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Plant invasions affect biodiversity and seriously endanger the stability of

ecosystems. Invasive plants show strong adaptability and growth advantages

but are influenced by various factors. Soil bacteria and fungi are critical to

plant growth and are important factors affecting plant invasions. Plant invasions

also affect soil N2O emissions, but the effects of invasive plants from different

population origins on N2O emissions and their microbial mechanisms are not

clear. In this experiment, we grew Triadica sebifera from native (China) and

invasive (USA) populations with or without bacterial (streptomycin) and/or fungal

(iprodione) inhibitors in a factorial experiment in which we measured plant

growth and soil N2O emissions of T. sebifera. Plants from invasive populations

had higher leaf masses than those from native populations when soil bacteria

were not inhibited (with or without fungal inhibition) which might reflect that

they are more dependent on soil bacteria. Cumulative N2O emissions were

higher for soils with invasive T. sebifera than those with a plant from a native

population. Bacterial inhibitor application reduced cumulative N2O emissions but

reductions were larger with application of the fungal inhibitor either alone or in

combination with the bacterial inhibitor. This suggests that fungi play a strong

role in plant performance and soil N2O emissions. Therefore, it is important to

further understand the effects of soil microorganisms on the growth of T. sebifera

and soil N2O emissions to provide a more comprehensive scientific basis for

understanding the causes and consequences of plant invasions.

KEYWORDS

bacterial inhibitor, fungal inhibitor, soil microorganisms, plant growth, soil N2O
emissions, invasive plant

1. Introduction

With rapid industrialization, the concentration of greenhouse gases in the atmosphere
has increased significantly, and global climate change is becoming increasingly problematic.
The Paris Agreement proposed the goal of keeping the global average temperature less than
2◦C above pre-industrial warming by 2,100. However, it is difficult to control warming below
1.5◦C at present (Rogelj et al., 2016), and it is necessary to reduce total GHG emissions.
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Nitrous oxide (N2O) is an important greenhouse gas (Walling
and Vaneeckhaute, 2020) that persists in the atmosphere for
121 years with a warming potential 265 times higher than
that of CO2 on a 100-year scale (IPCC, 2014). N2O is also
extremely damaging to the ozone layer (Ravishankara et al., 2009).
While a variety of CO2 reduction measures are emerging, non-
CO2 greenhouse gas reduction such as N2O should also receive
attention.

Nitrous oxide is produced by complex nitrification and
denitrification processes carried out by various microbial
communities, including bacteria, fungi and archaea (Zhong
et al., 2022). Soil N2O emissions are largely derived from
these two processes (Hu et al., 2015), accounting for 70% of
total global emissions (Fowler et al., 2013). Bacteria have been
the main contributors to N2O release from soils (Johnson
et al., 1996). However, in desert and semi-arid grassland
soils, fungi are the main contributors (>70%) to N2O release
(Marusenko et al., 2013). In order to reduce N2O emissions
from agroforestry systems, studies have been conducted on the
effects of bacterial and fungal inhibitors on N2O emissions.
Herold et al. (2012) studied the effect of tilled soil on fungal and
bacterial denitrification and biomass by adding cycloheximide
(fungal inhibitor) and streptomycin (bacterial inhibitor). Castaldi
and Smith (1998) found that the addition of peptone to forest
soils significantly stimulated the release of N2O, while low
concentrations of cycloheximide rapidly reduced N2O release,
indicating that fungi are the main contributors to N2O release
in forest soils. Biological inhibitors can be used to inhibit
the activity of bacteria and fungi involved in nitrification
and denitrification processes, and further studies are needed
to investigate the effect of biological inhibitors on soil N2O
emissions.

