GPP relationship remains
unclear, as noted by Yang et al. (2015). Moreover, LUEp can
become saturated under high temperatures, and the parameter
φf, which affects SIF, has been found to be highly correlated
with air temperature according to recent research by Martini
et al. (2021). This suggests that environmental stress and climate
may alter the SIF-GPP relationship, and that considering the
climatic conditions of the study area is crucial for obtaining an
accurate understanding, as highlighted by Damm et al. (2015)
and Paul-Limoges et al. (2018). Canopy structure, such as leaf
area index (LAI) and vegetation type, also plays a significant role
in shaping the SIF-GPP relationship. For instance, fesc, a type of
vegetation, exhibits strong seasonal variation trends, whereas φf,
the parameter influencing SIF, remains stable over time. Dechant’s
research in a farmland ecosystem demonstrated that SIF-GPP was
more affected by fesc, indicating that different vegetation types may
have distinct impacts on the relationship (Dechant et al., 2020).
This suggests that the effects of canopy structure on the SIF-GPP
relationship are not fully understood, as also noted by Zhang et al.
(2016a) and Chen et al. (2021). To advance our understanding of
the SIF-GPP relationship, further research is needed to investigate
how canopy structure influences the relationship under different
vegetation types and biomes. If consistent patterns in the SIF-
GPP relationship can be identified across different land types,
it may be possible to develop a unified method for predicting
GPP, regardless of vegetation type. This would have important
implications for accurately estimating GPP at regional and global
scales, and enhancing our understanding of ecosystem processes
and responses to environmental changes.

In order to investigate the relationship between Sun-Induced
Chlorophyll Fluorescence (SIF) and Gross Primary Productivity
(GPP) across different time scales and vegetation types at large
spatial scales, we utilized high-resolution GOSIF data to delineate
different vegetation types. Additionally, we considered long-term
climate change and extreme drought periods, focusing specifically
on the 2009/2010 extreme drought event in southwest China,
which was characterized by hot and rainy summers and a lack of
seasonal water limitations. Our study aims to address the following
questions: (1) Are there differences in the SIF-GPP relationship
between different time scales? (2) Does the SIF-GPP relationship
vary among five biological community types with different canopy
structures? (3) Does the extreme drought impact the SIF-GPP
relationship, potentially resulting in non-linear dynamics at a
large scale? By examining these questions, we aim to provide a
comprehensive understanding of the SIF-GPP relationship under
varying environmental conditions and canopy structures. This
research will contribute to advancing our knowledge of the complex
interactions between vegetation physiology, climate variability, and
extreme events, and shed light on the potential impacts of drought
on ecosystem productivity.

2. Materials and methods

2.1. Study area

The study area is located between 91◦ 21′ E–112◦ 04′ E and
20◦ 54′ N–34◦ 19′ N in Southwest China, encompassing diverse
terrain features including the Qinghai-Tibet Plateau to the west,
the Sichuan Basin to the east, and the Guangxi hills to the south
(Li et al., 2019). The region exhibits a wide range of landforms,
including karst landscapes, river valleys, hills, and basins, with
significant fluctuations in elevation. The area is characterized by
abundant rivers, forests, and grassland resources, with extensive
coverage of high mountains, grasslands, perennial trees, and forage
grasses. The high-altitude areas comprise grasslands, meadows,
and alpine vegetation, while the middle altitude areas consist of
shrubs, coniferous forests, hardwood forests, and swamps. The low
altitude areas are mainly dominated by grasslands and cultivated
vegetation (Cheng et al., 2020). The region boasts high vegetation
coverage and a diverse array of vegetation types, as illustrated
in Figure 1. Southwest China falls within the subtropical and
temperate monsoon climate zone, with the majority of rainfall
occurring from May to October (Ma et al., 2021). However, due
to the influence of the monsoon climate and complex topography,
the spatial and temporal distribution of precipitation in this region
is highly uneven (Li et al., 2019). Additionally, the region is
susceptible to drought occurrences in spring, as it is also influenced
by subtropical high pressure systems.

