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Introduction: We developed a new approach for site index curve models that

combines longitudinal height development patterns derived from state-space data

with the broad environmental conditions covered by space-for-time data.

Methods: For this, we gathered dendrometry from both inventories and research

plots. Concerning environmental variables, we included soil mapping data as well

as atmospheric data, i.e., precipitation, temperature, and nitrogen deposition. The

atmospheric data was included as a weightedmean over the stand life of the sums

for the dynamically determined vegetation period or as yearly sums in the case of

nitrogen deposition, respectively. As a weight, the values of a height increment

function were used. Then, we derived the basic shape of a height development

curve from research plot data and transferred said shape to a site index curve

model.

Results: The model represents a substantial advancement of a previous version

and was fitted as a generalized additive model (GAM). All e�ects were of relevant

size and showed biologically feasible patterns.

Discussion: Though the model is biased for young ages, we could predict site

index curves that, under constant environmental conditions, closely follow yield

table curves and thus accurately depict stand height development. Moreover, the

model does not require initial dendrometry, which broadens its applicability. Thus,

the model represents a useful tool for forest management and planning under

climate change.
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1. Introduction

Nowadays, forest ecosystems and forest enterprises are substantially affected by rapidly
changing environmental conditions (Lindner et al., 2014). In many parts of the world
and especially in large areas in Central Europe, gradual processes have transformed site
quality negatively through exploitation, or positively through, for example, site-enhancing
species by reforestation in the last centuries (Koch and Skovsgaard, 1999). However, massive
nitrogen and sulfur depositions beginning in the 1950s (Schöpp et al., 2003) and the rapidly
changing climate affect the primary growing conditions of forests well below a classical
rotation period (Boisvenue and Running, 2006; Aertsen et al., 2014; Kohnle et al., 2014;
Pretzsch et al., 2014). Concerning the prediction of prospective forest growth and yield, the
long-time assumed paradigm in forest management to assume constant site conditions has to
be revised at least for a stand’s lifespan (Pretzsch, 1992; Skovsgaard and Vanclay, 2008; Smith
et al., 2015). Consequently, the previously applied static biological laws of growth and yield
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need to be adapted to account for aggravating transitions in
site conditions. This calls for new forest management tools to
brace for the challenges of climate change. The development
of site-productivity models sensitive to changing environmental
conditions is a prerequisite for such new forest management tools.

In the recent past, new approaches in statistical forest growth
modeling account for dynamic site conditions either as space-
for-time substitutions (SFTS, see Pickett, 1989) or applying the
state-space approach (SSA, see García, 1994; Auger-Méthé et al.,
2021). Typically, growth models based on SFTS principle use
spatially wide spread data from National Forest Inventories or
other inventory sources in order to acquire a broad range of
environmental conditions along gradients (e.g., Monserud et al.,
2006; Albert and Schmidt, 2010; Nothdurft et al., 2012; Antón-
Fernández et al., 2016). Thus, inventory data shows a large between-
plot variance, which allows to cover the amplitude of the relevant
environmental factors to model forest growth (Álvarez González
et al., 2014). However, ecological data collected at one point in time
or repeatedly over a short period of time is not suited to reveal
the effects of changing environmental conditions on forest growth.
SSA, on the other hand, relies on longitudinal growth data, i.e.,
long-term time series, to capture the growth response to changing
conditions over time (e.g., Zhang and Borders, 2001; Nord-Larsen
and Johannsen, 2007; Yue et al., 2016). Thus, SSA is suited to
account for stand-by-environment interaction (Yue et al., 2023).
However, long time-series are mostly available for experimental
growth and yield trials only, which are limited in number and thus
do not cover all combinations of the relevant environmental factors
(Nagel et al., 2012).

In the context of climate change impact studies, SFTS
is currently under debate. Damgaard (2019) argues that as
ecosystems are influenced by a multitude of different processes
simultaneously which operate on different time-scales a simple
substitution of growth processes observed over an environmental
gradient for growth predictions in time could be erroneous.
Klesse et al. (2020) also refute SFTS as they observe radial
growth response to temperature variation of Douglas-fir being
opposite in sign regarding spatial and temporal variation.
Thus, spatial variation in productivity cannot unrestrictedly
be used to project changes in productivity caused by temporal
factors as, for example, climate change. Yue et al. (2023)
advocate SSA over SFTS as their study on Norway spruce
stands shows significant effects of stand-by-environment
interaction on site index response. Also, the concern about
potential confounding in the SFTS should be considered, since
gradient studies often lack a randomization and interspersion of
treatments in the meaning of manipulated experiments (Hurlbert,
1984).

On the other hand, in the context of area-wide applicability
of a growth model, SSA often lacks data for generalization (Adler
et al., 2012; Nagel et al., 2012; Damgaard, 2019; Pretzsch et al.,
2019). While long-term forest experiment sites provide an ideal
database for causal analysis, for example the effect of species
mixture on growth, tools for practical forest management need to
be applicable at any site, i.e., over a wide area. Thus, unambiguous
recommendations to unrestrictedly replace SFTS approaches with
SSA based on long-term longitudinal data cannot be given yet (e.g.,
Albrecht et al., 2017; Waldy et al., 2021).

In our analysis, we therefore followed the advice by Damgaard
(2019) and combined SFTS with SSA data, i.e., long time-series data
from a relatively small number of research plots and inventory data
with only a few repeated measurements but covering a wide spatial
gradient. The importance of the scale level concerning the validity
of empirical site index models was already emphasized by Aertsen
et al. (2012).Moreover, the long time-series of the research plots not
only contain longitudinal characteristics, but also measurements
under past environmental conditions, most importantly with
lower nitrogen deposition, such that the corresponding causal
relationships can be identified more clearly. Hence, we could derive
longitudinal patterns of stand height development as well as causal
relationships of environmental influences in hierarchical, statistical
models, whose results are applicable to a broad range of site
conditions (cp. Nagel et al., 2012; Damgaard, 2019).

It is our goal in the presented research to introduce a practical
model to project stand height development under a changing
climate for forest management and planning. We derived a new
modeling approach for predicting the development of stand height
over age, i.e., a site index curve model (SICM), taking European
beech (Fagus sylvatica L.) as an example. As central features for
such a useful tool we determine (1) sensitivity regarding essential
environmental influences, with relevant and plausible effects, such
that (2) estimations with spatially and longitudinally sound patterns
can be achieved and differences between sites are correctly depicted.
This generalization of the results implies, that we require (3) data,
which is available on a broad environmental scale as well as long
time series data to derive the longitudinal characterstics.

2. Materials and methods

As a starting point in model development, we refer to the
previous climate and site sensitive site index curve model by
Schmidt (2020) (SICMprev), which used SFTS data to predict stand
height development under varying environmental conditions. In
the following, we focus on European beech as an example. The
original data is described in Section 2.1, Section 2.2 deals with
further processing of said data.

2.1. Material

The data used for model development can be separated
into dendrometric data (height, diameter, age and species)
and environmental data (temperature, precipitation, nitrogen
deposition, soil categories and, as a proxy, coordinates).

2.1.1. Dendrometry
The majority of the data was obtained from forest inventories.

Firstly, the national forest inventories of Germany (NFI) from
1987, 2002, and 2012, respectively (Federal Ministry of Food and
Agriculture, 2016). Here, data was gathered from a systematic
cluster sample for all of Germany. A systematic grid was placed
over Germany, with grid length being either 4 km × 4 km, 2.83
km × 2.83 km, or 2 km × 2 km, depending on the federal state.
At each knot of the grid, four plots were placed at the corners of a
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150 m × 150 m square. Plots outside of the forest were excluded.
At each plot, angle-count sampling was performed, only including
trees with a diameter at breast height (DBH), i.e., the diameter at 1.3
m,>7 cm (10 cm for the first NFI). All DBHs of the respective trees
were measured. During the first NFI, all corresponding heights
were measured as well. Note, that due to the separation of Germany
until 1990, the “first” NFI was either 1987 or 2002, depending on the
federal state. The following NFIs only took height measurements
representative for species and layer (Federal Ministry of Food and
Agriculture, 2016).

