
TYPE Original Research

PUBLISHED 05 June 2023

DOI 10.3389/�gc.2023.1181819

OPEN ACCESS

EDITED BY

Taehee Hwang,

Indiana University Bloomington, United States

REVIEWED BY

Romà Ogaya,

Ecological and Forestry Applications Research

Center (CREAF), Spain

Sara Goeking,

United States Department of Agriculture

(USDA), United States

*CORRESPONDENCE

Stefano Casirati

scasirati@ucmerced.edu

RECEIVED 07 March 2023

ACCEPTED 05 May 2023

PUBLISHED 05 June 2023

CITATION

Casirati S, Conklin MH and Safeeq M (2023)

Influence of snowpack on forest water stress in

the Sierra Nevada.

Front. For. Glob. Change 6:1181819.

doi: 10.3389/�gc.2023.1181819

COPYRIGHT

© 2023 Casirati, Conklin and Safeeq. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Influence of snowpack on forest
water stress in the Sierra Nevada

Stefano Casirati1*, Martha H. Conklin2 and Mohammad Safeeq2,3

1School of Engineering and Environmental Systems Graduate Program, University of California, Merced,

Merced, CA, United States, 2Civil and Environmental Engineering, University of California, Merced,

Merced, CA, United States, 3Division of Agriculture and Natural Resources, University of California, Davis,

Davis, CA, United States

Higher global temperatures and intensification of extreme hydrologic events, such

as droughts, can lead to premature tree mortality. In a Mediterranean climate

like California, the seasonality of precipitation is out of sync with the peak

growing season. Seasonal snowpack plays a critical role in reducing this mismatch

between the timing of water input to the root zone and the peak forest water

use. A loss of snowpack, or snow droughts, during warmer years, increases the

asynchrony between water inputs and the peak of forest water use, intensifying

water stress and tree mortality. Therefore, we hypothesize that the montane

vegetation response to interannual climate variability in a Mediterranean climate

is regulated by the snowpack. We tested this hypothesis using the 2012–2015

drought as a natural experiment. Regional Generalized Additive Models (GAMs)

were used to infer and quantify the role of snowpack on forest water stress. The

models simulate the Normalized Di�erence Infrared Index (NDII) as a proxy of

forest water stress using water deficit (as seasonality index), location, slope, and

aspect. The GAMs were trained using 75% of the data between 2001 and 2014.

The remaining 25% of the data were used for validation. The model was able to

simulate forest water stress for 2015 and 2016 across the northern, central, and

southern Sierra Nevada with a range of R2 between 0.80 and 0.84. The simulated

spatial patterns in forest water stress were consistent with those captured by

the USDA Forest Service Aerial Detection Survey. Our findings suggest that the

failure of a reduced snowpack in mitigating water deficit exacerbates forest water

stress and tree mortality. Variations in water and surface energy budget across

an elevational gradient play a critical role in modulating the vegetation response.

These results provide insights into the importance of the Sierra Nevada snowpack

under a warming climate. The models can aid forest managers to identify future

forest water stress and tree die-o� patterns.
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Highlights

- Snowpack loss increases forest water stress and tree mortality.

- Trade-offs between water and energy availability across the landscape modulate the

vegetation response.

- This study provides a predictive tool for identifying forest vulnerability to

snowpack losses.

Frontiers in Forests andGlobal Change 01 frontiersin.org

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2023.1181819
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2023.1181819&domain=pdf&date_stamp=2023-06-05
mailto:scasirati@ucmerced.edu
https://doi.org/10.3389/ffgc.2023.1181819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/ffgc.2023.1181819/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Casirati et al. 10.3389/�gc.2023.1181819

1. Introduction

Mediterraneanmountainous ecosystems, such as Sierra Nevada

forests in California, USA, are characterized by cold, wet winters

and hot, dry summers. Precipitation (P) occurs mostly between

October and May when water demand is low, asynchronous

with the peak summer growing season (May–September). The

temporal offsets between evapotranspiration demand and water

inputs highlight the importance of above-ground snowpack storage

and subsurface soil water storage in supporting forest ecosystems

during the growing season (Garcia and Tague, 2015).

Droughts can intensify tree water stress and elevate the risks of

tree mortality, particularly when coupled with higher temperatures

(McDowell et al., 2008; Allen et al., 2015). Large precipitation

deficits combined with remarkably warmer temperatures in 2014

and 2015 intensified the drought in California leading to a massive

forest die-off (Williams et al., 2015; Bales et al., 2018; Goulden

and Bales, 2019; Restaino et al., 2019). However, Sierra Nevada

forests’ response to drought is highly variable between water- and

energy-limited regions (Das et al., 2013; Paz-Kagan et al., 2017). A

temperature rise increases the vapor pressure deficit, causing more

water stress in water-limited areas than in energy-limited areas

(Allen et al., 2015; Bales et al., 2018).

Terrestrial water storage in the form of snowpack is particularly

vulnerable to global warming and droughts. An increase in

temperature influences the fraction of precipitation that falls as

snow during the winter season, and the position of the rain–

snow transition in the landscape, reducing the subsurface storage

recharge through snowmelt during the spring and early summer

(Garcia and Tague, 2015; Meixner et al., 2016). This loss of

above-ground storage limits recharge to the root zone during

the dry season (Barnett et al., 2005; Garcia and Tague, 2015).