2.2. Meteorological drought index

The 2000–2015 monthly 0.5◦ standardized precipitation
evapotranspiration index (SPEI) is based on long-term observed
precipitation and vapor distribution. SPEI can be used to assess
dry and wet conditions within the region. The data is available
from http://spei.csic.es/database.html, and the SPEI drought
classification standard is as follows in Table 1.

2.3. Satellite SIF and vegetation indices

The 2000–2015 chlorophyll fluorescence data utilized in
our study were obtained from the Green-Optimized Solar-
Induced Fluorescence (GOSIF) product, which offers higher spatial
resolution (0.05◦) and finer temporal resolution (8-day) compared
to other datasets. The GOSIF product combines data from OCO-
2 SIF, MODIS EVI, and various meteorological indicators such
as photosynthetically active radiation (PAR), air temperature, and
vapor pressure deficit (VPD) as predictor variables in a multivariate
linear regression model. Detailed information on the GOSIF
product can be found in the study by Li and Xiao (2019), where
the methodology and data processing procedures are thoroughly
described.

Normalized Difference Vegetation Index (NDVI) has been
widely used by researchers to monitor vegetation dynamics over the
past decades. In our study, monthly NDVI datasets were acquired
from NASA’s (National Aeronautics and Space Administration)
Advanced Very High-Resolution Radiometer (AVHRR) Climate
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FIGURE 1

Map of vegetation types in the study area.

TABLE 1 Standardized precipitation evapotranspiration index
(SPEI) classification standard.

SPEI Drought level

≤−2.00 Extreme drought

−2.00∼−1.50 Severe drought

−1.50∼−1.00 Moderate drought

−1.00∼−0.50 Mild drought

≥−0.50 Non-drought

Data Record (CDR) NDVI V5 version. These datasets are generated
through the composition, mosaic, and cropping of daily AVHRR
data, and have a spatial resolution of 0.05◦. The 2000–2015 NDVI
datasets used in our study were obtained from the National Earth
System Science Data Center, which is a part of the National Science
& Technology Infrastructure of China.1

2.4. GPP data

The grid Gross Primary Productivity (GPP) dataset with a
spatial resolution of 0.05◦ that we utilized in our study was
obtained from MOD17A2, a product developed based on the
radiation-use efficiency concept. The 500 m MOD17A2 GPP
data from 2000 to 2015 were aggregated to the 0.05◦ resolution

1 http://www.geodata.cn

for our analysis. The GPP dataset used in our study can be
accessed from the following website: http://files.ntsg.umt.edu/
data/.

2.5. Landcover data

The vegetation type data used in this study is China’s
1:1,000,000 vegetation type map. The data comes from the Data
Center for Resources and Environmental Sciences under the
Chinese Academy of Sciences.2

2.6. Analysis

In the analysis, all the variables were combined into
monthly values, and the spatial resolution for all the data sets,
except for the Standardized Precipitation-Evapotranspiration
Index (SPEI), was set at 0.05◦. However, the spatial
resolution for SPEI, which was only used to assess the
severity of drought events, was kept at a coarser resolution
of 0.5◦.

To eliminate differences in magnitude between different data,
we used spatial standardized anomalies of each variable for the
study. All anomalies were calculated pixel by pixel as a deviation

2 https://www.resdc.cn/

Frontiers in Forests and Global Change 04 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1157340
http://www.geodata.cn
http://files.ntsg.umt.edu/data/
http://files.ntsg.umt.edu/data/
https://www.resdc.cn/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1157340 June 2, 2023 Time: 13:11 # 5

Jia et al. 10.3389/ffgc.2023.1157340

FIGURE 2

Drought duration in Southwest China from 2009 to 2010 based on SPEI-01. And the baseline is from 2000 to 2015. According to –0.5 as the
threshold, the drought period is from September 2009 to March 2010.

from the multi-year average of 2000–2015 and standardized
according to the following formula:

X(i, j, t)
′

=
X(i, j, t)− X(i, j)

std(X(i, j, t))
(4)

where X(i, j, t) redenotes the normalized NDVI, SIF, GPP, anomalies
of pixel (i, j) at time t noted as NDVI_anm, SIF_anm, GPP_anm;
X (i, j, t) is the original value of pixel (i, j) at time t; X(i, j) is the
mean value of pixel (i, j) from 2000 to 2015; and std(X(i, j, t)) is the
standard deviation of pixel (i, j) from 2000 to 2015.