Furthermore, we included data from an inventory in 2017,
which was used to assess carbon storage in German forests (CFI).
The design is equal to the NFI, except that the base grid was
expanded to 8 km × 8 km. All measurements were performed on
NFI plots. We used the CFI data of the states Hessia, Lower Saxony,
Schleswig-Holstein and Saxony-Anhalt.

We also included enterprise inventories (EFI) of the
state owned forests of the four aforementioned states. Here,
measurements were taken on fixed concentric sample plots with
two radii, 6 m for trees with 7 cm ≤ DBH < 30 cm and 13 m
for trees with DBH ≥ 30 cm. All DBHs were recorded as well as
heights representative for species and layer. The plots are placed on
fixed grids, whose width varies between states and forest districts.

Apart from the inventory data, we included data from long
term research plots from the Northwest German Forest Research
Institute (NW-FVA). The plots are located mainly in the northwest
of Germany, i.e., the jurisdiction of theNW-FVA, and are of varying
size and research aim. Measurements were available from the year
1890 to 2021, depending on the plot, and were taken on average
every five years. For each measurement occasion, all DBHs were
measured as well as a high number of representative heights.

Lastly, we conduct a special measurement campaign within
the jurisdiction of the NW-FVA, to acquire data on forests, whose
soil and climatic properties were underrepresented in our dataset.
At each location, a sample was selected via angle-count and the
corresponding DBHs and heights have been measured. As of now,
measurements have been taken in the inner German dry zone in
Saxony-Anhalt.

Generally speaking, the inventory data is characterized by
great spatial variation combined with few repeated measurements.
That is, we have 58,022 individual plots with an average of 1.5
measurement occasions taken, on average, every 6.0 years per plot.
The inverse holds true for the research plots, where the average
number of measurement occasions per plot is 6.8, taken on 258
individual plots every 4.7 years. For a distribution of the data across
Germany (see Figure 1).

For the final dataset, a number of filtering criteria were
applied. We only considered plots with beech as leading species
in the upper story. The trees measured in the inventories already
had been classified into upper and lower story based on expert
assessment in the field. However, for the research plot data no
consistent classification was available. Hence, we used an algorithm
to separate the stratums. The methodology can be found in ch.
2.2.1. Furthermore, the age span of the plots was not allowed to be
>10% of the mean age. As we model a height-age relationship on
the stand level, a wide range of ages within a stand would distort the
results. Trees with an age larger than 250 years were also excluded to
avoid an unbalanced design at the extremes of the age distribution,

since stands usually only get to such a high age on poor sites. Outlier
selection was performed both considering the height-age as well
as the height-diameter relationships within the plots. For this, we
used quantiles and visual checks to determine and exclude values
deemed to be unrealistic.

After applying all filtering criteria, the number of plot
measurement occasions was 30,198 for the NFIs, 1,090 for the CFI,
57,914 for the EFIs, 1,763 for the research plots and, as of now, 26
for the measurement campaign. Hence, the final dataset contains
90,991 plot measurement occasions.

2.1.2. Atmospheric data
Climatic conditions for tree growth were depicted by annual

temperature and precipitation sums for the respective vegetation
period. For this, raw climate data were retrieved as daily mean
temperature and daily precipitation sums for the years 1900 to 2019
from the official weather stations of the German Meteorological
Service (DWD). These values were then summed for the vegetation
period, which was determined dynamically, with start and end
date calculated according to Menzel (1997) and Nuske (2017).
This dynamic approach allowed, that annual differences in the
vegetation period could be accounted for. The point data, i.e., the
sums, for the locations of the respecitve weather stations were then
regionalized to a 50 m × 50 m grid covering Germany. For this,
we utilized a generalized additive model (GAM) with two effects: A
spatial smoother to interpolate between the weather stations, and
another spline to account for the effect of elevation.

The deposition fluxes of nitrogen were modeled from the
mapped atmospheric deposition data for Germany that were
provided by the Federal Environment Agency (UBA) (Schaap
et al., 2018). For each grid cell (1 km × 1 km), land cover type
specific deposition rates are available, including coniferous forest,
deciduous forest, and mixed forest. Thus, deposition rates at the
forest growth monitoring sites were extracted from the modeled
results based on site coordinates and tree species. These data
only cover the period from 2000 to 2015. To obtain the nitrogen
deposition time series from 1800 to 2022 for each forest growth
monitoring site, temporal reconstruction methods were adapted.
Following the approach described by Ahrends et al. (2022) for
sulfur, a standard scaling function was created. This function was
based on the trend of nitrogen deposition for Europe described
by Engardt et al. (2017) (from 1900 to 2050) and by Alveteg et al.
(1998) (from 1800 to 1900). Due to the high uncertainties in the
quantification of nitrogen inputs (Ahrends et al., 2020), the trends
from two different chemical transport models (MATCH and the
EMEP MSC-Wmodel, cp. Engardt et al., 2017) were averaged.

2.1.3. Soil data
We also used data from forest soil mapping to include

categories characterizing capacity of available water as well as
possible influences of groundwater and waterlogging (water budget
category, WBC) as well as nutrient availibility of the soil (nutrient
budget category, NBC). WBC and NBC are coded in three different
schemes: Lower Saxony (NFP, 2007, 2009), Hessia (HessenForst,
2017) and a synopsis developed during a project assessing forest
growth and carbon storage under climate change (WP-KS-KW,
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FIGURE 1

Locations of measurement plots in Germany, separated by source. Inventory data is shown on the left (blue), research plot data is on the right (red

circles), as are the specially selected forests with rare site conditions from the inner German dry zone in Saxony-Anhalt (orange triangles).

see Benning et al., 2020). The latter being intended as a unifying
synopsis for Germany. However, using only said synopsis would
lead to information loss (see ch. 4.1). Each scheme contains
NBC ranging from poor to rich soils and WBC for different
water conditions, with special categories for hydromorphic and
groundwater influenced soils. The scheme of Lower Saxony also
differentiates between uplands and lowlands. We also categorized
data from the unifying synopsis into uplands and lowlands,
according to the large scale forestry landscapes (Thünen-Institut,
2011). Based on the same reference, Hessia only consists of uplands.
In total, a complete set of WBC and NBC was available for 89% of
the measurements. The remaining measurements have been set to
an unknown category, separated into uplands and lowlands. This
was done to still include the remaining covariates, e.g., temperature
and precipitation, into the model. Otherwise said information
could not have been accounted for in the model effects.

2.2. Methods

Before building the model, the data had to be processed
further, i.e., computing the mean quadratic diameter tree (Dq) and
the corresponding height (Hq) for the upper story of each plot.
Moreover, the atmospheric data is further modified, i.e., a height
increment function is used to compute a weighted mean and the
temperature is corrected for aspect and slope.

All modeling was done with R version 4.1.1 (R Core Team,
2021). We used the packages gamm4 version 0.2-6 (Wood and
Scheipl, 2020) for generalized mixed model approaches (see ch.
2.2.2), andmgcv version 1.8-41 (Wood, 2017) for fitting GAMs (see
ch. 2.2.1, 2.2.3, 2.2.4).

2.2.1. Stratum separator
Since we model the height development of the main stand,

we only considered trees of the upper story. In the inventory
data, the trees of the upper story were already labeled. For the
research plots, the stratums of the canopy layer were not fully
classified. Staupendahl (2022) developed an automated stratum
separator, which classifies a stand into upper story and, if feasible,
lower story. This is done by examining height and diameter of
each measurement occasion. If groups of trees with different
height-diameter characteristics, i.e., upper and lower story, can
be identified, a bimodal and bivariate Gaussian distribution is
fitted. Depending on the densitiy of the distribution, each tree is
classified as upper or lower story. If no groups can be identified,
the whole stand is classified as upper story (Staupendahl, 2022).
We then applied further adaptions to the stratum separator,
to ensure, that the classification is consistent over time. This
was done by modeling the mean value of the DBH, at which
the stratums were separated, over stand age, and using the
resulting value to classify the trees into upper and lower story
based on their DBH. However, this was only used after the first
occurence of a lower story within a stand, according to the
aforementioned algorithm. Further rule-based corrections were
applied to ensure plausibility of the results. That is, tree height
measurements, where present, were used, such that the tallest trees
were always classified as upper story and the smallest ones as lower
story.