In the context of global climate change, plant invasion
can affect biodiversity and jeopardize the stability of forest
ecosystems (Bradley et al., 2010; Ehrenfeld, 2010). Soil microbes
are an important component of forest ecosystems (Fritze et al.,
1994), and bacteria and fungi are major components of soil
microbial communities (Rousk et al., 2009). Soil biology is
an important factor affecting plant performance and invasion
potential (Reinhart and Callaway, 2006). Soil microorganisms (e.g.,
mycorrhizal fungi, rhizobia, etc.) can efficiently assist invasive
plants to utilize nutrients such as nitrogen (Huang et al., 2016)
and phosphorus (Zhang et al., 2013) to facilitate plant invasion.
Invasive plants show strong adaptability and growth advantages
but are influenced by various factors (Zou et al., 2006; Ehrenfeld,
2010; De Marco et al., 2022). For example, nitrogen deposition
enhances the biomass and leaf area of invasive Triadica sebifera
(Deng et al., 2019b) and increases the invasive potential of
Mikania micrantha and Chromolaena odorata (Zhang et al., 2016).
Higher temperatures, increased CO2, and nitrogen deposition
can exacerbate plant invasion, and conversely, plant invasion can
affect greenhouse gas emissions (Lei et al., 2010). Although there
have been numerous studies on the impact of invasive exotic
plants on ecosystem carbon and nitrogen cycles (Liao et al.,
2007, 2008) knowledge of the mechanisms of N2O emissions is
limited.

The growth and activity of soil microorganisms can
be stimulated due to greater root biomass of invasive
plants, production of more secretions, easier access to soil

microorganisms, and increased rate of N uptake (Zou et al.,
2006). Nijjer et al. (2008) found that exotic tree species benefited
more from soil arbuscular mycorrhizal compared to native
species in a pot experiment. This suggests that soil organisms
play an important role in the invasion of alien species. There
is also variation among populations of exotic plants in their
interactions with soil organisms (Yang et al., 2015). For instance,
T. sebifera plants from invasive populations have stronger soil
microbial utilization capacity compared to those from native
populations, confirming the role of soil microbes in promoting
the growth of invasive T. sebifera (Zhang et al., 2012). However,
the effects of invasive plants with different populations origins
on N2O emissions and their microbial mechanisms are not
clear.

Triadica sebifera (Euphorbiaceae; synonym Sapium sebiferum)
is an economic tree endemic to China with a long history of
cultivation and is an important industrial oilseed tree in China,
combining economic and ornamental values. It was introduced to
the United States as an oil species and ornamental tree in the late
18th century and has become invasive and impacted ecosystems
in the southeastern United States in part because of increased
competitive ability of invasive populations (Huang et al., 2012;
Zhang et al., 2012, 2013, 2020). The effects of biotic and abiotic
factors on plants of different species origins are complex (Reinhart
and Callaway, 2006; Bradley et al., 2010). Invasive T. sebifera
has higher plant height, stem and total biomass, higher nitrogen
uptake rate and relative growth rate than native T. sebifera (Zou
et al., 2007; Zhang et al., 2013; Deng et al., 2017), and lower
root to shoot ratio (Zhang et al., 2017). Zou et al. (2006) found
soil CO2 and N2O emissions were higher for soils associated
with T. sebifera from invasive vs. native populations. But, the
contributions of soil fungi and bacteria to growth of T. sebifera
plants from different population origins and associated soil N2O
emissions are unclear.

In this experiment, we grew T. sebifera from native (China)
and invasive (USA) populations with or without bacterial
(streptomycin) and/or fungal (iprodione) inhibitors in a factorial
experiment in which we measured plant growth and soil N2O
emissions of T. sebifera. We hypothesized that: (1) T. sebifera plants
from invasive populations will be impacted more negatively by
suppression of soil microbes than ones from native populations. (2)
Suppression of soil microbes will have a larger impact on soil N2O
emissions with T. sebifera plants from invasive populations.

2. Materials and methods

2.1. Seed and soil collection

In November 2018, we collected seeds from three populations
of T. sebifera in both China (where it is native) and the United States
(where it is introduced and now invasive) (Table 1). In April 2019,
we collected T. sebifera non-rhizosphere soil (depth 0–20 cm after
removing surface litter) from under three trees (>300 m apart) in
Nanchang Jiangxi, China. We removed visible stones, plant root
fragments and other intrusive materials from the soil, sieved the
soil with a 2 cm sieve and mixed it thoroughly (Yang et al., 2013;
Deng et al., 2019b).
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TABLE 1 Locations of native and invasive Triadica sebifera populations
used in the study.

Source population Longitude Latitude

China

Jiangxi 117.12◦E 28.45◦N

Jiangsu 118.37◦E 31.23◦N

Zhejiang 118.20◦E 27.12◦N

USA

Georgia 81.01◦W 32.01◦N

Texas 95.03◦W 29.78◦N

Louisiana 93.15◦W 30.23◦N

2.2. Experimental design

This study site is located at Jiangxi Agricultural University,
Nanchang, China (115◦50′10′′ E, 28◦45′53′′ N). It has a subtropical
humid monsoon climate. The average annual temperature is 18◦C,
the maximum temperature in midsummer can reach above 40◦C,
and the minimum temperature in winter can reach below −10◦C;
the average annual rainfall is 1,600–1,700 mm, the rainfall is uneven
in the year, the rainfall is concentrated in April-June, the soil type
is typical red soil.