In this study, the linear relationship was fitted by the least
square method. To explore the mechanism of drought on SIF-
GPP, we defined the long-term climate change periods (2000–2015)
and drought periods (September 2009-March 2010), and calculated
the relationship between NDVI/SIF and GPP during two time
periods, respectively.

3. Results

3.1. Spatiotemporal dynamics of the
2009/2010 drought in southwest China

Based on Figure 1, the averaged Standardized Precipitation-
Evapotranspiration Index (SPEI-01) in Southwest China from
January 2009 to December 2010 was in the range of −1.76
to −0.66. Specifically, from September 2009 to March 2010,
the averaged SPEI-01 values were consistently below −0.5, and
significantly lower than the multi-year mean value, suggesting that
the study area experienced drought conditions during this period.
In particular, the spatial mean of SPEI-01 in September 2009,
January, and February 2010 dropped below −1.0, indicating the
severity of the drought event during these months.

Based on the SPEI classification standard (referenced in
Table 1), statistics were conducted at the monthly scale to

FIGURE 3

The area proportion of the different drought levels from September
2009 to March 2010. The drought levels were classified in Table 1.

characterize the intensity of drought. The results revealed that
during winter 2009, 40–60% of the study regions experienced
moderate and severe drought conditions. The severity of drought
intensified in January and February 2010, with approximately
35 and 37% of the total area experiencing severe drought and
exceptional drought, respectively. This trend of increasing drought
severity over time was consistent, as indicated in Figures 2, 3,
suggesting a severe drought situation in the study area.

Figure 4 was used to provide a more detailed description
of the extreme drought events by considering temperature and
precipitation as meteorological indicators. The results showed
that during the drought period, most parts of Southwest China
experienced positive temperature anomalies (higher than the
multi-year average) and negative precipitation anomalies (regional
precipitation below the average level). Specifically, about 70%
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FIGURE 4

Spatial distribution of (A) temperature and (B) precipitation anomalies from September 2009 to March 2010.

FIGURE 5

Linear regression model between the monthly mean SIF_anm and GPP_anm across different biome types (A) all biomes, (B) cropland, (C) forest, (D)
grassland, (E) shrubland/NDVI_anm and GPP_anm across different biome types (F) all biomes, (G) cropland, (H) forest, (I) grassland, (J) shrubland
from 2000 to 2015 (SIF for 190 months, and NDVI for 192 months where black circles represent the mean of standardized anomalies for each
month, and red lines denote regression lines. All results were statistically significant at p < 0.01).

of the study area had higher than average temperatures, and
80% had regional precipitation below the average level. Notably,
approximately 30% of the study area exhibited positive temperature
anomalies greater than 1.5 standard deviations (SD) and negative
precipitation anomalies lower than−0.5 SD. These findings suggest
that the extreme drought events were characterized by increased
temperature and reduced precipitation, indicating that both factors
contributed to the occurrence of the severe drought in the study
area.

3.2. The relationship between SIF/NDVI
and GPP in different biomes during
long-term climate change period

In Southwest China, linear regression models were employed
to investigate the relationship between traditional vegetation index,

such as Normalized Difference Vegetation Index (NDVI), and
emerging chlorophyll fluorescence index called Solar-Induced
Fluorescence (SIF), with Gross Primary Productivity (GPP) for
various biome types, as illustrated in Figure 5. The results indicated
that SIF showed a stronger linear correlation with GPP compared
to NDVI across all biome types. The SIF-GPP correlation was
consistently significant over a long-time scale, with no significant
relationship gap observed across different biological communities.