2.2.2. Computing Dq and Hq
As a measure of stand growth and site index, we chose the Hq.

It is defined as the height corresponding Dq, which, for stand k at
time t, is calculated as
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Dqkt =

√√√√ 1

n

n∑

i=1

(
dbh2kti

)
(1)

with n being the number of trees measured on this measurement
occasion and dbhkti being the dbh of the ith tree of stand k at
time t. To obtain a height, we then fitted a modified Korf function,
originally developed by Lappi (1997) and based on Korf (1939),
to each plot. Said function will be described in more detail in ch.
2.2.4. We used a generalized linear mixed model (GLMM) with
a Gamma distribution and log-link, as well as random intercept
on the level of the measurement occasion as in Equation 2a
for the inventories. For the research plots, a higher number of
measurement occasions with a higher number of individual tree
measurements, respectively, were available. Thus, we could nest the
random effect for measurement occasion within the plot effect and,
moreover, include a random slope (Equation 2b).

ln
(
E[hkti]

)
= α0 + α1xkti + τ0kt (2a)

or:

ln
(
E[hkti]

)
= ρ0 + ρ1xkti + ψ0k + ψ1kxkti + ν0kt + ν1ktxkti (2b)

with:

xkti = −

(
dbhkti + λdbh

)−cdbh − (30+ λdbh)
−cdbh

(10+ λdbh)
−cdbh − (30+ λdbh)

−cdbh
(2c)

and:

τ0kt ∼ N (0, ω2)

(
ψ0k

ψ1k

)
∼ N

((
0
0

)
,

(
ϕ20 0
0 ϕ21

))

(
ν0kt

ν1kt

)
∼ N

((
0
0

)
,

(
π2
0 0
0 π2

1

))

with α0 and α1 being the fixed effects, τ0kt being the random
intercept for each measurement occasion used for the inventory
data. For the research plot data, ρ0 and ρ1 are the fixed effects, ψ0k

and ψ1k the random effects on the plot level, and ν0kt and ν1kt the
random effects for measurement occasions. dbhkti represents the
dbh of tree i in stand k at time t. The parameters ω, ϕ0, ϕ1, π0, and
π1 are the standard deviations of the corresponding random effects.
λdbh and cdbh are parameters and were set to the values determined
by Schmidt (2010), i.e., 20 and to 2.2, respectively.

The measurement-occasion-specific height-diameter curves
generated by said model were then used, to predict the height
corresponding to the Dq of each measurement occasion, i.e., the
Hq.

2.2.3. Processing of atmospheric data
To include the atmospheric variables (temperature,

precipitation, nitrogen deposition) into the model, they first
had to be aggregated to a single value for each Hq.

In the SICMprev, Schmidt (2020) calculated an unweighted
mean over stand life for all atmospheric variables. We replaced
this by a mean weighted with a species specific height increment
function to better account for stand growth dynamics. For this,
the function developed by Sloboda (1971) was parameterized
with the data from the NW-FVA research sites, depending on
the age and the site index of a stand. For the final function, a
Hq of 30.8 m at age 100 was chosen as site index, representing
the mean site index of the research plots. The respective
function can be seen in Figure 2. Finally, the weighted mean is
given as

φ̄kt =

agekt∑

i=1

(
φk(i) w(i)

)
(agekt∑

i=1

w(i)

)−1

(3)

with agekt being the age of stand k at time t, φk(i) being the
value of the respective atmospheric variable for stand k at age i

and w(i) being the value of the growth function (see Figure 2) at
age i.

To further account for the influences of topography, we
additionally corrected the temperature for aspect and slope
according to the water balance simulation model WaSiM (Schulla,
2021). The latter is originally used to correct daily temperatures
based on physical laws. To apply the correction to our data, we
acquired corrected, daily temperatures for the respective vegetation
period. We then used a GAM as specified in Equation 4 to
extract the correctionmechanism. The final temperature correction
induced by the model, depending on aspect and slope, can be seen
in Figure 3.

tsum_corrkt = tsumkt + fslope(slopek)

+ faspect(aspectk, slopek)+ ǫ (4)

with:

tsum_corrkt Corrected temperature sum during the
vegetation period for stand k at time t

tsumkt Temperature sum during the vegetation
period for stand k at time t

slopek Slope of stand k

aspectk Aspect of stand k

fslope Thin plate regression spline for the slope

faspect Cyclic p-spline for the effect of aspectk
multiplied with slopek

ǫ Normally distributed error term.

Hereafter, the fully processed temperature, precipitation and
nitrogen deposition will be called tempsum_veg, precsum_veg
and Ndep, respectively. That is, a weighted mean over stand
life of the corresponding covariate sum, i.e., the sum over
the vegetation period for tempsum_veg and precsum_veg, and
the yearly sum for Ndep. Moreover, tempsum_veg has been
corrected for aspect and slope. Finally, we computed an
aridity index by dividing precsum_veg by tempsum_veg, denoted
aridity_veg.
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FIGURE 2

Height increment curves based on the formula of Sloboda (1971) for European beech with a Hq of 30.8 m at age 100 as a site index.

FIGURE 3

Correction for temperature sums during the vegetation period as a function of aspect and slope. Aspect is given in degrees with 0 being North, 180

being South. Slope is given in degrees with 0 being flat ground.

This finalized the dataset, characteristics of which are displayed
in Table 1. The data is shown separated by source to indicate
the comparability of the different data sources. Moreover, the
correlation between the variables within the final data is shown in
Figure 4.

2.2.4. Model development
The goal of the modeling process was to develop a climate- and

site-sensitive SICM, which can predict the Hq of a beech stand
at a given age for all of Germany. This required several steps,
that is, (1) choosing a suitable height development function as a
basis. Here, we chose a modification of the Korf function (Korf,
1939), originally derived by Lappi (1997) and further modified
by Schmidt (2020). (2) Define the basic shape of the modified
Korf function. (3) Model the effects of the chosen site variables
and, if necessary, modify the resulting effects to obtain feasible
patterns.

2.2.4.1. The modified Korf function

The basis of themodeling process is themodified Korf function,
which was already used for calculating the Hq (see Equation
2a). The function was originally developed by Lappi (1997)
for longitudinal height-diameter relationships. However, Schmidt
(2020) adapted it for developing Hq-age models by modifying the
transformation of the dbh, see Equation 2c, to work with age,
see Equations 7 and 7a. The resulting transformation of the age
is denoted xkt (see Equation 7a), with the two parameters λ and
c influencing the underlying shape of the resulting curve. With
this xkt transformation, the remaining parameters, Akt and Bkt ,
have a clear biological interpretation: Akt represents the expected
logarithmic Hq of a 100 year old stand, whereas Bkt expresses the
expected logarithmic difference in Hq between the ages 50 and 100
(cp. Equations 7, 7a and Schmidt, 2020).

2.2.4.2. The basic shape: optimizing λ and c

When fitting the model it became clear, that estimating the
parameters of the curve on the whole dataset would lead to
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TABLE 1 Quantiles of covariates on plot measurement scale used for the development of site sensitive site index curves for beech.

Quantile Hq [m] Age [a] Elevation [m] Temperature sum
during the

vegetation period
[◦C]

Precipitation sum
during the

vegetation period
[mm]

Nitrogen deposition
[eq/ha/a]

Inventory data

0.0% 3.6 8 4 1,037 255 243

2.5% 10.5 25 41 1,821 299 467

25.0% 22.7 70 260 2,074 351 736

50.0% 27.4 103 348 2,174 375 1,021

75.0% 31.3 138 446 2,271 404 1,330

97.5% 37.3 183 777 2,501 560 2,027

100.0% 46.5 250 1,505 2,897 1,030 3,308

Number of observations = 89,228

Research plot data

0.0% 9.5 22 33 1,770 282 292

2.5% 13.1 35 45 1,842 317 378

25.0% 21.4 63 271 1,981 356 722

50.0% 28.3 102 372 2,122 386 903

75.0% 32.8 123 451 2,216 414 1,506

97.5% 39.0 164 677 2,465 444 2,533

100.0% 44.6 203 683 2,525 474 3,366

Number of observations = 1,763

FIGURE 4

Upper triangle of the correlation matrix of the site data used for fitting the model.
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implausible longitudinal properties (see ch. 4.2). We therefore
derived a method to combine the longitudinal characteristics of the
research plots with the greater spatial and environmental scale of
the inventory data. Thus combining SSA and SFTS approaches. The
general idea was, to let the research plots define the basic shape of
the curve, i.e., c, λ and Bkt . The inventory data was then used, to
estimate effects acting upon the intercept, Akt .