We conducted a factorial experiment in pots in a greenhouse.
The experimental factors were bacterial inhibitor (control vs.
streptomycin), fungal inhibitor (control vs. iprodione) and plant
population origin (native vs. invasive). We applied 5ml of
streptomycin solution (3 g kg−1) to bacterial inhibitor pots and
5ml of iprodione solution (1 g kg−1) to fungal inhibitor pots (Nijjer
et al., 2008; Fang et al., 2021). We applied 5 ml of deionized water
to control soils. We included three T. sebifera populations for each
range. In total, there were 72 pots (two bacterial inhibitor × two
fungal inhibitor × two origins × three populations × three
replications).

Soil characteristics were: organic carbon 14.41 ± 2.19 g
kg−1, total N 1.33 g kg−1, NH4

+-N 1.12 mg kg−1, NO3
−-N

1.24 ± 0.42 mg kg−1, total phosphorus 0.32 ± 0.03 g kg−1 and
soil pH 5.26 ± 0.01 (Fang et al., 2021). In April 2019, we planted
seeds into trays filled with potting soil. After seed germination, we
selected similar-sized seedlings and individually transplanted them
into 1.5 L plastic pots, which were filled with 1.5 kg of the treated
T. sebifera non-rhizosphere soil. Each pot had a ring for mounting
a gas collection chamber.

We measured N2O fluxes by gas chromatography of air
samples collected in static opaque chambers. We placed the
plexiglass, foil-wrapped chamber (60 cm tall, 18 cm diameter)
into the water filled ring (between 2:30 and 5:30 p.m.). We
collected 40 ml of gas with a plastic 60 ml syringe 0, 10, 20,
and 30 min after chamber installation which we brought back
to the laboratory for analysis. We took gas samples from July to
October in 2019, at days 1, 6, 9, 12, 18, 28, 35, 38, 41, 48, 56,
65, and 80, starting 1 week after transplantation. Soil temperature
(Supplementary Figures 1A, B), and moisture (5 cm depth)
(Supplementary Figures 2A, B) were monitored simultaneously
when N2O emission rates (Supplementary Figures 3A, B)
were measured.

We measured plant height and leaf number then harvested
leaves, stems, and roots separately. We dried them at 60◦C
for 72 h then weighed them and calculated root to shoot
ratio and total mass.

2.3. Soil N2O emission determination

We estimated soil N2O emission rates as:

F = P × V ×
4c
4t
×

1
RT
× M ×

1
S

where F indicates soil N2O emission rate (µg m−2h−1),P stands
for standard atmospheric pressure (Pa) (which should be adjusted
if partial pressure of water vapor of chamber air taken into
consideration) (Carter and Gregorich, 2007; Deng et al., 2019a), V
refers to the volume of chamber headspace (m3), Mc/Mt means the
rate of N2O (ppb) concentration change with time based on linear
regressions (Domeignoz-Horta et al., 2018; Pärn et al., 2018), R
stands for universal gas constant (m3 mol−1 k−1), T is the absolute
air temperature (k), M means the molecular mass N2O (g mol−1),
and S indicates the collar area (m2).

We estimated cumulative soil N2O emissions as:

E =
n∑

i = 1

(Fi + Fi+1)

2
× (ti+1 − ti) × 24

where E indicates cumulative soil N2O emissions (µg m−2) (Deng
et al., 2019a; He et al., 2019), F indicates soil N2O emission rate
(µg m−2 h−1), i means the ith measurement, (ti+1-ti) refers to the
time span (days) between two measurements, and n means the total
number of the measurements.

2.4. Date analyses

We used ANOVAs to test the fixed effects of bacterial
inhibitor, fungal inhibitor, T. sebifera origin and the their
interactions on plant height, root mass, stem mass, leaf mass,
total mass, root to shoot ratio, soil N2O emission rate and
cumulative N2O emissions. We included population nested
within origin as a random effect. We used least significant
difference (LSD) tests to distinguish among means for significant
factors with more than two levels (α = 0.05). We performed
all statistical analyses using JMP 9.0 Software (Gary, NC,
USA).