Even though Mediterranean forests are well adapted to hot and

dry summers, high interannual and interseasonal precipitation

variability can often induce water stress conditions (Tague et al.,

2019). A reduction in water storage, both surface and subsurface,

available to the vegetation during part of the growing season and

extreme variations in evapotranspiration demand resulting from

warmer temperatures and heatwaves are important contributors

to forest ecosystem water stress (Allen et al., 2015; Garcia and

Tague, 2015). Severe tree water stress conditions are known to

trigger mechanisms of hydraulic failure, carbon starvation, and

increased vulnerability to biotic agents, all of which contribute to

tree mortality (McDowell et al., 2008). Recent studies have linked

the 2012–2015 tree die-off in the Sierra Nevada to multi-year

drying of the deep root zone water storage under below-normal

precipitation and excessive warming (Goulden and Bales, 2019)

along with increased competition for water due to an increase in

tree density caused by an extensive fire suppression over the last

century (Young et al., 2016; Fettig et al., 2019).

Declines in mountain snowpack have been observed in the

last century across Western North America (Mote et al., 2005)

as the precipitation phase continues to shift toward more rain

instead of snow (Knowles et al., 2006; Safeeq et al., 2015). In the

Sierra Nevada, the snowpack is expected to decline by as much as

∼45% by the year 2050 (Siirila-Woodburn et al., 2021). Warmer

atmospheric rivers are expected to produce more rain than snow

(Siirila-Woodburn et al., 2021). Snow accumulation modulates the

water availability in water-limited mid-elevations and is linked

to forest productivity (Trujillo et al., 2012). Hence, in a warmer

climate, the contribution of snowpack storage supporting forest

ecosystems during the growing season will be reduced. In addition,

future precipitation events will likely be more extreme but less

frequent (Bedsworth et al., 2018; Swain et al., 2018). Therefore, the

soil would dry earlier in the spring, the dry summer conditions will

last longer, and warmer temperatures will further intensify summer

droughts (Thorne et al., 2015; Swain et al., 2018). The exceptionally

warm and dry droughts of the years 2014 and 2015, characterized by

low snowpack, can be considered a likely analog for future climate

and water supply scenarios (Dettinger and Anderson, 2015; Mann

and Gleick, 2015).

Normalized Difference Infrared Index (NDII) (Kimes et al.,

1981; Hardisky et al., 1983; Yilmaz et al., 2008), frequently called

Normalized Difference Moisture Index (NDMI, Wilson and Sader,

2002), has been often used to map tree water stress and forest die-

off. NDII showed a strong correlation with water balance, such as

Precipitation (P)–Evapotranspiration (ET), and with the dead trees

detected by theUSDAForest Service Aerial Detection Survey (ADS,

U.S. Forest Service, 2016) in the Sierra Nevada (Goulden and Bales,

2019). However, the role of water delivery by snowmelt during late

spring and early summer in regulating forest water stress has not

yet been fully understood. Here, we utilized the 2012–2015 tree

mortality episode in the Sierra Nevada as a natural experiment

to investigate the role of snowpack in modulating the patterns of

forest water stress and die-off. We hypothesize that the vegetation

response to interannual variability in a Mediterranean climate is

regulated by the snowpack dynamics. In the absence of snowpack

storage, subsurface soil water storage alone may not be enough to

support summer forest water demands.

The study was organized according to the following steps: (I)

collect and assemble existing spatial climate datasets and register

them at the same spatial scale (coordinate reference system and

spatial resolution); (II) calculate water deficit using a spatial water

balance approach; (III) analyze vegetation responses to water deficit

across the elevation gradient; and (IV) build, train, and test a set

Generalized Additive Models (GAMs) and use them to simulate

2015 and 2016 NDII.

2. Methods

2.1. Study area

We focused the study on the western slope of the Sierra

Nevada mountains in California (Figure 1). To better capture

the climate and geologic variability, the study area was

further divided into three regions: Northern Sierra (NS),

Central Sierra (CS), and Southern Sierra (SS) (Figure 1A).

This analysis focused on drought-sensitive evergreen

forests (Figure 1B).

Northern Sierra is characterized by moderate elevation

(elevation range from 42 to 3,071 masl, mean = 1,274 masl)

and underlying volcanic and metamorphic rocks (Irwin, 1990).