In terms of NDVI, the results varied among different biome
types. Forest ecosystems exhibited a weak NDVI-GPP relationship
with a coefficient of determination (r2) of 0.34, indicating
a relatively weak correlation. On the other hand, cropland
ecosystems showed a stronger NDVI-GPP relationship with an
r2 value of 0.74, suggesting a more robust correlation between
NDVI and GPP in cropland areas. These findings highlight the
differences in the relationship between vegetation indices and
GPP among various biome types in Southwest China, with SIF
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FIGURE 6

The spatial correlation coefficient of SIF-GPP/NDVI-GPP under the
long-term climate change period: (first column) all biomes, (second
column) cropland, (third column) forest, (fourth column) grassland,
(fifth column) shrubland, in southwest China. The red part of the bar
chart shows SIF and GPP, the green part shows NDVI and GPP, and
all results were statistically significant at p < 0.001.

showing a stronger and more consistent correlation with GPP
compared to NDVI.

In our further investigation, we examined the correlation
between NDVI/SIF and GPP at a spatial scale during long-
term climate change periods and drought months, as depicted
in Figure 6. The results revealed that regardless of the climate
conditions (long-term or drought months), the correlation between
SIF and GPP was consistently stronger than that between NDVI
and GPP. Specifically, over the 16-year period from 2000 to 2015,
grassland ecosystems exhibited the strongest relationship between
SIF and GPP, indicating a robust correlation. In contrast, cropland
ecosystems showed a relatively weak relationship between SIF and
GPP. However, the relationship between NDVI and GPP did not
show significant differences under long-term climate conditions.
These findings suggest that SIF is a more sensitive and reliable
indicator of GPP compared to NDVI, especially during long-
term climate change periods and drought months, with grassland
ecosystems showing the strongest relationship between SIF and
GPP among the various biome types studied.

3.3. The relationship between vegetation
and GPP under drought pressure

During the autumn and winter of 2009, southwest China
experienced an extremely destructive drought event, with most
areas showing severe drought conditions as indicated by SPEI-
01 values below −1.50, as shown in Figure 3. Meteorological
factors, such as water stress and heat stress, were also evident in
most study areas, as depicted in Figure 4. To further investigate
the relationship between vegetation indices and GPP during the
drought period, we compared the spatial distribution of SIF, NDVI,
and GPP anomalies, as shown in Figure 7. The results revealed
that the spatial patterns of SIF and GPP anomalies were more
consistent with each other compared to NDVI during the drought

period, suggesting a stronger correlation between SIF and GPP. To
quantify the correlation between vegetation indices and GPP across
different biomes during drought months, we employed linear
regression models, as depicted in Figure 8. The findings indicated
that the correlation between SIF and GPP was stronger across all
biome types during drought months, compared to NDVI. This
suggests that SIF may be a more reliable indicator of GPP during
drought periods in various biomes, supporting the consistent
spatial patterns observed between SIF and GPP anomalies during
the drought event in southwest China in 2009.

The analysis of the SIF-GPP relationship during drought
revealed that the model for cropland exhibited a lower correlation
(r2 = 0.77) compared to other biomes, as farmers’ measures
such as irrigation for crops may introduce additional uncertainty
in SIF-GPP estimation. However, the SIF-GPP relationship did
not show significant differences among other biomes during
drought conditions, indicating that SIF may still be a reliable
indicator of GPP in various biomes during drought events. On the
other hand, the NDVI-GPP relationships during drought varied
among different biomes. Forestland, with its complex canopy
structure, showed the weakest NDVI-GPP relationship (r2 = 0.48),
while grassland, with a simpler canopy structure, exhibited the
strongest NDVI-GPP relationship (r2 = 0.71). The largest difference
(1r2 = 0.37) between the SIF-GPP and NDVI-GPP relationships
was observed in the forest biome during drought, indicating that
NDVI, as a vegetation greenness index, may not be as sensitive
to changes in GPP during drought events. Overall, the linear
regression models demonstrated that the correlation between SIF
and GPP was consistently higher than that of NDVI across all
biome types during drought conditions, suggesting that SIF may be
a more robust indicator of GPP dynamics during drought periods,
regardless of the biome type.