3. Results

3.1. Soil temperature and soil moisture

Soil temperatures and moisture were similar among
treatments for both invasive and native T. sebifera population
pots (Supplementary Figures 1, 2). Soil temperature and moisture
reached their minimum and maximums, respectively, in October
at the end of the experiment (Supplementary Figures 1, 2).
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FIGURE 1

Effect of origin, bacterial and fungal inhibitor on height (A), leaf mass (B), height (C), leaf mass (D), stem mass (E), root mass (F) of Triadica sebifera
(mean ± se). Con, control; B, bacteria inhibitor; F, fungal inhibitor; BF, bacteria inhibitor and fungal inhibitor. Means with the same letters did not
differ in post-hoc tests (p < 0.05).

3.2. Plant growth

Plant height depended on the interaction of bacterial inhibitor
with fungal inhibitor and with population origin (Figure 1 and

Table 2). Plants from invasive populations in control soils were
taller than those from native populations with bacterial inhibitor
(Figure 1A). Plants were shorter with bacterial inhibitor than in
control soils but plants were even shorter with fungal inhibitor
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TABLE 2 The dependence of growth on Triadica sebifera with different populations, origin (O), bacteria inhibitor (B), fungal inhibitor (F), and their
interaction in ANOVAs.

Height Root mass Stem mass Leaf mass Total mass R:S

Fixed effects df F P F P F P F P F P F P

O 1.4 1.24 0.3278 1.20 0.3350 1.30 0.3183 0.77 0.4306 1.40 0.3028 <0.01 0.9501

B 1.60 14.07 0.0004 1.13 0.2930 4.55 0.0370 0.59 0.4441 4.71 0.0339 0.06 0.8075

F 1.60 48.94 <0.0001 10.32 0.0021 12.56 0.0008 5.41 0.0235 13.21 0.0006 0.73 0.3975

B× F 1.60 12.63 0.0007 11.90 0.0010 8.03 0.0062 0.72 0.3993 13.00 0.0006 8.58 0.0048

O× B 1.60 5.68 0.0203 2.50 0.1194 1.31 0.2576 5.16 0.0266 1.64 0.2050 0.01 0.9364

O× F 1.60 2.01 0.1618 0.89 0.3499 0.35 0.5574 1.38 0.2447 0.13 0.7168 1.37 0.2457

O× B× F 1.60 0.05 0.8301 1.25 0.2671 0.18 0.6724 0.24 0.6256 0.07 0.7863 1.56 0.2172

Random effect z P z P z P z P z P z P

Populations 1.33 0.0917 0.83 0.2027 1.21 0.1135 0.62 0.2675 1.06 0.1436 0.98 0.1636

Significant results are shown in bold.

FIGURE 2

Cumulative N2O emissions (mean ± se) (A) population origin treatments, and (B) under control (Con), bacterial inhibitor (B), fungal inhibitor (F) and
combination (BF) treatments. Different capital letters indicate significant differences (p < 0.05).

applied alone or with both the fungal and bacterial inhibitor
(Figure 1C). A similar pattern was found for root, stem and total
mass (Figures 1E, F and Table 2).

Leaf mass was lower with fungal inhibitor (Figure 1D and
Table 2). The interaction between the bacterial inhibitor and
T. sebifera population origin had a significant effect on the leaf
mass of T. sebifera (Table 2). Under the control, the leaf mass of
T. sebifera was significantly higher than that of the native T. sebifera,
while the leaf mass of T. sebifera of the invasive population origin
was significantly lower after the application of bacterial inhibitors
(Figure 1B). Root:shoot depended on the interaction of bacterial
and fungal inhibitors with lower root:shoot with either inhibitor

applied alone (B = 0.60, F = 0.52) than when neither (0.66) or both
(0.69) were applied (Table 2). Population did not significantly affect
any variable (Table 2).

3.3. Soil N2O emission rate and
cumulative N2O emission

Both N2O emission rate (+13.73%) and cumulative N2O
emissions were higher with soils associated with plants from
invasive vs. native populations (Figure 2A, Table 3, and
Supplementary Figure 3A). The strength of this effect on soil
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TABLE 3 The dependence of N2O emission on Triadica sebifera with different populations, origin (O), bacteria inhibitor (B), fungal inhibitor (F), and
their inhibitor as a fixed factor and measurement time (day) as a random factor in ANOVAs.