The average (2000–2016) annual precipitation and mean daily
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FIGURE 1

Sierra Nevada’s study area and landscape characteristics: (A) study area’s regions: northern, central, and southern Sierra, with elevation in meters

above the sea level; (B) land cover classes from NLCD2011 and burned areas obtained from MTBS; (C) northness (North = 1, South = −1); (D) slope

in degrees [◦].
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FIGURE 2

Conceptual diagram including the monthly potential evapotranspiration (PET, orange line); monthly water inputs (monthly rain + monthly snowmelt)

in a water year characterized by an average snowpack (blue continuous line), and in a water year with a reduced snowpack (blue dashed line). Water

deficit (gray areas) represents the negative di�erence between water inputs and potential evapotranspiration. A reduction in the snowpack, with a

consequent failure in delivering the water during the spring and early summer, involves an increase in water deficit [extra water deficit (dark-gray

area)].

temperature over the NS region were 1,149 mm/yr and 10.7◦C,

respectively. CS is characterized by a slightly steeper elevation

gradient (elevation range from 51 to 3,807 masl, mean = 1,259

masl) and by the presence of metamorphic and granitic rocks

(Irwin, 1990). The precipitation averaged over the CS was 1,076

mm/yr, and the mean temperature was 11.7◦C between 2000

and 2016. SS is characterized by a higher elevation (elevation

range from 1,346 to 4,033 masl, mean = 1,837 masl) and by the

predominance of granitic rocks (Irwin, 1990). The 2000–2016

precipitation averaged over the SS was 768 mm/yr, and the 2000–

2016 average mean temperature was 9.3◦C. As evident, the amount

of precipitation and average temperature decrease along the north–

south gradient, causing more of that precipitation to fall as

snow (Bales et al., 2006).

The ecosystems in the study area follow the elevational

gradient. At low elevations below approximately 1,200 masl, the

lower montane blue oak-foothill pine woodland and savanna

are dominant. This system is characterized by species, such

as California foothill pines (Pinus sabiniana), oaks, and other

broadleaf trees and shrubs. Low- and mid-elevations, ranging from

approximately 600 to 1,800 masl in the NS and 800 to 1,600 masl in

the CS and SS, are dominated by dry-mesic mixed conifer forests,

like Douglas firs (Pseudotsuga menziesii), ponderosa pines (Pinus

ponderosa), and California incense cedars (Calocedrus decurrens).

Mesic mixed conifer forests dominate the mid-elevation region

(1,400–2,500 masl), which has an average annual precipitation of

1,000–1,500mm, with roughly half falling as snow. This elevation

region is characterized by conifers such as white firs (Abies

concolor), California incense cedars (C. decurrens), and sugar pines

(P. lambertiana), with limited areas dominated by Giant Sequoias

(Sequoiadendron giganteum). Ponderosa pine (P. ponderosa) and

jeffrey pine (P. jeffreyi) forests can be found at higher elevations

(2,200–3,000 masl), while red fir (A. magnifica) forests can be

found mostly in areas with deep, drained soils that heavily rely on

snowpack. At elevations above 3,000 masl, the subalpine lodgepole

pine (P. contorta) is dominant (Comer et al., 2003; U.S. Geological

Survey, 2016; Supplementary Figure S1).

2.2. Spatial datasets

2.2.1. Digital elevation model, land cover, and fire
masks

The study area was delineated using ∼30m (1 arc-second,

Figure 1A) digital elevation model (DEM, U.S. Geological Survey,

2017) and the HUC-8 watershed boundaries from the USGS

Watershed Boundary Dataset, WBD (U.S. Geological Survey,

2020). We performed a terrain analysis, using TauDEM (Tarboton,

2005) and R (R Core Team, 2021), and obtained northness

(North/South) and slope (Figures 1C, D).

We used land cover data from the National Land Cover

Database (NLCD 2011; Dewitz, 2014) and the GAP/LANDFIRE

National Terrestrial Ecosystems (U.S. Geological Survey, 2016),

respectively, to select all the pixels with evergreen forests
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TABLE 1 Ecological systems used in defining the two-year cumulative Water Deficit (WD) smooths in the GAMmodel.

Region GAP/landfire description Percentage of pixels

Northern Sierra Mediterranean California mesic mixed conifer forest and woodland 51%

Mediterranean California dry-mesic mixed conifer forest and woodland 17%

California montane jeffrey pine-ponderosa pine woodland 7%

Mediterranean California lower montane black oak-conifer forest and woodland 7%

Other 18%

Total 100%

Central Sierra Mediterranean California mesic mixed conifer forest and woodland 35%

California lower montane blue oak-foothill pine woodland and savanna 20%

Mediterranean California dry-mesic mixed conifer forest and woodland 20%

Sierra Nevada subalpine lodgepole pine forest and woodland 6%

Other 19%

Total 100%

Southern Sierra Mediterranean California mesic mixed conifer forest and woodland 25%

Sierra Nevada subalpine lodgepole pine forest and woodland 22%

Mediterranean California red fir forest 13%

California lower montane blue oak-foothill pine woodland and savanna 10%

Other 30%

Total 100%

(Figure 1B) and to identify the most common plant communities.

Monitoring Trends in Burn Severity (MTBS, Eidenshink et al.,

2007) burned area polygons (Figure 1B) were used to mask and

exclude all areas where a fire occurred between 1984 and 2016

from the further analysis. Additional information is reported in the

Supplementary material (section “land cover and fire masks”).

2.2.2. Precipitation and temperatures
We obtained daily total precipitation (mm/day) and daily

maximum and minimum temperatures (◦C) from the parameter-

elevation regressions on the independent slopes model (PRISM,

Daly et al., 1994) at 30 arcsec (∼800m) resolution from 2000 to

2016.We aggregated the daily rasters to obtain the monthly average

temperatures (Tm) and monthly total precipitation (Pm). Pm and

Tm were then spatially downscaled from 30 arcsec (∼800m) to

0.005 degrees (∼500m) resolution using the downscaling method

from Zimmermann and Roberts (2001) and Lute and Abatzoglou

(2020). Additional information on the downscaling method is

reported in the Supplementary material (section “precipitation and

temperatures downscaling method”).