The analysis revealed that compared to long-term periods
of climate change, the SIF-GPP correlation for all biome
types decreased during drought events. Specifically, forest
(1r2 = −he analysis revealed that compared to long-term
periods of c1r2 = −he analysis revealed that compared to long-
ter). Specifically, forest (nge, the SIF-GPP correlation for all
biome typ1r2 = −ge, the SIF-GPP corre1r2 = −ge, the SIF-
GPPdecreasednts). This suggests that the impact of drought on
farmland ecosystems is significant and can disrupt the SIF-GPP
relationship more severely.

4. Discussion

4.1. The potential of SIF to capture GPP
changes

The effectiveness and accuracy of SIF in capturing changes
in GPP in space and time in our study are noteworthy. Both
during long-term climate change and drought periods, our
model demonstrates a stronger correlation between SIF and GPP
compared to NDVI, indicating that SIF, as a fluorescent signal
directly emitted by vegetation photosynthesis, can more intuitively
represent long-term GPP changes and GPP variation due to
drought than NDVI. While traditional vegetation indices, such as
NDVI, are capable of perceiving changes in canopy greenness, they
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FIGURE 7

The spatial distribution of (A–G) NDVI_anm (H–N) SIF_anm (O–U) GPP_anm in Southwest China during the drought.

FIGURE 8

Linear regression model between NDVI_anm/SIF_anm and GPP_anm across different biome types (A) all biomes, (B) cropland, (C) forest, (D)
grassland, (E) shrubland, during the drought period (All the points in the model are the pixel values of SIF_anm/NDV_anmI and GPP_anm during the
drought, and the red lines indicates the regression lines. All results were statistically significant at p < 0.05).

do not capture real-time photosynthetic activity and are limited by
their reliance on long-term cumulative changes in photosynthesis.

As previous studies have shown a high correlation between
SIF and GPP/crop yield, SIF can serve as a reliable indicator of
crop yield and GPP. For instance, Guanter’s experiment in 2014

demonstrated that the linear model based on SIF products had
significantly higher accuracy (r2 = 0.81) compared to other models
(data-driven and process-based) for estimating GPP. Additionally,
SIF has been shown to effectively capture drought-induced changes
in GPP in other studies (Yoshida et al., 2015; Li et al, 2018;
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Chen S. et al., 2019). In our study, we compared SIF-GPP
dynamics under long-term conditions and extreme drought, and
our results confirmed that SIF accurately captured changes in GPP
in both cases, further supporting the reliability of SIF for drought
monitoring and estimating GPP loss. Chen’s research on the North
China Plain drought in 2014 also demonstrated that SIF-based
estimates of GPP loss were comparable to yield losses, and that
relative abnormalities of SIF alone could be used to calculate yield
losses during drought without the need for other auxiliary data and
calculations. We believe that SIF has potential for long-term and
real-time monitoring of abnormal GPP dynamics, particularly in
the absence of large-scale direct GPP observations.

4.2. Understanding the relationship
between vegetation index and GPP
under different biome types

Our study investigated the SIF-GPP relationship in five
different biomes and found that while there is a generally linear
relationship, some subtle differences exist among these biomes.
Specifically, the SIF-GPP relationship within each biome type
showed a high correlation during the long-term climate change
period, which is consistent with previous research findings, such as
Wood et al. (2017). However, when compared to monthly average
anomalies, some differences in the overall spatial correlation
were observed. Song et al. (2021) suggested that biological
community characteristics could be a factor influencing the SIF-
GPP relationship, resulting in spatial heterogeneity. For instance,
grassland ecosystems exhibited a high SIF-GPP correlation,
possibly due in part to the large radius of OCO-2 SIF (>10 km)
extracted from C3 and C4 species, as shown by Li et al (2018).
Other studies have also demonstrated that grasslands tend to
exhibit strong SIF-GPP relationships, while weaker relationships
are observed in forest ecosystems, as reported by Zeng et al.
(2019). The lower correlation of the NDVI-GPP relationship at
the monthly scale in forest ecosystems could be attributed to
the fact that NDVI, as an index based on vegetation, does not
change rapidly in response to real-time photosynthesis in a short
time period. Additionally, the complex canopy structure of forests
makes it more challenging for canopy color to change, further
contributing to the weak correlation of the NDVI-GPP relationship
in forest ecosystems.