Optimizing λ and c had to be done iteratively, as the modified
Korf function only becomes linear after λ and c have been
determined. Thus, a grid of possible λ and c combinations was
generated, centered around the original values of Schmidt (2020)
(λ = 59 and c = 2.7). For a first estimate, λ was increased by 3
and c by 0.3. The individual values will be denoted λl and cm. Then,
for each combination, we used the respective λl and cm for the xkt
transformation (Equation 7a). Those xkt values were then used in a
GLMM, with a random intercept on the plot-level, to fit a modified
Korf function, non-sensitive with respect to climate and soil (see
Equation 5). Here, we only used the long term research plots as a
database, whose longitudinal characteristics were accounted for by
using a mixed model.

ln
(
E[Hqkt]

)
= β0 + β1xλlcmkt + γ0k (5)

with:

xλlcmkt = −

(
agekt + λl

)−cm
− (100+ λl)

−cm

(50+ λl)
−cm − (100+ λl)

−cm
(5a)

and:

γ0k
i.i.d.
∼ N

(
0, τ 20

)
(5b)

Then, for each mixed model, a GAM as in Equation 7b, i.e., a
SICM, was fitted to the full dataset, i.e., research plots and inventory
data. Here, the same λl and cm as in the GLMM were used for
the xkt transformation. Moreover, the estimated fixed effect of the
GLMM, β1 (Equation 5), was used for Bkt in the SICM (Equation
7b). Thus transferring the basic shape estimated by the GLMM,
i.e., the longitudinal properties of the research plots, to the SICM.
Hence, we estimated one GLMM, based on research plot data, and
one SICM, based on the full dataset, for each combination of λ and
c. For a schematic chart of the process (see Figure 5).

We used the root mean squared error (RMSE, Equation 6) as a
selection criterion, thus the RMSE was calculated for each GLMM
in the grid.

RMSE =

√√√√ 1

n

n∑

k=1

(
nk∑

t=1

(
Hqkt − Ĥqkt

)2
)

(6)

with k and t being indexes for plot and measurement occasion,
respectively. n being the number of plots and nk being the number
of measurement occasions within plot k. We also considered using
the combination leading to the lowest BIC (Schwarz, 1978) as a
model selection criterion in the SICM, yet this lead to implausible
results concerning the shape of the resulting curve (see ch. 3). Thus
this option was discarded and λ and c selection was based solely
on the RMSE, albeit advantages of the BIC approach. This will be
discussed later on (see ch. 3 and 4).

Once the combination of λ and c, which lead to the minimum
RMSE, was found, the step width was decreased to integers for
λ and first digit for c, to obtain a more accurate estimate of the
ideal parameter combination. The combination of λ and c, which
finally resulted in the GLMMwith the lowest RMSE, was chosen for
further modeling.We also used the corresponding β1 (see Equation
5), which was estimated by the GLMM. From now on, λ and c will
refer to said optimal combination.

2.2.4.3. Model fit

We then used λ, c and the corresponding β1 to fit a SICM,
which estimated the effects acting upon Akt . Once λ and c have
been determined, the modified Korf function becomes linear (cp.
Equation 7). Thus allowing the use of linear frameworks, such as a
GAM. The GAM in turn utilizes regression splines, which enable
the flexible modeling of unknown, possibly non-linear effects of the
variables on the linear predictor, e.g., optimum curves.

In our case, we used a GAM with a Gaussian family, which
further allows for a simultaneous estimation of the mean and the
variance of a normal distribution (GAULSS, Wood et al., 2016).
Concerning the effects, we used a combination of p-splines for the
univariate effects of continous site parameters (Eilers and Marx,
1996), a two dimensional thin plate regression spline (Wood, 2003)
as well as effects for categorical site parameters.

ln
(
E[Hqkt]

)
= Akt + Bktxkt (7)

with:

xkt = −

(
agekt + λ

)−c
− (100+ λ)−c

(50+ λ)−c − (100+ λ)−c (7a)

ln
(
E[Hqkt]

)
= βA+

ftemp
(
tempsum_vegkt

)
+

farid
(
aridity_vegkt

)
+ fNdep

(
Ndepkt

)
+

wbc
⊤
k βwbc + nbc

⊤
k βnbc+

fspatial
(
eastk, northk

)
+

β1xkt

(7b)

such that:

Akt = βA+

ftemp
(
tempsum_vegkt

)
+

farid
(
aridity_vegkt

)
+ fNdep

(
Ndepkt

)
+

wbc
⊤
k βwbc + nbc

⊤
k βnbc+

fspatial
(
eastk, northk

)

Bkt = β1

(7c)

with distribution:

Hqkt ∼ N
(
µkt , σ

2
kt

)

where:

µkt = eAkt+Bktxkt

σkt = 0.01+ eβσ0+fσ (agekt)
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FIGURE 5

The process of selecting c and λ. First, a range of possible c and λ values was selected. Then, for each combination, a generalized linear mixed model

(GLMM) as in Equation 5 was used to fit a mean population, non-sensitive modified Korf curve (cp. Equation 7) to the research plot data to obtain the

longitudinal charactersitics of the Hq-age development. Then, the slope Bkt (cp. Equation 7) of each GLMM was set as a fixed coe�cient in a

generalized additive model (GAM), where the remaining e�ects, acting upon the intercept Akt, were estimated (see Equation 7b). For each GLMM, the

root mean squared error (RMSE) was calculated, for each GAM, the Bayesian Information Criterion (BIC).

with:

Hqkt Height of the mean quadratic diameter tree
[m] for stand k at time point t.

Akt , Bkt Parameters of the modified Korf curve,
representing level and slope of the curve,
respectively, for stand k at time point t.

xkt Transformed stand age [a] for stand k at time
point t.

λ, c Coefficients for the xkt transformation.

tempsum_vegkt Temperature sum [◦C] for the vegetation
period, weighted with a species specific height
increment function (Figure 2) and corrected
for aspect and slope, for stand k at time point
t.

aridity_vegkt Aridity index [mm/◦C]. For this, we calculated
the precipitation sum [mm] for the vegetation
period, weighted with a species specific growth
increment function, for stand k at time point
t. Said precipitation sum was divided by
tempsum_vegkt .

Ndepkt Nitrogen deposition sum [eq/ha/a] for the
whole year, weighted with a species specific
growth function, for stand k at time point t.

wbck, nbck Dummy vectors for the water budget
category (WBC) and nutrient category
(NBC), respectively, for stand k.

eastk, northk UTM coordinates (EPSG: 25832) of stand k.

βA Intercept acting upon Akt .

ftemp(.), farid(.),
fNdep(.)

Penalized, one dimensional p-spline functions
describing the effects of tempsum_vegkt ,
aridity_vegkt and Ndepkt on Akt .

βwbc, βnbc Coefficient vectors for the effects of WBC and
NBC, respectively, on Akt .

fspatial(.) Two dimensional, penalized thin plate
regression spline describing the structured
spatial effect of the location of each plot on
Akt .

β1 Coefficient used for Bkt , determined earlier in
ch. 2.2.4.

σkt Standard deviation of the Hq of stand k at time
point t.

βσ0 Intercept acting upon σkt .

fσ (.) Penalized, one dimensional p-spline
describing the effect of agekt on σkt .

To assess model quality, we calculated the bias:

Bias =
1

n

n∑

k=1

(
nk∑

t=1

(
Hqkt − Ĥqkt

)
)

(8)

The SICM was then subject to further adaptions. The spline
effects were checked for plausible behavior. If necessary, the
corresponding basis dimension was reduced. If the behavior of a
spline toward the ends of the data range was influenced by outliers
and was not deemed to be biologically sound, the respective outliers
were trimmed, such that reasonable effect patterns were achieved.
The soil categories, WBC and NBC, also required modifications.
Firstly, categories from the Lower Saxony/Schleswig-Holstein
scheme are on a rather fine scale, which, in some cases, lead to only
few observations per category. Thus they were grouped a priori, by
similaritiy regarding the described soil properties, to increase the
number of samples per category. For the other mapping schemes,
this was not deemed necessary a priori. During the model fit, the
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effects of WBC and NBC were checked for plausibility and, if
necessary, grouped until biologically sound patterns were achieved.
However, categories were only grouped if they originated from the
same scheme and topology (uplands, lowlands). Moreover, they
had to represent comparable soil properties, e.g., waterlogged soils
were not mixed with terrestrial ones. This was done to ensure
interpretability of the effects as well as differentiated results between
the different schemes, topologies and soil properties.