2.2.3. Monthly potential evapotranspiration
We calculated monthly potential evapotranspiration (PETm)

for each pixel, using the modified Hamon approach (1963)

(adopted by Dingman, 2002; Fellows and Goulden, 2016; Roche

et al., 2020): first, monthly potential evapotranspiration was

estimated using the original Hamon (1963) model as follows:

PETHamon = 29.8 ∗ n ∗ L∗

(

Esat

Tm + 273.2

)

(1)

where L is the median day length (hours) (obtained using insol R

package; Corripio, 2021); n is the number of days in the month;

Tm is the monthly average temperature; and Esat is the saturated

vapor pressure (kPa) calculated as Esat = 0.611∗exp
(

17.3∗Tm
T m+237.3

)

.

Subsequently, PETHamon values were adjusted using a scaling

factor of 1.265 to minimize the bias (Fellows and Goulden, 2016)

as follows:

PETm = 1.265 ∗ PETHamon (2)

2.2.4. Snow water equivalent
We obtained daily snow water equivalent (SWE) (2000–2016)

from the Sierra Nevada snow reanalysis dataset (Margulis et al.,

2015, 2016). We used changes in daily SWE (1SWE) to estimate

monthly snow accumulation (
∑

SWE+) and monthly snowmelt

output (
∑

SWE−). Sublimation losses and snow redistribution

were not considered. In the event of a discrepancy between Pm and
∑

SWE+, we adjusted the Pm to match the differences between the

two datasets. For each month m, if the total precipitation was less

than the snow accumulation, we adjusted the total precipitation to

match the snow accumulation.
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2.2.5. Water deficit
We used the seasonality index (Leibowitz et al., 2011;

Wigington et al., 2012) to explore and analyze seasonal water

availability and its effect on vegetation. A monthly water surplus

(Sm) can be estimated as follows:

Sm = Pm − PETm − SWEm (3)

where 1SWEm is the monthly variation in snow water equivalent

estimated as the difference between snow accumulation and melt

(i.e.,
∑

SWE+ −
∑

SWE−). Equation (3) accounts for the

seasonality of water inputs and water demands. We defined water

surplus (WS) when Sm > 0 and water deficit (WD) when Sm< 0.

We calculated the yearly WD as the sum of the monthly WD for

each water year. For clarity, we reversed the sign of the WD to have

positive values.

We focused on the WD months to emphasize the importance

of water released through snowmelt during the growing season

(Figure 2). During a warmer year, a snowpack loss will reduce the

water available for the vegetation during the dry summer season,

inducing an additional WD. The extra WD, triggered by snowpack

loss, is additionally exacerbated by an increase in evaporative

demand (not reported in the conceptual Figure 2). In this study,

we did not account for lateral flow and subsurface water storage.

2.2.6. Forest water stress
Normalized Difference Infrared Index (NDII) is a spectral

index sensitive to vegetation canopy water content (Ceccato

et al., 2002; Davidson et al., 2006). NDII is correlated with the

canopy water content in different forest types (Cheng, 2007). We

obtained near-infrared reflectance (NIR) and short-wave infrared

reflectance (SWIR) values from MODIS/Terra 8-Day L3 Global

500m (MOD09A1 Version 6; Vermote, 2015), from 2001 to 2016.

Conversions from sinusoidal projection toNAD 83were performed

using theMODIStsp R package (Busetto and Ranghetti, 2016).

NDII was computed using the formula:

NDII =
NIR− SWIR

NIR+ SWIR
(4)

Monthly NDII was obtained as the median of 8-day NDII. The

8-day NDII values were masked for clouds by excluding all the

pixels with state quality assessment flags different than “clear.”

Pixels with poor data quality were flagged as missing. While spring

NDII reflects year-to-year variations in perennial evergreen and

deciduous vegetation, it also includes the peak of grasses and spring

deciduous vegetation productivity. Late summer season NDII is

better suited to isolate the interannual response of evergreen forests

(Goulden and Bales, 2019). Therefore, late summer season NDII

(hereafter NDII) was calculated as an average of August, September,

and October NDII.

2.3. Analysis

2.3.1. Progression of the drought
We performed an exploratory analysis to investigate

the time series of average temperatures, precipitation,
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FIGURE 3

Time series of average temperatures, precipitation, and snow accumulation, from 2000 to 2016, and Normalized Di�erence Infrared Index (NDII),

from 2001 to 2016, across the three study regions (NS, CS, and SS). The 2007–2008 and the 2012–2015 droughts are highlighted in red.

and snow accumulation, from 2000 to 2016, and NDII,

from 2001 to 2016, for each Sierra Nevada study region

(i.e., NS, CS, and SS). Consequently, we analyzed the

spatial patterns of cumulative water deficit and the

changes in NDII between each year from 2012 to 2016

and the pre-drought conditions, from the 2009–2011

average NDII.