During the extreme drought in 2009/2010 in southwest China,
cropland ecosystems exhibited the lowest SIF-GPP correlation.
This suggests that extreme environmental conditions, such as
drought, can have a significant impact on the relationship between
SIF and GPP in cropland ecosystems. Migliavacca et al. (2017)
conducted experiments in Mediterranean grasslands where they
added nitrogen (N), phosphorus (P), or nitrogen-phosphorus
(NP) to explore the impact of canopy structure and functional
vegetation characteristics on the linear relationship between SIF
and GPP. They found that the addition of nutrients had an effect
on the vegetation morphology and canopy biochemistry, which
in turn influenced the F760, a key parameter related to SIF.
This suggests that nutrient availability can affect the relationship
between SIF and GPP in grassland ecosystems. Similarly, Perez-
Priego et al. (2015) conducted nutrient fertilization experiments

on Mediterranean grasslands and found that the regulatory
mechanisms associated with adding nitrogen (N) and phosphorus
(P) could reduce the coupling degree between fluorescence released
by vegetation and photosynthesis. This indicates that nutrient
addition can also impact the relationship between SIF and GPP in
grassland ecosystems. In the same vein, the addition of nutrients
to cropland ecosystems could potentially affect the SIF-GPP
correlation, as nutrient availability can influence vegetation growth
and canopy biochemistry, which in turn may impact SIF emissions
and GPP. Furthermore, measures taken by farmers, such as
irrigation, in response to extreme environmental conditions, such
as drought, can also potentially influence the SIF-GPP relationship
in cropland ecosystems. Human interventions, such as irrigation
practices, can alter the vegetation dynamics and physiological
processes, which in turn may impact the relationship between
SIF and GPP. Overall, these studies suggest that various factors,
including nutrient availability, extreme environmental conditions,
and human interventions, can influence the relationship between
SIF and GPP in different ecosystems, and should be taken into
consideration when interpreting SIF-GPP relationships in such
contexts.

4.3. Extreme drought has no effect on
the linear relationship between SIF-GPP
at large spatial scales

Our study investigated the controversy of linear and non-
linear SIF-GPP (Solar-Induced Fluorescence and Gross Primary
Productivity) relationships and found that SIF-GPP showed a
clear linear correlation during both long-term climate change and
extreme drought periods. The observed linear relationship between
SIF and GPP was consistent across all five biomes, with only
minor variations among individual biome types. In a recent study
conducted by Martin in 2021, experiments were carried out on
evergreen broadleaved trees with relatively stable canopy structure
in open forests in the Mediterranean to explore the impact of
heatwaves on the SIF-GPP relationship (Martini et al., 2021). The
authors proposed that vegetation experiences saturation of NPQ
(Non-Photochemical Quenching) during heatwaves, resulting in
changes in the distribution of energy dissipation pathways of SIF
and leading to a non-linear relationship. Canopy structure and
environmental conditions are known to be important influencing
factors in SIF-GPP relationships (Stocker et al., 2019), as both
SIF and GPP may respond differently to different environmental
conditions. In Martin’s study, the study area was characterized by
a Mediterranean climate, which is known for high temperatures
and dryness in summer (Luo et al., 2018, 2020; Chen S. et al.,
2019). This climate results in seasonal water restrictions during
heatwave periods (Mäkelä et al., 2006), which may significantly
impact water utilization in the experiments. In contrast, the
study area in southwest China in our study experienced minor
water restrictions due to high temperatures and summer rainfall
(Rogers and Beringer, 2017). Hence, it is evident that different
environmental conditions and climate types can influence SIF-GPP
relationships.