N2O emission rate Cumulative N2O emissions

Fixed effects df F P df F P

O 1.64 44.46 <0.0001 1,4 79.46 0.0009

B 1.64 283.07 <0.0001 1,60 16.75 0.0001

F 1.64 2163.59 <0.0001 1,60 121.61 <0.0001

B× F 1.64 189.35 <0.0001 1,60 21.57 <0.0001

O× B 1.64 1.09 0.3004 1,60 0.34 0.5620

O× F 1.64 0.04 0.8508 1,60 0.46 0.5024

O× B× F 1.64 0.03 0.8679 1,60 0.28 0.5974

Days 12.768 194.73 <0.0001

× O 12.768 10.71 <0.0001

× B 12.768 6.02 <0.0001

× F 12.768 38.62 <0.0001

× B× F 12.768 3.45 <0.0001

× O× B 12.768 0.80 0.6550

× O× F 12.768 0.72 0.7374

× O× B× F 12.768 0.52 0.9051

Random effect z P z p

Populations 1.29 0.3050 2.32 0.0204

Significant results are shown in bold.

N2O emissions was stronger later in the experiment (Figure 3A
and Table 3). Application of bacterial inhibitors, fungal inhibitors
and both had significant negative effects on N2O emission
rates compared to untreated control soils (decreased by −22.23,
−43.81, and −46.04%, respectively) (Supplementary Figure 3B
and Table 3). These effects were stronger at times of higher
N2O emissions (Figure 3B). Cumulative N2O emissions showed
a similar dependence on inhibitors with smaller reductions with
bacterial inhibitor alone than with the application of fungal
inhibitor alone or with the bacterial inhibitor (Figure 2B and
Table 3).

4. Discussion

4.1. Effect of population origin and
inhibitors on growth of T. sebifera

The bacterial inhibitor had a larger negative impact on
the height and leaf mass of T. sebifera plants from invasive
populations more than ones from native populations (Figures 1A,
B). Other studies have found that the interactions of T. sebifera
from invasive populations with soil microbes differ from those
of plants from native populations (e.g., Zou et al., 2007;
Yang et al., 2015; Shad et al., 2022). For instance, soil
microorganisms can promote the rapid mineralization and
uptake of soil organic N by T. sebifera, and it has been
found that invasive T. sebifera promotes soil N mineralization
more than native T. sebifera (Zhang et al., 2012, 2017).
Increased rates of N uptake by invasive T. sebifera will likely

also stimulate the growth and activity of soil microorganisms
(Zou et al., 2006, 2007; Zhang et al., 2013). Soil microbial
communities play a critical role in the successful invasion of
plants (Reinhart and Callaway, 2006; Callaway et al., 2011;
Zhang et al., 2012) so this finding that invasive and native
populations differ in their responses to inhibition of soil
bacteria suggests that there may be important differences in the
interactions of T. sebifera with soil bacteria in the invasive vs.
native ranges.

The bacterial and fungal inhibitors had widespread effects
on T. sebifera performance that did not depend on plant
population origin. Across a number of response variables, the
bacterial inhibitor decreased T. sebifera performance but these
decreases were generally much smaller than the negative impacts
of application of the fungal inhibitor alone or in combination
with the bacterial inhibitor. Soil beneficial microorganisms (e.g.,
mycorrhizal fungi, rhizobia, etc.) can promote plant invasions by
increasing uptake of nitrogen, water and phosphorus from the
soil (Reinhart and Callaway, 2006; Callaway et al., 2011; Huang
et al., 2016). Because T. sebifera receives significant benefits from
mycorrhizal associations, it is likely suppression of mycorrhizae
contributed to the large negative effect of the fungal inhibitor on
plant performance (Nijjer et al., 2007, 2008; Yang et al., 2015;
Deng et al., 2017). The relatively lower impact of suppression
of soil bacteria on T. sebifera performance may reflect the
fact that it does not have a close symbiotic relationship with
bacteria such as hosting nitrogen fixing bacteria (Pile et al.,
2017). However, a larger impact of bacterial inhibition vs. fungal
inhibition might occur for a plant that hosts rhizobia but is
not mycorrhizal.
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FIGURE 3

Dynamics of soil N2O emission of different origins in the (A) native (China) and (B) invasive sites (USA) with bacterial and fungal inhibitor (mean ± se).