2.3.2. Role of snow on water deficit
Statistical analysis was performed for each Sierra Nevada

study region (i.e., NS, CS, and SS) and at six predefined

elevation bands (<1,000; 1,000–1,500; 1,500–2,000; 2,000–

2,500; 2,500–3,000; and ≥3,000 masl). We used the lmg (Lindeman

et al., 1980) relative importance analysis (ralaimpo R package;

Groemping, 2006) to quantify the individual contribution

(i.e., partition-explained variance) of snowmelt and potential

evapotranspiration to water deficit in the linear regression

equation, across the elevation bands. Additionally, 95% bootstrap

confidence intervals for relative importance were obtained using

1,000 realizations.

2.3.3. Role of water deficit on NDII
We analyzed how NDII is related to water deficit to inspect

regional vegetation-elevation patterns. We obtained the yearly

averages for each region of NDII (response variable) and WD

(explanatory variable), and we built a linear model. Accordingly,

we obtained the yearly averages for each region and elevation

band, and we performed an analysis of variance (ANOVA) to

investigate whether the introduction of the elevation bands as

an additive term significantly improved the model. Finally, we

investigated the statistical significance of the interaction terms,

followed by a regression coefficient pairwise comparison between

the elevation bands.

2.3.4. Model building
We developed a set of three generalized additive models

(GAMs) to analyze the spatiotemporal effects of multiyear

cumulative water deficit on vegetation response. GAMs (Hastie and

Tibshirani, 1986) are a semi-parametric extension of generalized

linear models (Aalto et al., 2012; Crockett and Westerling, 2017)

with a linear predictor involving a sum of smooth functions of

covariates. We built separate models for NS, CS, and SS using the
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FIGURE 4

Relationship between the tree die-o� (dead trees/ha) from the forest service Aerial Detection Survey (ADS) and the variation in NDII across di�erent

years (I = 2014, 2015, and 2016) during the drought (NDII = NDIIi − NDII2009−2011), binned by elevation.

FIGURE 5

Progression of the drought: in the top panels, cumulative water deficit during the drought; in the bottom panels, changes in NDII between each year

of the drought and the pre-drought conditions (average 2009–2011).
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FIGURE 6

Relationship between NDII and water deficit across northern, central, and southern Sierra. Each dot represents the yearly average of each region.

“Generalized Additive Models for very large datasets” R function

(BAM function frommgcv package in R (Wood et al., 2014; Wood,

2017; Li and Wood, 2019).

We included four sets of smooth functions si in the models

(Supplementary Figures S2–S4): The first set of smooth functions

includes the 2-year cumulative water deficit for five plant

communities’ classes and accounts for the multi-year disturbance

effect. The plant communities’ classes include the four most

common terrestrial ecological systems in each region (Table 1),

while the fifth class (“other”) includes all the remaining evergreen

forest pixels. Water deficit is strongly correlated (Pearson’s

correlation r > |0.6|) with many climatic and landscape variables.

These variables are, therefore, redundant and excluded from the

model. The choice of a 2-year cumulative water deficit is based

on model evaluation using Akaike’s and the Bayesian information

criteria. The second smooth function includes latitude (lat) and

longitude (long) and accounts for spatial locations and spatial

correlation between neighboring pixels; the third smooth function

includes slope to account for differences between steep and flat

areas; the fourth smooth function includes northness to account

for the differences in water demands between sunny south-faced

slopes and shady north-faced slopes. These smooth functions were

used to estimate the vegetation response as NDII index. For each

region, the model has the following structure:

NDII = β0 + s1,j
(

cumulative WD
)

+ s2
(

lat, long
)

+ s3
(

slope
)

+ s4
(

northness
)

+ ε (5)

where NDII is the response, β0 is the intercept, si are smooth

functions estimated by fast stable restricted maximum likelihood

(fREML), and lat, long, 2-year cumulative water deficit (cumulative

WD) for each of the five plant community classes j, slope,

and northness are explanatory variables. We selected generalized

additive models with separated terms to distinguish the influence

of location, slope, northness, and 2-year cumulative WD on

NDII. We used thin-plate splines that are particularly suited to

interpolate climatic data (Hong et al., 2005; Aalto et al., 2012),

to estimate smooth functions based on a scaled t distribution to

account for heavy-tailed data (Wood et al., 2016). The models

were fit to 75% of the data from 2000 to 2014, leaving the

remaining 25% for validation. Consequently, we applied three

increasing perturbations (+100mm, +500mm, and +800mm) to

the average (2002–2014) 2-year cumulative WD to test the model

sensitivity of vegetation moisture response (NDII). We then used

the models to simulate 2015–2016 NDII given a 2-year cumulative

WD and checked simulation performance. Post-checks on the

autocorrelation of model residuals were also performed. Finally,

we created a set of maps for forest water stress, defined as NDII

anomalies (NDIIanomalies = NDIIsimulated − NDII2009 : 2011).

3. Results

3.1. Progression of the 2012–2015 drought

During the 2012–2015 drought, the average precipitation

declined by −20% in the NS, −26% in the CS, and −40% in the

SS, compared to the 2000–2016 average (Table 2). Additionally, the

2012–2015 drought was also characterized by warmer temperatures

(+0.7◦C in the NS, +0.6◦C in the CS, and +0.7◦C in the SS).