Kim et al. (2021) study concluded that there is a non-
linear relationship between SIF and photosynthesis in temperate
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evergreen coniferous forests, with canopy structure significantly
influencing the findings. The complex canopy structure of
coniferous ecosystems introduces uncertainty in predicting SIF and
GPP (Tang and Dubayah, 2017; Yang et al., 2018). Satellite-based
measurements of vegetation activities are limited by the challenges
posed by complex canopy structures, which can hinder detection
of understory vegetation, vegetation in the middle of the canopy,
and dense canopy vegetation (Hayek et al., 2018; Wang et al., 2020).
Furthermore, the maximum light use efficiency for photosynthesis
(LUEPmax) and the maximum fluorescence yield for SIF (LUEFmax)
may be influenced by vegetation coverage (Mohammed et al.,
2019). LUEPmax and LUEFmax represents the maximum LUE for
GPP and SIF. Therefore, estimating canopy fluorescence escape
probability, LUEPmax, and LUEFmax are critical research directions
to further understand and quantify their impact on the SIF-GPP
relationship. Further research in these areas is essential to advance
our understanding of the complex dynamics between SIF and GPP
in different vegetation types and canopy structures.

Several studies have suggested that the relationship between
SIF and GPP is weaker on shorter temporal scales compared
to seasonal scales (Zhang et al., 2016a). For instance, Zarco-
Tejada et al. (2016) conducted a 2-year field study evaluating SIF
and leaf CO2 assimilation, and found a statistically significant
correlation between SIF and leaf CO2 assimilation (p < 0.05).
Similarly, Damn and Martin also reported non-linear SIF-GPP
relationships on short time scales, consistent with our findings. It
is generally agreed that the SIF-GPP relationship becomes more
linear with increasing spatiotemporal scales, as finer scale factors,
such as vegetation structure, physiology, and environmental
conditions have a smaller impact (Zhang et al., 2016b), which
aligns with our results. In our study, we further investigated
the SIF-GPP relationship across different biome types using
detailed GOSIF data, and our findings revealed a consistent and
universal linear SIF-GPP relationship across different biological
communities.

5. Conclusion

In our study, we investigated the relationship between SIF and
GPP across five different biome types in southwest China, covering
the period from 2000 to 2015, including the extreme drought
of 2009/2010, which is characterized by unique topographic and
geomorphic characteristics. Our findings revealed a consistent
linear relationship between SIF and GPP in different biological
communities, with a high coefficient of determination (r2 = 0.91–
0.94). Remarkably, even under extremely high temperatures, the
SIF-GPP relationship remained linear (r2 = 0.77–0.88), indicating
the robustness of this relationship. These results confirm the
potential of SIF as a "probe" for real-time monitoring of drought
and GPP, and highlight the feasibility of using SIF to predict
GPP. Furthermore, we conducted an in-depth analysis of the
reasons for the slight differences in the slope of the SIF-GPP
linear relationship among the five biological communities. We
observed that grassland, with a simple canopy structure, exhibited
a strong linear relationship, while forest ecosystems with complex
canopy structures showed a weaker linear relationship between
SIF and GPP. Additionally, for croplands (the spatial correlation

coefficient r2 = 0.63), the addition of nutrients and fertilizers
complicated the SIF-GPP relationship. We also analyzed the
reasons for the maintenance of the linear relationship during the
extreme drought period in southwest China, which was attributed
to the offsetting effects of climatic conditions, such as concurrent
rainfall and heat events, and various influencing factors on a
large scale. In future studies, a more refined SIF data and real-
time monitoring of large-scale GPP data could contribute to a
deeper understanding of the SIF-GPP relationship. These findings
contribute to the growing body of knowledge on the use of
SIF as a powerful tool for monitoring and predicting ecosystem
productivity, and provide insights into the factors influencing
the SIF-GPP relationship in different biomes and under varying
environmental conditions.
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