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A maximum entropy approach to
defining geographic bounds on
growth and yield model usage

W. Spencer Peay*, Bronson P. Bullock and Cristian R. Montes

Plantation Management Research Cooperative, Warnell School of Forestry and Natural Resources,

University of Georgia, Athens, GA, United States

Growth and yield models are essential tools in modern forestry, especially for

intensively managed loblolly pine plantations in the southeastern United States.

While model developers often have a good idea of where these models should

be used with respect to geographic location, determining geographic bounds for

model usage can be daunting. Such bounds provide suitable areas where model

predictions are likely to behave as expected or identify areas where models may

do a poor job of characterizing the growth of a resource. In this research, we

adapted a niche model methodology, commonly used to identify suitable spots

for species occurrence (maximum entropy), to identify areas for using growth

and yield models built from plots established in the Lower Coastal Plain and

Piedmont/Upper Coastal Plain in the southeastern United States. The results from

this analysis identify areas with similar climatic envelopes and soil properties to the

areas where data was collected to fit these growth and yield models. These areas

show notable overlap with the areas prescribed for use by the evaluated growth

and yield models and support practitioners use of these models throughout these

regions. Furthermore, this methodology can be applied to di�erent forest models

built using large regional extents as long as climatic and soil values are available

for each site.
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1. Introduction

Growth and yield models are used as a tool for forest management to estimate future

conditions of a given stand based on current and/or past information. When coupled with

a cost structure, they are an essential tool for forest management in the southeastern United

States (Weiskittel et al., 2011; Burkhart and Tomé, 2012; Burkhart et al., 2019) and elsewhere

around the world. These models are developed for a wide array of end users, and each

model system may have several different applications based on its intended use. Despite

the sometimes vast differences among models, all growth and yield models are similar in

that they contain some level of prediction uncertainty. This uncertainty stems from various

factors, some of which are related to the data used to fit a model and the local climate or

biophysical variables where this data was collected. These factors, sometimes referred to

as physiographic or climatic measures (Weiskittel et al., 2011), include variables such as

temperature, precipitation, vapor pressure deficit, slope, aspect, nutrient availability, and

water availability. Each of thesemeasures, along withmany others, can affect the productivity

of a forested site (Sampson and Allen, 1999; Coble et al., 2001; Jokela et al., 2004; Weiskittel

et al., 2011; Restrepo et al., 2019). However, the mechanisms and the degree to which such

factors affect productivity may differ for various sites, species, and regions.
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Despite the correlation between productivity and some of

the previously listed physiographic, climatic, and edaphic factors,

they can be hard to include in a growth and yield system.

A major difficulty is to collect or estimate such variables for

each plot included in a modeling effort (Weiskittel et al., 2011),

and depending on the scale or resolution of the model, it can

be computationally inefficient to include such information. One

approach model developers can elect to implement is dividing

data into differing physiographic regions where these factors are

similar; they can then fit different parameters or equations to each

region. Examples of this approach are numerous, especially for

loblolly pine plantations in the southeastern United States where

distinctions are often made between the Piedmont and Coastal

Plain physiographic regions (Harrison and Borders, 1996; Borders

et al., 2004, 2014; Burkhart et al., 2008; ForesTech International

LLC, 2009). When this approach is taken, developers often

recommend a model be used in that particular region but make

no statement as to whether a model can be applied throughout the

entire region with similar levels of uncertainty or the uncertainty

associated with using the model outside of a particular region.

Thus, it is desirable to determine geographic bounds on growth and

yieldmodel usage. A similar problem is faced in species distribution

modeling, range mapping, and similar disciplines where presence

only and/or presence/absence data can be used in conjunction

with some of the biophysical factors mentioned above to estimate

the overall range of a species or its probability of occurrence

in a particular area using several different techniques (Elith and

Leathwick, 2009; Evans et al., 2016).