2.2.5. Model validation
To ensure the stability of the effects, we randomly selected 80%

of our data as training data and the remaining 20% as test data.
Then, a SICM as in Equation 7b was fitted using the training data
and predictions were obtained for the test data. For the latter, we
then calculated the RMSE (Equation 6) and the bias (Equation 8)
over age. This procedure was repeated 100 times.

3. Results

3.1. Determining the basic shape of the
curve

First of all, the optimal combination of λ and c was determined
by an extensive grid search (cp. 2.2.4), where a GLMM was used
to fit a modified Korf curve (see Equation 5) to the research plot
data. The aim of the grid search was to minimize the RMSE of said
GLMM (see ch. 2.2.4). The optimum values for λ and c, including
the corresponding β1, were as follows:

λ = 115

c = 3.0

β1 = 0.573

A site index curve using the fixed effects of the corresponding
GLMM for β0 and β1 is shown in Figure 6. Since β0, the intercept,
is fixed, the resulting shape implicitly resembles a curve under
constant environmental conditions, as in our framework the
environmental covariates only act upon the intercept (see Equation
7c). Said curve is also compared to yield table curves of Hq over
age (Albert et al., 2021), which are seen as a baseline for growth
under constant conditions. It is further compared to a site index
curve, generated with the combination of λ and c, which lead to a
minimal BIC of the corresponding GAM (cp. Figure 5). The latter
curve corresponds to constant conditions, as well.

It can be seen in Figure 6, that the curve leading to the smallest
RMSE, which was finally selected, does not start with a height of
zero. The modified Korf function is not fixed in the origin, the
actual value depends on β0, here it was 3.4, resulting in a Hq of 2.3
m at age zero. While being above the yield table values for younger
ages, the curve approaches the pathway of the yield table curves
with increasing age. After age 50, the shapes of the curve and the
yield table curves show obvious similarity. In contrast, the curve
corresponding to the minimum BIC did not follow the pattern of
the yield table curves.

3.2. Model fit and e�ects

Using the aforementioned values of c, λ and β1, i.e., the ones
leading to the smallest RMSE, we fitted a SICM as described in
2.2.4. The model itself had a root mean squared error of 3.7
m and an overall bias of 0.10 m. The mean relative deviation
of the fitted values from the measured ones was 11.92%. A
shortened summary containing the R call can be found in the
Supplementary material.

The residuals of the model are shown in Figure 7, plotted
over fitted values as well as over age. Note, that fitted values
and age are correlated, thus both graphs convey a similar
message. Concerning the fitted values (Figure 7A), we found a
systematic underestimation for the smallest fitted Hq values of
slightly over 2 m. The underestimation decreases continuously
until it drops below 1 m at fitted values of 19 m, such that
13% of the fitted values show a bias larger than 1 m. The bias
approaches zero at 25 m. For Hq estimates between 25 m and
33 m, i.e., 63% of the fitted values, the bias is negligible. In
Figure 7B, it can be clearly seen, that the height development
of younger stands is underestimated by the SICM, with a bias
of up to 2 m, as well. With increasing age, the bias decreases
until it becomes zero at age 70, followed by an overestimation,
smaller than 1 m. After age 130, the estimation can be seen as
unbiased.

The estimated effects for the atmospheric variables with
the default spline basis dimension showed generally plausible
patterns over large data ranges (cp. Figure 8). However, the basis
dimension had to be decreased to reduce the wiggliness and
to avoid implausible behavior toward the extremes of the data,
which is assumed to be caused by confounding effects. This did
not change the general patterns of the effects. As can be seen
for the effect for temperature, which initially increased rapidly
toward the maximum temperature (Figure 8A). After decreasing
the basis dimension, it finally showed an optimum at 2,600◦C
with moderate decreases to both sides. Below 1,700◦C, the
decrease got steeper. The pattern of the effect for aridity_veg
was generally plausible for most of the data range (Figure 8B).
However, due to some extreme outliers >0.35 mm/◦C (high
precipitation and low temperature, i.e., measurement occasions
in the alps), the respective data had to be trimmed to 0.35
mm/◦C to avoid unstable behavior of the spline. The final effect
size was not as pronounced as the one for tempsum_veg, which
is in accordance with the findings of Schmidt (2020) for the
effect of precipitation. Moreover, there was no clear optimum,
but a plateau between 0.15 and 0.25 mm/◦C, with a comparably
strong drop toward the left, i.e., drier climates, and a moderate
decrease toward the right, i.e., more humid climates. The basis
dimension of the spline for Ndep had to be decreased as well
to reduce wiggliness, especially toward higher values (Figure 8C).
The final effect size was strong compared to the other effects and
showed the greatest difference between minimum and maximum
effect.

The behavior of the effect for age, for modeling the standard
deviation, originally showed considerable wiggliness (Figure 8D),
thus a dimension reduction was applied, as well. Finally, the effect
increased in a linear manner from age 0 to age 100, and then
approached a steady value. The spatial effect is displayed in the
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FIGURE 6

Site index curves for beech under constant conditions. That is, with the fixed e�ects of the finally selected GLMMs described in 2.2.4 in relation to site

index curves (Albert et al., 2021). The red curve corresponds to the GLMM with the lowest RMSE, the blue curve to the GLMM, whose parameters lead

to the GAM with the lowest BIC. The numbers on the right indicate the Hq at age 100, 30.8 m has been drawn as a solid line as a reference point.

Supplementary material. The two dimensional spline used here
is, generally speaking, intended to be rather coarse, as it should
only explain large scale spatial influences, e.g., wind pruning (cp.
Skovsgaard and Vanclay, 2013). The effect size was only marginal
for most of Germany, but became increasingly negative toward the
northwest, near the coast of the North Sea.

The effects for the grouped soil categories (cp. ch. 2.2.4) are
shown in the Supplementary material. Due to the large variety
of possible values for WBC and NBC used within the different
states of Germany, it was not possible to unify them across the
mapping schemes without distinct loss of sensitivity. Within the
mapping schemes, the effects were grouped as described in ch.
2.2.4. If this was not possible, only one effect was estimated
for the whole soil type, such as for soils with waterlogging
mapped according to the unifying synopsis in the lowlands.
Compared to NBC, WBC was more differentiated regarding the
soil conditions. It accounts e.g., for groundwater influence or
topology, depending on the mapping scheme. Thus the final
grouping, across all mapping schemes, consisted of 46 WBC
groups, whereas the less complex NBC was grouped into 15
groups.

Generally speaking, the availability of soil water had a positive
influence on the site index curve, with stronger effects in the
uplands than in the lowlands, where applicable. However, a high
level of groundwater or a strong influence of waterlogging showed
a negative effect. Effect sizes ranged from 0.07 for terrestric
soils with high water capacity in the lowlands, mapped after
the unifying synopsis, to −0.26 for dry soils mapped after the
scheme of Hessia. The amount of availible nutrients also had
a positive effect, with effect sizes ranging from 0.11 for very
rich soils, mapped after the Lower-Saxony/Schleswig-Holstein
scheme, to −0.04 for very poor soils, mapped after the scheme of
Hessia.

3.3. Model validation

We performed model validation as described in ch. 2.2.5,
visualized results are shown in the Supplementary material.
The model effects estimated on the training data closely
resembled the ones from the final SICM, larger deviations
were only detected toward the ends of the effects, where
less data is available. For all estimated effects, the median
of the deviation from the original effect was at most
0.001.

The prediction RMSE ranged from 3.67 to 3.77 m
with a median of 3.72 m, whereas the RMSE of the
SICM was 3.71 m. When looking at the bias over age,
the basic shape of the bias of the SICM is also closely
resembled.