4.2. Effect of population origin and
inhibitors on soil N2O emissions of
T. sebifera

Soil N2O emissions are mainly produced by microbially
mediated nitrification and denitrification (Hu et al., 2015), and
microbial community structure and abundance affect soil N2O
emissions (Banerjee et al., 2016). Zhang et al. (2018) found that
perennial invasive plants affect soil GHG emissions, and invasive
sites increased soil N2O emissions compared to the native sites.
Triadica sebifera plants from invasive populations had a higher
N2O emission rate (Supplementary Figure 3A) and cumulative
N2O emission (Figure 2A) than those from native populations,
which is consistent with the findings of Zou et al. (2006) and Zhang
et al. (2018). One likely explanation for this stimulation of N2O

emissions is the higher root activity found for T. sebifera from
invasive populations reviewed by Pile et al. (2017).

Fang et al. (2022) found that nitrification and denitrification
rates and subsequent soil N2O emissions were inhibited when
bacterial and fungal inhibitors were applied, and that streptomycin
and iprodione applied alone or simultaneously had an inhibitory
effect on N2O emission rates. This is consistent with our
experimental results, where both bacterial and fungal inhibitors and
their interactions had a significant inhibitory effect on cumulative
N2O emission compared to the control (Figure 2B). Not only
are bacteria the main contributors to N2O release from soil
(Johnson et al., 1996), but fungi also play an important role.
Fungal nitrification occurs mainly in acidic forest soils, and
denitrification occurs mainly in forest soils, grassland soils, and
semi-arid areas, where it plays a major role in N2O release
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(Huang and Long, 2014). Cumulative N2O emissions with fungal
inhibitors were significantly lower than those from bacterial
inhibitors (Figure 2B). It showed that both fungi and bacteria
played an important role in soil N2O emissions, but fungi
contributed more to promote T. sebifera soil N2O emissions. It is
important to note, however, that there could be non-target effects
of the bacterial and/or fungal inhibitors that we did not explicitly
test in this experiment.

Climate change can lead to changes in soil temperature and
humidity, which can affect the rate of nitrogen mineralization
(Guntiñas et al., 2012), and it is important to include soil
temperature and humidity when studying soil greenhouse
gas emissions. It has been shown that CO2 emissions
from different land uses are significantly and positively
correlated with soil temperature, and that N2O emission
fluxes from different land use types increase and then
decrease with increasing soil moisture, reaching a maximum
at 25% gravity water content (Sang et al., 2021). Although
soil temperature and moisture were not confounded with
our treatments here, the insights from this research area
would be strengthened by having a variety of environmental
treatments.

Exotic plant invasion and global climate change interact to
shape greenhouse gas emissions with climate change promoting
plant invasion and plant invasion affecting greenhouse gas
emissions such as N2O by influencing ecosystem carbon and
nitrogen cycles (Yuan et al., 2015). Plant invasion can have
an impact on GHG emissions, such as increasing soil N2O
emissions (Zou et al., 2006; Zhang et al., 2018). Increased
nitrogen deposition, increased greenhouse gas emissions, and
higher temperatures affect ecosystem stability and lead to increased
plant invasiveness (Lei et al., 2010; Bradley et al., 2012; Deng
et al., 2019b). Studies have been conducted to combine global
climate change and plant invasion (Fennell et al., 2013; Huang
et al., 2013; Sorte et al., 2013), but scientific studies on how
non-CO2 greenhouse gases such as N2O interact with plant
invasion are still lacking, and research in this area should continue
to be strengthened to understand the causes and consequences
of plant invasions, especially in the context of greenhouse gas
emissions.

5. Conclusion

We found that soil microorganisms play an important
role in the performance of T. sebifera with fungal inhibition
causing large decreases in plant performance and bacterial
inhibition causing smaller decreases in plant performance,
especially for plants from native populations that were
less sensitive to bacterial suppression. The application of
bacterial and fungal inhibitors was effective in mitigating soil
N2O emissions, with fungal inhibitors being more effective.
Application of fungal inhibitors alone had lower cumulative
N2O emission than bacterial inhibitors alone, indicating
that fungi played an important role in contributing to soil
N2O emissions. More long-term, comprehensive studies are
needed to more fully understand the effects of this potential
microbial mechanism on invasive plant growth and soil
N2O emissions.
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