The past 20–30 years have seen dramatic changes in the

modeling of species geographic distributions with the refining of

traditional techniques and the application of newer techniques

applied from a myriad of fields (Elith and Leathwick, 2009; Elith

et al., 2011). One such development has been the use of maximum

entropy modeling, a general-purpose machine learning technique

that can help researchers to generate predictions or draw inferences

from incomplete information such as presence-only data (Phillips

et al., 2006; Elith et al., 2011). This approach works by estimating a

probability distribution with the highest level of uncertainty, or in

essence, estimates the probability distribution that makes the least

amount of assumptions about the data and the probability of an

event occurring while still satisfying a given set of constraints. One

of the most popular tools for maximum entropy modeling is the

MaxEnt framework implemented in Phillips et al. (2018). Over the

past decade, this software has been commonly used in ecological

and wildlife research tomodel geographic distributions and species’

ranges or niche environments (Phillips and Dudík, 2008; Baldwin,

2009; Elith et al., 2011; Merow et al., 2013; Yang et al., 2013). This

software has become popular partly due to its ease of use and

predictive accuracy (Merow et al., 2013). Despite its use in these

similar fields, MaxEnt has seen little use in forestry outside of the

typical use to model the spatial distributions of tree species (Kumar

and Stohlgren, 2009; Weber, 2011; Yang et al., 2013; Pollock, 2015;

Qin et al., 2017).

This research focuses on a novel extension of MaxEnt to

determine the geographic bounds of a growth and yield model.

The model used to illustrate the methodology corresponds to one

developed by the Plantation Management Research Cooperative

(PMRC) at the University of Georgia. Using known geographic plot

locations, biophysical factors such as temperature, precipitation,

and soil properties were used as inputs to describe the niche

that populations were growing into. These points and the

biophysical data become the “species” of interest. The “probability

of occurrence” now offers a pseudo-measure of suitability or

uncertainty associated with using this particular growth and yield

model in any given area within the study range. This measure

of uncertainty is based on the differences in the environmental

envelope between an area in question and the areas where data

was collected to fit the PMRC 2014 growth and yield model

(Borders et al., 2014). Determining suitable areas for model

application is important to both model developers and users. It

can allow parties to tailor model usage to specific geographic

areas where a model may produce the most reliable estimates.

Alternatively, identifying areas where a maximum entropy model

suggests higher uncertainty levels can help inform developers,

users, and forest resource managers where sampling efforts should

be concentrated or increased to reduce this uncertainty in future

model development.

2. Methods

2.1. Background

2.1.1. Maximum entropy principle
As mentioned previously, maximum entropy modeling uses

machine learning algorithms to generate predictions or draw

inferences from incomplete information (Phillips et al., 2006, 2017)

and is based on the Maximum Entropy Principle first proffered

by Jaynes (1957). This principle builds on Laplace’s “Principle of

Insufficient Reason,” an attempt to define the probability of two or

more events based on little to no information. Laplace suggested

that equal probabilities be assigned to two events if there is no

evidence to think otherwise. The Maximum Entropy Principle

builds on the Principle of Insufficient Reason where the probability

distribution is derived as the distribution of maximum entropy

and is thus only constrained by the supplied information; it is

otherwise unaffected by missing information. The full derivation

of the entropy of a probability distribution is presented in Jaynes

(1957).

2.1.2. MaxEnt application to the proposed
problem and associated assumptions

While this proposed use of MaxEnt is seemingly non-

traditional, making several essential assumptions reduces the

growth and yield model application problem to one that is

similar to those currently implementing MaxEnt to model species’

distributions. In our case, we assume the locations where data

was collected to fit the PMRC 2014 growth and yield model are

similar to the recorded presence of a species of interest in other

applications. Absences, in this sense, are very hard to verify and are

not simply all other locations in the study region where data was

not collected. Thus, a presence-only approach, similar to that seen

in Munro et al. (2022), was implemented in this research.