3.4. Sensitivity analysis and model
comparison

To assess the sensitivity of the model, it is necessary to look
not only at the effect sizes (see Figure 8), but also at predicted Hq-
age-curves. Due to the multiplicative nature of the effects induced
by the log-link, the interpretation of the effects is relative and
not absolute (Fahrmeir et al., 2013). Thus, sensitivity analysis is
performed for the newly developed SICM. Moreover, we compare
the results to site index curves predicted with SICMprev, which
used a similar model formulation. However, it was solely based
on SFTS data, whereas our approach combines SFTS and SSA
data.

To compare the resulting curves, we set all numerical variables
to their median. The soil categories were set to resemble the mean
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FIGURE 7

Residuals of the final SICM over fitted values (A) and age (B). The orange line represents a spline to highlight over-/underestimation, the blue area

corresponds to the data distribution over the x-axis. The vertical, black lines represent quantiles, i.e., 0.5 and 99.5% (dotted), 2.5 and 97.5% (dashed) as

well as the median (solid). Horizontal white lines are placed at each meter. The y-axis ranges from the 0.5% quantile of the residuals to the 99.5%

quantile.

conditions, i.e., mesotrophic with good water availability. Then,
we separately increased tempsum_veg, aridity_veg as well as the
nitrogen deposition, respectively, while all other variables were kept
constant. Since aridity_veg was not used in SICMprev, we had to
use precsum_veg here instead. For each covariate, we generated
an equidistant sequence of eight values from the respective 0.5%
quantile to the 99.5% quantile. That is, 1,676◦C–2,648◦C with a
median of 2,177◦C for tempsum_veg, 0.12 mm/◦C–0.4 mm/◦C
with a median of 0.17 mm/◦C for aridity_veg and 282 mm–
765 mm with a median of 374 mm for the precipitation sum
during the vegetation period. Finally, 379 Equation/ha/a to 2,476
Equation/ha/a with a median of 1,039 Equation/ha/a for Ndep.
Coordinates were set to the forest of Göttingen in the center of
Germany, where the spatial effect is close to zero. We then used
the data to predict Hq development from age 25 to age 200, both
with the SICMprev and our newly developed SICM. The predictions
of both model versions are then compared, with the yield table
curves as a reference (Albert et al., 2021). The results are shown
in Figure 9.

Concerning tempsum_veg, we found a difference of 5.5 m
at age 100 between the lowest and optimal temperature, for the
SICMprev it was 6.6 m. For the SICM we found a difference of
2.7 m for aridity_veg, whereas the SICMprev showed 1.7 m for
the precipitation sum during the vegetation period. Note, that
the results cannot be compared directly due to the differences in
the used variables. Ndep showed the largest effect, as expected,
with 20.2 m difference at age 100 in the SICM and 7.1 m in the
SICMprev.

Apart from the model comparison, Figure 9 also shows the Hq
development over age from the yield tables as a comparison. It
should be stressed, that the sensitivity analysis did not calculate the
atmospheric variables dynamically, but used one constant value for
each Hq-age-curve. Thus assuming site consistency for each curve.
It is clearly visible, that the SICM followed the pattern of the yield
tables more closely than the SICMprev, especially after age 50. For
older stands, the Hq-age pattern predicted by the SICMprev was too
flat. The curves estimated by the SICM were steeper, with lower
starting values and higher values at age 200.
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FIGURE 8

E�ects for tempsum_veg (A), aridity_veg (B) and Ndep (C). The last plot (D) shows the e�ect of age on the standard deviation. All splines are shown

with gray confidence bands, the blue area corresponds to the data distribution. Vertical, solid black lines show the 0.5 and 99.5% quantiles of the

data. The red, dashed line shows the original spline with default basis dimension.

4. Discussion

In this research, we applied substantial advancements
to SICMprev (Schmidt, 2020) and the data used for its
parameterization. Our goal was to develop a model which
can accurately depict forest height development under changing
site conditions. The intended use of the model is less as an
analytical instrument but mostly as a practical tool for predictions
of stand growth under climate change, which is a crucial factor in
management (Yue et al., 2016, see also Antón-Fernández et al.,
2016; Brandl et al., 2018).

4.1. Data

To accurately depict height development under changing site
conditions, a number of environmental factors has to be accounted
for in the analysis, e.g., atmospheric and geographic variables as
well as soil parameters (cp. Seynave et al., 2005; Bontemps and
Bouriaud, 2014; Yue et al., 2016; Antón-Fernández et al., 2023).

Concerning the atmospheric data, we deemed air temperature,
precipitation and nitrogen deposition as themost influential factors
(cp. Yue et al., 2016). Moreover, the direct use of atmospheric data,
instead of topographical indicators, such as elevation, enables the

use of the model for predictions (cp. Bontemps and Bouriaud,
2014). Compared to other studies, our data has a finer spatial and
temporal scale. Concerning the spatial scale, the fine resolution
of the used 50 m × 50 m grid allows for nuanced values in
changing terrain, e.g., in uplands. This would not be possible
with the coarse resolution of the raw data (cp. Skovsgaard and
Vanclay, 2013; Bontemps and Bouriaud, 2014), e.g., the data
of WorldClim with a resolution of 1 km (Brandl et al., 2018).
Moreover, the fine spatial resolution of our data allowed us, to
correct the temperature for aspect and slope, i.e., decreasing the
temperature on northern slopes and increasing it on a southern
one. Thus accounting for the topology induced differences in
radiation influencing air temperature. Other studies used a similar
temperature correction, e.g., Sterba et al. (1995) used aspect and
slope as coefficients in a forest productivity model, and Running
et al. (1987) corrected temperature for aspect and slope when
simulating forest evapotranspiration and photosynthesis. However,
to our knowledge, said correction was not implemented in the
context of modeling stand height development. The fine temporal
resolution of the atmospheric data enabled further advancements.
First of all, the annually determined vegetation period, used for
temperature and precipitation, allows for distinct values for each
year, depending on the conditions. Nitrogen was summed up
annually. We then calculated a weighted mean of those sums
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FIGURE 9

Sensitivity analysis comparing SICM (left, red) with SICMprev (blue, right) by changing temperature sum (A), precipitation sum (B) and nitrogen

deposition (C). For each graph, a sequence of eight equidistant values was created for the respective variable, from its 5% quantile (darkest line) to its

95% quantile (brightest line). All other variables were set to the median or modus, for categorical variables. The gray solid and dashed curves are

taken from yield tables (Nuske et al., 2022).

over stand life, utilizing growth increment functions as a weight.
This had two advantages: First, this dynamic approach is more
realistic than a rather static approach used in other studies, where

a fixed vegetation period (cp. Yue et al., 2016) or seasonal values
(cp. Dănescu et al., 2017; Brandl et al., 2018; Antón-Fernández
et al., 2023) have been used. Second, the weights allow the same
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environmental conditions to exert different influences on stand
height, depending on the age and the corresponding growing phase
they occurred in. Both the weighted mean and the temperature
correction were not implemented in SICMprev. Moreover, the
weighted mean has not been utilized in other previous approaches
for modeling site index. Those novelties will lead to more detailed
and feasible predictions, better representation of the physical and
biological processes influencing stand growth and lastly increase
prediction precision.

After applying the transformations to the variables, the
correlation between the covariates was weak (see Figure 4), with
the exception of Ndep and stand age as well as, to a lower
extent, tempsum_veg and aridity_veg. However, we found, that
the correlation of Ndep is rather with the germination year. The
causality of this correlation is the short time span during which the
inventories, which make up the largest part of the data, were taken.
They were only conducted between 1987 and 2021, i.e., a period
of 34 years, whereas stand age ranged up to 250 years in our data.
This lead to a high correlation of age and germination year (−0.98).
The correlation between the latter and Ndep is, in turn, a logical
consequence of rising nitrogen depositions over the last century
(Schöpp et al., 2003). Apart from Ndep and stand age, the only
relevant correlation was between tempsum_veg and aridity_veg,
which is a logical consequence of the former being used to calculate
the latter. Yet we argue, that aridity_veg is a useful addition to the
model, since it better accounts for arid climates than precipitation
alone.