The snow accumulation declined to its lowest levels [139mm

in the NS (−48%), 181mm in the CS (−46%), and 223mm in

the SS (−48%)]. Accordingly, the NDII decreased substantially,

all but at a varying rate between NS (−1%), CS (−4%), and SS

(−12%), compared to the 2000–2016 average (Table 2, Figure 3).

As a comparison, the 2007–2008 drought had a similar change in

precipitation (−26% in the NS, −26% in the CS, and −27% in the

SS). However, the duration of this drought was shorter with slightly

cooler temperatures than the 2000–2016 average and thus by a

modest snow accumulation decrease (−4% in the NS, −7% in the

CS, and−9% in the SS). The average 2007–2008 NDII was higher in

the NS (+2%) and the SS (+2%) and slightly lower in the CS (−1%)

(Table 2, Supplementary Figure S5). The relationship between the

change in NDII during the drought and the tree die-off (dead

trees/ha) from the Forest Service Aerial Detection Survey (ADS)

showed a moderate–strong correlation (Figure 4). The strength of

the correlation increased as the drought progressed. In addition,

NDII and basal area are related through a linear-log function (R2

= 0.35, p-value < 0.001, Supplementary Figure S6) (GNN dataset;

LEMMA group, 2015).
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FIGURE 7

Model performance in the Sierra Nevada regions: NDII measured versus NDII simulated for (A) the validation pixels (25% of the pixels excluded from

the training between 2001 and 2014); (B) 2015 simulation; (C) 2016 simulation.

Spatial patterns of cumulative water deficit severely increased

during the drought years. Mid- and low-elevation forests exhibited

higher cumulative water deficit, particularly in the SS, where

the increase was more severe. The progressive decline in NDII

across time is coherent with the cumulative water deficit increase,

particularly in SS, which was more affected by tree mortality

episodes. However, visual acuity shows a discrepancy betweenNDII

and cumulative water deficit in the NS and the CS (Figure 5).

Contrary to the SS, the increased water deficit in the NS and CS in

2015 and 2016 did not correspond to a severe decrease in the NDII.

3.1.1. Role of snowpack
Water deficit has been used to investigate how the

loss of snowpack and the increase in evaporative demand

aggravated the asynchrony between water inputs and forest

water demands. The relative importance analysis showed

that snowmelt explained most of the variation of water

deficit in the SS (43%), while in the NS and CS, PET was

the dominant variable. Across the elevation gradient over

the entire study area, the contribution of snowmelt to

the water deficit increased with elevation, becoming the
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FIGURE 8

Modeled NDII sensitivity based on three di�erent perturbations (100, 500, and 800mm) applied to the average (2002–2014) 2-year cumulative WD.

most important variable approximately 2,000–2,500 masl

(Supplementary Figure S7).

3.1.2. Role of water deficit on NDII
The regional yearly average vegetation moisture (NDII)

decreased from north to south, driven by an increase in

WD (Figure 6). However, across the elevation gradient,

NDII is non-linearly related to the yearly water deficit

(Supplementary Figure S8). Higher elevation pixels (>2,500

masl) are contradistinguished by lower NDII and lower water

deficit. Conversely, lower elevation pixels (<1,000 masl for central

and southern Sierra) are characterized by lower NDII and higher

water deficit. Mid-elevation pixels are characterized by higher

NDII and moderate water deficit. For each elevation band, an

increase in water deficit resulted in a reduction in vegetation

water content (negative regression coefficient). For all three

regions, the contribution of elevation as an additive term is

significant (p-value < 0.05). However, when the interaction term

was included in the linear model, only a few elevation bands

resulted significantly. The following pairwise comparison indicated

no significant difference between the regression coefficients at

different elevation bands. The same analysis was repeated using

the cumulative 2-year water deficit (Supplementary Figure S9). In

the southern Sierra, the 1,000–1,500 masl regression coefficients

resulted significantly different compared to the band <1,000

masl (p-value = 0.01) and the 3,000–4,035 masl (p-value = 0.02)

regression coefficients. All the remaining regression coefficients

resulted not significantly different.

3.2. Predicting vegetation water stress with
generalized additive models

The models showed a robust performance in predicting

vegetation moisture (NDII). For the southern Sierra, the

coefficients of determination (R2) were 0.85, 0.84, and 0.83,

respectively, for model validation, 2015 simulation, and 2016

simulation (Figure 7) and the RMSEs were 0.051, 0.069, and

0.071, respectively. Although the model had a slight tendency in

overestimating the measured MODIS NDII in 2015 and 2016, most

of the NDII simulations were consistent with the measured NDII

(filled with lighter colors). The models can detect the distribution

of the most productive region at mid-elevation [i.e., northern,

central, and southern Sierra (Supplementary Figures S2–S4)]. In

addition, the model captured an important partial effect of the

2-year cumulative water deficit for each ecological system, as well

as a moderate partial effect of the slope and the northness.

3.3. Model sensitivity analysis

A 100-mm increase in the average 2-year cumulative WD

was not translated in a conspicuous estimated vegetation
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FIGURE 9

(A) Spatial patterns of dead trees from the Aerial Detection Survey (ADS) and anomalies in NDII for the year 2015 in the southern Sierra. A zoom into

boxes A1 and A2 highlights the overlay between the ADS and the more severe simulated anomalies in NDII. (B) Comparison between density plots of

anomalies in NDII for the year 2015 in the southern Sierra: In blue, pixels are characterized by low/undetected tree mortality (<10 dead trees/ha); in

red, pixels are characterized by severe tree mortality (>100 dead trees/ha).

moisture variation (±0.05) (Figure 8). A 500-mm perturbation

caused a decrease in vegetation moisture response with

spatial patterns mostly located in the SS middle-elevation

forests. An 800-mm perturbation was translated into a

severe decrease in vegetation moisture response across the

mid-elevation forests in all the regions. Some low- and high-

elevation areas were still insensitive to 2-year cumulative

WD perturbations. The model sensitivity was analyzed by

region and ecological system (Supplementary Figure S10). By

increasing the perturbation, differences in each ecological

system are evident. An 800-mm perturbation caused the most

severe decrease in vegetation moisture response in the NS dry-

mesic mixed conifer forests and the CC and SS mesic mixed

conifer forests.

3.4. Forecast maps and spatial patterns of
forest water stress

The prediction of vegetation moisture (NDII) combining 2-

year cumulative water deficits for each ecological system, slope,

northness, and geographical coordinates allowed us to inspect

the spatial pattern of forest water stress in relation to the Forest

Service Aerial Detection Survey polygons. The water stress has been

determined as NDIIanomalies defined as the difference between the

simulated NDII for 2015 and 2016, estimated using cumulative

WD and generalized additive models, and the average late summer

season NDII for the period 2009–2011 (non-drought conditions).

The resulting map (Figure 9) showed, for the SS region, an

agreement between the spatial patterns of water stress and the 2015
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Aerial Detection Survey. The difference between low tree mortality

(<10 dead trees/ha) and severe tree mortality (>100 dead trees/ha)

was statistically significant (Wilcoxon rank-sum test, p-value =

0.049). Maps related to the NS and CS and 2016 SS are reported

in the Supplementary Figures S11–S15.

4. Discussion

Our findings suggest that snowpack loss, associated with an

increase in temperatures, exacerbates vegetation water stress and

consequent tree mortality episodes. The water availability necessary

to maintain xylem functionality and photosynthesis is constrained

by the terrestrial water storage (snowpack and subsurface water

storage) and by the ability of vegetation to access it (Bales et al.,

2018; Klos et al., 2018). The snowpack recharges the root zone

water storage more efficiently than rain (Earman et al., 2006;

Meixner et al., 2016) and provides the water necessary for the

vegetation in spring and early summer when precipitation is low

or absent. We used WD as a seasonal index to account for the

differences in time and magnitude between water inputs and water

demand. WD indicates the negative difference between monthly

water inputs and monthly potential evapotranspiration (PET). The

water delivered by the snowpack alleviates the WD and aids the

subsurface storage in sustaining the vegetation during the growing

season. Furthermore, variations in the snowpack, snowmelt timing,

and temperatures directly modulate the water deficit, as confirmed

by the high correlation between snowmelt and PET. As the drought

propagates, an increase in WD occurred in the whole Sierra

Nevada. Mid- and low-elevation forests exhibit higher cumulative

water deficit across time. The increase in cumulative water deficit

was particularly high in the southern Sierra region (Figure 5), which

was the most affected by the 2012–2016 tree mortality episodes

(U.S. Forest Service, 2016). However, in the northern and central

Sierra, the increase in the cumulative deficit was not translated

into vegetation water stress and tree mortality as severely as in the

southern Sierra. This can be explained by the higher subsurface

water available in the northern and central Sierra, as shown in

previous studies (Fellows and Goulden, 2016).

Additionally, water and energy gradients across the elevation

profile play a key role in the spatial distributions of forest water

stress. At mid-elevation, previous studies indicate that ET is about

equal to PET (Fellows and Goulden, 2016). The average yearly

water deficit (pre-drought 2000–2011) in the southern Sierra for

the conifer forests at mid-elevation (1,500–2,000 masl) was 528mm

(q0.25 = 438mm, q0.75 = 607mm). These average conditions (pre-

drought) indicate that theWDwas satisfied by the subsurface water

storage, and it is consistent with the conifers’ water withdrawal

from the belowground estimated by Fellows and Goulden (2016)

(30 years mean soil water drawdown of the conifers at 1,500 masl

of∼400mm±∼100mm). The 2-year cumulative WD (during dry

years) at the mid-elevation region is consistent with the estimated

subsurface water storage of 140 cm at the 1,100 masl Southern

Sierra Critical Zone Observatory (SSCZO) site by Klos et al. (2018)

and with the cumulative P-ET drought equilibrium of ∼1,500mm

at mid-elevation obtained by Goulden and Bales (2019). At mid-

elevation, NDII is higher, which indicates higher moisture content

in leaves. Our study indicates that NDII and basal area are

related through a linear-log function (Supplementary Figure S6).