We also extended our data concerning the soil categories,
WBC and NBC, such that both variables are now present for
89% of the measurement occasions. Thus contrasting used datasets
of other studies, where soil variables were not available and
could not be included (cp. e.g., Brandl et al., 2018; González-
Rodríguez and Di’eguez-Aranda, 2021b). Soil properties are
characterized by a high spatial variability (Skovsgaard and Vanclay,
2013) and showed a comparably large influence on stand height
growth development in our analysis, thus highlighting their
importance for both prediction accuracy and sensitivity, and
avoiding confouding effects on time-varying climate and deposition
parameters. We used three different soil mapping schemes,
i.e., Lower Saxony/Schleswig-Holstein, Hessia and the unifying
synopsis for Germany. The latter was only used, when no other data
were present. The use of the state specific schemes, where possible,
avoided the translation of the values into the unifying synopsis.
Such a procedure would be accompanied by a loss of information,
since the categories do not convey the same meanings and cannot
be translated directly. Moreover, the Lower Saxony/Schleswig-
Holstein scheme is substantially more differentiated. Within our
dataset, we recorded 106 different values for WBC and 13 for
NBC for said scheme, whereas the unifying synopsis only offers 19
possible values for WBC and 6 for NBC. By keeping the schemes,
we therefore achieved more distinct estimates for the different soil
types, which will lead tomore precise predictions in the application.
Moreover, it enables the direct interpretation of the results by
the respective state forest enterprises, which are used to their
respective soil mapping schemes. Finally, we used an unknown

category (separated into up- and lowlands) for all plots, where no
soil mapping was present at all. We therefore could still include the
remaining data (tempsum_veg, Ndep, etc.) for the estimation of the

corresponding effects. Furthermore, this enables the application of
the model on stands without soil mapping data.

Concerning dendrometry, we generated a unique dataset
containing measurements from both inventory data, representing
SFTS, and research plot data, representing SSA. To our knowledge,
we are the first to combine these two approaches for site-
index modeling on a large scale. Other research used either
SSA (Yue et al., 2016; Dănescu et al., 2017; González-Rodríguez
and Diéguez-Aranda, 2021a) or SFTS data (Seynave et al., 2005;
Antón-Fernández et al., 2016; Brandl et al., 2018), a substantial
combination of the two has not been realized yet.

The inventory data consists of NFI, EFI, and CI data. Since
these inventories are a representative sample of the respective
area, with the NFI covering all of Germany, this part of the
data represents a broad range of environmental conditions, under
which beech trees grow in Germany (cp. Figure 1), with the
exception of very rare conditions. However, there were on average
only 1.5 measurements occasions per plot, thus the longitudinal
characteristics of stand growth development cannot be assessed
with this data. To obtain a model with a sound longitudinal trend,
it was crucial to include data with a broader temporal scale (cp.
Aertsen et al., 2012; Damgaard, 2019). We used research plot data,
which is characterized by a high number of repeated measurements
on a large number of trees, thus the resulting Hq values accurately
depict stand growth development over time. Hence we argue,
that the research plots closely depict the true growth potential
of the stand over time. This data was not used in SICMprev, its
inclusion presents a substantial improvement which allows for a
realistic estimate of the basic shape of the curve and therefore
estimation of site sensitive Hq curves with a feasible development
over age.

One disadvantage of using the Hq, is its sensitivity to thinning.
Using a top stand height, e.g., the mean height of the 20% strongest
trees, would have circumvented that problem, at least for most
thinning types. However, the top height of a stand does not equal
the one calculated from a sample, since the aforementioned upper
quantile depends on the distribution of the respective data and thus
depends on the variance of the reference unit (stand vs. sample)
(Schmidt, 2020).

4.2. Model formulation

We based our model on a modified version of the Korf curve,
which was originally developed by Lappi (1997) as a longitudinal
height-diameter curve and has been modified to depict Hq-age
relationships. The same basis was also used by SICMprev and
has several advantages: Despite its simplicity, it inhibits a high
flexibility and canmimic the shape of other growth curves. Another
advantage over other growth curves is its partial linearity. After c
and λ have been set, the parameters Akt and Bkt can be estimated
within a linear framework. This ensures, that the solution found
is indeed optimal and avoids computational issues or iterative
solutions (cp. Yue et al., 2016). Moreover, the clear biological
interpretation of Akt and Bkt (cp. Lappi, 1997) allows for a
direct evaluation and comparison of parameter estimates. The only
disadvantages are, that it does not necessarily start in the origin,
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which lead to non-zero heights at age zero. It also does not have
an asymptome, which, however, did not pose a problem in our
research. Actually it is advantageous if an effect of Ndep should be
estimated from data where high Ndep-values occur only in young
stands (as is the case in our data). Tests with different growth
curves, which included an asymptote, resulted in a negative effect of
Ndep on the asymptote, caused by the unbalanced data. Moreover,
the pattern of the yield table curves can be replicated even until
age 250 (see Figure 6), indicating that height growth is indeed not
completed.

The modeling framework we chose for the final model is
a GAM, which utilizes the GAULSS family (Wood et al., 2016;
Wood, 2017). A GAM offers several advantages: Firstly, the use of
splines allows a highly flexible modeling of effect shapes, including
optimum curves, which is essential for the intended use. Moreover,
due to the used modified Korf function, effects can be interpreted
directly. This distinguishes our approach e.g., from machine
learning methods, such as boosted regression trees (González-
Rodríguez and Di’eguez-Aranda, 2021b; Antón-Fernández et al.,
2023), where a direct interpretation of the parameters is not
feasible. The effects can also be estimated directly. This contrasts
e.g., multi-level models (Nothdurft et al., 2012), where separate
estimates from different models are needed. Thus making effect
interpretation possibly non-trivial, as a hierarchy of effects has to
be interpreted simultaneously.

One problem with SICMprev was the longitudinal pattern of its
predicted site index curves. That is, when setting all environmental
conditions constant over stand life, one would assume the model
prediction to correspond to the shape defined by yield tables,
which follow empirical data and are assumed to depict tree growth
under such conditions. However, the resulting curve predicted
by SICMprev was too flat (see Figure 9). Moreover, we observed
the same behavior when comparing SICMprev to the long time
series data of our research plots. We argue, that this is mostly due
to the fact, that the longitudinal charactersitics of the inventory
data were not accounted for in SICMprev. To account for this
longitudinal structure, as well as the environmental influences,
we tried fitting a mixed GAM to our dataset. This approach
was tested in multiple attempts, however, the model did not
converge. Moreover, the number of measurement occasions within
the inventory data is low, with 57% of the plots only having one
measurement. Combined with the comparably short time span, in
which the measurements were taken, it is questionable whether
this approach would lead to a biologically sound curve. Another
issue might be the absence of SSA data, SICMprev only used SFTS
data, i.e., inventories. Using our dataset, we could determine, that
the inventories resulted, on average, indeed in a flatter site index
curve than the research plots (a figure comparing the two can be
found in the Supplementary material). We argue, that this could
be due to the differences in management on inventory plots vs.
research plots. Especially target diameter harvesting, usually being
performed in standard forest management, i.e., inventory plots, will
lead to stagnating Hq values. However, this hypotheses cannot be
tested due to the low number of successive measurement occasions
per plot in the inventories. Another reason for the flatter curve
might be in the selection of sites, since research plots are usually
placed on homogenous terrain and will therefore not be found, e.g.,

on steep hills. We also considered a difference in environmental
conditions between research plots and inventory data as a factor.
However, when looking at Table 1, it is clear, that the data mainly
differs in its extremes. For example, the minimum temperature sum
was 1,037 ◦C for the inventory data and 1,770 ◦C for the research
plots, yet the 2.5% quantiles only differ by 21 ◦C. The remaining
quantiles, except for the maximum, are also reasonably close in
value. Similar patterns can be observed for the precipitation as
well, only nitrogen deposition was noticably higher for the research
plot data. To further investigate, we computed separate modified
Korf curves for inventory plots, which are no more than 25 km
away from the next research plot. The results did not change
substantially. Thus environmental factors could be excluded as an
explanation, as well. Having examined the different possibilities, we
argue, that the driving factor behind the predicted Hq-age patterns
of SICMprev, is most likely the aforementioned problem assessing
the longitudinal properties of the inventories.

As a solution, we derived a hierarchical set of models. We based
the estimation of λ, c and Bkt on the research plots, which we
assume to closely depict the true growth potential and pattern, and
the estimation of Akt on the full dataset. Thus, the research plots
defined the basic shape of the curve while the effects acting upon
the level of the curve, Akt , could still be estimated with the full
dataset. We therefore combined a SSA with a SFTS approach in
a hierarchical model (cp. Damgaard, 2019). That is, we combined
the longitudinal properties of the research plots with the broad
environmental conditions covered by the inventories. To our
knowledge, this approach presents a novelty in site index modeling.

When deciding, which combination of the coefficients λ, c and
Bkt to use for the final model, we investigated two possible criteria:
(1) The RMSE of the GLMM, which estimated the coefficients from
research plot data, or (2) the BIC of the GAM, which used the
coefficients from the GLMM to estimate a SICM for the full dataset
(cp. Figure 5). As it can be seen in Figure 6, there are substantial
differences in the curves, depending on the used criterium. It
should be stressed, that the driving factor behind said differences
is the used combination of λ and c, which defines the underlying
shape of the curve. Both curves were fitted using research plot data
only.

When fitting the SICM with the coefficients λ, c and Bkt ,
which lead to the minimal BIC, an unbiased prediction for the full
dataset was achieved. However, the shape of the resulting curve
(see Figure 6) was deemed too straight and not realistic. Moreover,
when setting the environmental conditions constant, this model
did not follow the pattern of the yield tables, which are assumed
to depict stand growth under such conditions. We therefore chose
the RMSE as a selection criterium, due to the sound pattern of the
corresponding site index curve.

However, the resulting estimations of the SICM were no longer
unbiased. Especially for stands younger than 50 years, or fitted
values below 19 m, respectively, there was a noticable, systematic
underestimation of more than 1 m (cp. Figure 7). However, <13%
of the measurements were taken before age 50, hence 87% of the
data can be estimated with a bias of <1 m. Moreover, there is no
substantial bias for ages >120. Though the bias is not extremely
severe, it should be taken into account during the application,
especially since model validation indicated, that the bias will not
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change substantially for predictions. Further research is needed to
fully grasp the causality behind said bias and thereafter investigate
possible solutions. For example, trying different functions for Hq-
age development, adding covariates or modifying their processing.

The effects estimated by the model also showed plausible
patterns. Their general shape did not change relevantly during
model validation, albeit being fitted on only 80% of the data. Thus
indicating the robustness of the results.

We can see an optimum for tempsum_veg and aridity_veg,
with clear negative tendencies toward the extremes. The effect for
the aridity was comparably weak, however, this is in accordance
with the findings of Schmidt (2020) for precipitation. Brandl
et al. (2018) also found a weaker effect of precipitation compared
to temperature, though generally larger in magnitude. The
aridity index itself, which is also used in different formulations
in other modeling approaches, e.g., by Yue et al. (2016), is
another advancement over SICMprev: Precipitation is summed
over the vegetation period, which will, in turn, extend with rising
temperatures. Thus, a decrease in daily precipitation will not
necessarily lead to a decreasing precipitation sum during the
vegetation period. This has to be considered when predicting
stand growth under climate change. The aridity index tackles
this issue by directly relating precipitation and temperature, and
thus leading to more reliable predictions. Another considerable
difference from SICMprev is the direct modeling of the nitrogen
effect. Schmidt (2020) found considerable correlation between the
nitrogen deposition and the stand age, thus a model was used here
to normalize the nitrogen deposition with the expected value over
age and to reduce correlation. Our data holds the same property
(see Figure 4). However, we found that the correlation is rather with
the germination year than the age, as explained above. Yet including
an effect for the germination year was not feasible. When applying
the model for projections, one would need to extrapolate said effect
without having any logically soundway to asses, or verify, the future
development of an effect for germination year. Thus regularization
approaches, such as boosting (cp. Antón-Fernández et al., 2023),
were also not feasible. It was therefore not possible to separate the
influences of the germination year and/or the age and the nitrogen
deposition. This problem is well known in epidemiology as the age-
period-cohort problem, where setting two of the three defines the
third, such that separating the effects is hardly possible (cp. Keyes
and Li, 2011). However, including nitrogen deposition was still
necessary, as the resulting effect captures one of the main drivers
of change in site quality (cp. Skovsgaard and Vanclay, 2013).

Finally, the GAULSS family used in the GAM allows a
simultaneous estimation of the standard deviation (Wood et al.,
2016), which we modeled as a function of age. The resulting spline
increases until age 100 and flattens out afterwards. This behavior
was expected, since the absolute value of the standard deviation is
correlated with Hq. The estimated standard deviation can be used
in application to calculate confidence intervals alongside the mean,
thus supplying a measure of uncertainty. This is of great value, e.g.,
in economical calculations or management planning. Finally, the
chosen framework allows a direct modeling of stand height at a
given age, instead of modeling the site index at a specific age (cp.
e.g., Antón-Fernández et al., 2016; Yue et al., 2016). Hence, we can
predict Hq development for the whole stand life without additional
methods or functions.

We finally argue, that predicting the correct development of
stand height over age is more valuable than a fully unbiased
prediction. By combining the longitudinal properties of the
research plots with the broad range of environmental conditions
covered by the inventory data, we were able to create a SICM
which estimates height growth curves with realistic longitudinal
properties derived from SSA data, while still incorporating the
information of the broad SFTS data. Moreover, the model does
not require initial dendrometry data. This separates our approach
e.g., from Yue et al. (2016), where an initial site index is needed
for the model. Antón-Fernández et al. (2023) also recommend to
use their model rather for predicting site index changes, which are
added to a recent site indexmeasurement. However, climate change
will also require a change in tree species on several sites (Albert
et al., 2017). Thus predicting height growth development of not yet
established tree species is essential for future forest management
questions (Bontemps and Bouriaud, 2014).

4.3. Outlook

We introduced a site index curve model for beech, which
portrays the prototype for a new generation of models. As of now,
we were able to include several, substantial advancements over
SICMprev which lead to higher differentiated and longitudinally
more sound predictions. However, there are still some issues
which require further research. Considering the weighted mean
of the atmospheric data, we will investigate the effect of
different height increment functions, i.e., different weights, on
prediction quality and bias. Furthermore, we will examine the
influence of sulfur depositions on height development, with sulfur
being a counterweight to increasing nitrogen depositions. Sulfur
depositions in Germany have halved between 2000 and 2015
(Schaap et al., 2018), this decrease might be an important factor,
especially for younger stands. That is, where the bias was most
critical. However, the respective data is not available to us yet. We
will also investigate the possible inclusion of further covariates,
such as topographical or environmental indicators. Moreover, we
consider fitting models for the development of top height over age.
Thus overcoming the stronger influence of forest management on
the Hq.

Finally, we will apply the methodology described here,
with possible further advancements, to also develop models for
additional species. These models will provide climate sensitive
predictions for height development with a feasible pattern over age
for different tree species, which thrive in a variety of environmental
conditions. Moreover, we will fit a mixed model, which can then
be utilized to estimate random effects for the site index curves with
measured stand heights (cp. Mehtätalo, 2004; Schmidt, 2020). In
combination with the SICM, this will enable robust, climate and
site sensitive predictions of stand height development, calibrated
with dendrometry of the respective stand. Thus greatly increasing
prediction accuracy (Schmidt, 2020).

Concerning the application of the SICM, the results can be
used in forest planning to assess wood production, carbon storage
or, as an auxiliary parameter, for predictions of biotic and abiotic
risks, such as windfall. As our approach does not require initial site
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index measurements, simulations can be carried out independently
of structure and species composition of the current stand. This
also enables the use in forest simulators, such that climate sensitive
simulations for potential stands can be achieved. As noted e.g., by
Fuchs et al. (2022), this would overcome the often used assumption
of constant site conditions and allow the simulation of multiple
stands. Moreover, Hq estimations of our model combined with
site parameters will be used in a forest productivity model. As
Bontemps and Bouriaud (2014) pointed out, the link between
stand height development and productivity is doubtful. By using a
separate model, productivity does not have to be infered from yield
tables, which no longer correctly depict the relationship between
height and productivity, e.g., due to increased nitrogen deposition,
but can be estimated directly. Thus overcoming aforementioned
criticism.
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