Furthermore, NDII is positively correlated with both NDVI and

LAI (Goulden and Bales, 2019). Hence, the higher sensitivity

(Figure 8 and Supplementary Figure S8) of the Southern Sierra

NDII to the 2-year cumulative water deficit at mid-elevation

indicates the higher vulnerability of the denser mid-elevation

forests, consistent with Young et al. (2016) and Fettig et al. (2019).

The regional generalized additive models were trained to

capture how forest moisture (NDII) varies in the landscape (using a

combination of latitude, longitude, slope, and northness) based on a

2-year cumulative WD by different ecological systems, which is the

unique independent variable considered that varies through time.

The model results show robustness in simulating forest moisture

(NDII) between regions (northern, central, and southern Sierra)

and between simulated years (2015 and 2016). Our findings suggest

that the difference between evaporative demand and water inputs

(i.e., WD) can be used to estimate forest water stress, as NDII. The

simulated anomalies in forest moisture (NDII) were reflected in

the Forest Service Aerial Detection Survey (ADS) in 2015 and 2016

(Figure 9, Supplementary Figures S11–S15).

Tree species can respond differently to variations in the

water balance (Hinckley et al., 1978). Some species can

tolerate a larger spectrum of water availability (Lutz et al.,

2010) and have different regulation strategies during dry

conditions (McDowell et al., 2008). A previous study showed

that across the elevation gradient, tree mortality was species-

specific (Paz-Kagan et al., 2017). The inclusion of the different

smooth functions in the model training helps to identify

in space how pixels characterized by different vegetation

composition, forest structure, and average water available

respond to different levels of water deficit. Our results suggest

that in the CS and SS, the mesic mixed conifer forest and

the dry-mesic mixed conifer forest are the most vulnerable to

cumulative water deficit variations (Supplementary Figure S10).

The tree species characterizing these ecological systems are

consistent with the trees least tolerant to drought reported

by Kocher and Harris, 2007.

4.1. Limitations and uncertainties

Possible limitations and sources of uncertainties in this study

can be identified in the following. First, the difference in the

original resolution between the spatial datasets (PRISM ∼800m,

MODIS ∼500m, NLCD 2011 30m, GAP/LANDFIRE 30m, DEM

30m, and SWE ∼90m) may lead to inaccuracies in water deficit

calculations. However, PET used in the water deficit calculation

can be useful to overcome the non-availability of independent

ET measurements. Second, there are temporal differences between

the Aerial Detection Surveys and late summer season NDII (ADS

performed during July–August 2015 and May 2016, while the

late summer season NDII was derived as an average of MODIS

scenes from August, September, and October). Third, in this study,

we did not consider non-drought-related tree mortality (i.e., bark

beetle). However, tree defenses weakened by the drought, and the

consequent increase in insects and pathogens, may induce a lag in

tree mortality (Das et al., 2013; Young et al., 2016). Fourth, due to

the typology of the chosen statistical model, we did not account
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for streamflow, lateral water redistribution, and subsurface flow.

This may lead to forest moisture underestimation in valleys and

overestimation in runoff generation areas.

4.2. Future implications

Increases in tree mortality episodes, wildfire extent, and

wildfire severity have been linked to temperature increases and

lower precipitation (Crockett and Westerling, 2017). Future

model projections indicate a decline and even disappearance in

some parts of the snowpack in the Sierra Nevada by the end

of the century (Siirila-Woodburn et al., 2021). Consequently,

an increase in the summer water deficit will likely involve

an increase in forest vulnerability, water stress, tree mortality,

and severe wildfire risks. Higher elevation regions may be

affected as well. Some locations, due to the low water storage,

heavily rely on lateral flows and snowpack accumulation to

support ET. The vegetation response to variations in water

and energy availability will affect streamflow generation as

well (Safeeq and Hunsaker, 2016). Forest management can

contribute to partially mitigating such risks. A reduction in forest

density can enhance forest health, increase streamflow (Tague

et al., 2019), restore forest-fire resilient conditions (McKelvey

and Johnston, 1992), and eventually maximize the trade-off

between snow accumulation and snow ablation (Broxton et al.,

2020).

5. Conclusion

We evaluated and simulated using linear regressions and

regional Generalized Additive Models (GAMs) how temperature

and seasonal snowpack variations can affect NDII as a proxy

of forest water stress. We used water deficit as a seasonality

index to inspect the critical role of mountain snowpack in

reducing the mismatch between the timing of water input

to the root zone and the peak forest water use under the

Mediterranean climate of the Sierra Nevada. Our findings

suggest that a loss of snowpack will increase the water

deficit, which will lead to higher forest water stress. However,

the availability of subsurface storage or lower evaporative

demand can modulate the vegetation response to changes

in snowpack. Consistent with previous studies, the response

of the denser mid-elevation forests in the proximity of the

rain–snow transition zone is more sensitive to water deficit

variations. This suggests a snowpack dependence in satisfying

ET requirements. We simulated forest water stress for 2015

and 2016 for the different regions (i.e., northern, central,

and southern Sierra) with a range of R2 between 0.80 and

0.84. The predicted spatial patterns in forest water stress

were comparable with the tree die-off detected by the USDA

Forest Service Aerial Detection Survey. These results can

provide insight into the importance of the Sierra Nevada

snowpack in a warming climate and make predictions on

vulnerable areas.
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