We use environmental variables that have been previously

reported as having an effect on loblolly pine growth in the
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southeastern United States to determine areas with similar

characteristics to our plot locations (Restrepo et al., 2019). If a

specific area returns a high probability of occurrence, we may

conclude that the environmental and soils characteristics are

similar to those occurring at our “presence” locations, and that the

growth and yield model has the potential to characterize growth

patterns for the species, assuming the plantation in question is

similar to those used to fit the growth and yield model. Users

should, of course, keep in mind a particular growth and yield

model’s intended use and take great care if extrapolating outside

what the developers intended.

One major assumption here is that the environmental and

soils variables selected for inclusion have an effect on the growth

of loblolly pine, this is why great care was taken in selecting

the input features. If a variable is unimportant for the growth of

loblolly pine, the model may constrain the distribution based on

this unimportant variable. Conversely, if a truly important variable

is neglected or excluded, wemay be somewhat over-confident in the

geographic distribution of areas we believe the 2014 Model should

be used. Both of these issues could potentially result in unreliable

or unrealistic maximum entropy distributions. Additionally, the

maximum entropy model predictions are probability based and

contain error; when coupled with noisy environmental and soils

data, these errors have the potential to compound to produce

meaningless results (Pollock, 2015).

2.2. Study area and presence points

The study area encompasses a large portion of the southeastern

United States (Figure 1) and makes use of the county centroid

coordinates where growth and yield data was collected to fit

the PMRC 2014 growth and yield model (Borders et al., 2014).

County centroids were used because individual plot coordinates

were not recorded. Despite including data from a large portion

of the southeastern U.S., the developers of the PMRC 2014

growth and yield model do note that the proposed models are

appropriate for second rotation loblolly pine plantations in the

Piedmont/Upper Coastal Plain (PUCP) and Lower Coastal Plain

(LCP) physiographic regions of Alabama, Georgia, Florida, and

South Carolina, despite the fact there were no growth and yield

plots located in the LCP of Alabama. Only these four states were

evaluated for the LCP variant of the growth and yield model

(Figure 1). The study area for this analysis was extended outside of

these four states to that seen in Figure 1 for the PUCP simulations

because a proportion of the data used to fit these models was

collected outside of Alabama, Georgia, Florida, and South Carolina.

Plots used to fit the PMRC 2014 growth and yield model

include both traditional growth and yield installations and control

plots from several different PMRC studies including the Coastal

Plain Culture/Density Study (CPCD; Zhao et al., 2014) and the

Consortium for Accelerated Pine Production Studies (CAPPS;

Kinane, 2014). Plots were split into two different physiographic

regions, PUCP and LCP. Overall, a total of 825 plots were used

to fit the PUCP variant of the 2014 model. These plots are

concentrated in Alabama and Georgia but extend as far west as

Arkansas/Louisiana and as far north and east as Virginia. A total

of 137 control plots were used the fit the LCP variant of the 2014

model. These plots are concentrated within the coastal plain of

South Carolina, Georgia, and northeastern Florida; an additional

six plots were included from northwestern Florida.

MaxEnt is a correlative modeling technique, hence it required

duplicates within location to be removed to ensure that the

prediction accuracy is not inflated. To achieve this, duplicate plots

were removed from the data set allowing for only one centroid

per county to be included. Duplicate removals reduced the total

number of available centroid locations to 17 and 71 for the LCP and

PUCP, respectively. Euclidean distances between each point in the

two individual sets was calculated to assess the potential for spatial

autocorrelation between the locations, an issue that results in biased

predictions (Anderson, 2015). No occurrence localities were found

to be within 20 km of each other so the collection installations

were not spatially filtered for the LCP or PUCP sets of points.

This threshold is within a range of values defined in similar studies

that use MaxEnt to predict the potential distribution of a species

or evaluated MaxEnt model tuning and selection criteria (Pearson

et al., 2007; Anderson and Gonzalez, 2011; Shcheglovitova and

Anderson, 2013; Boria et al., 2014; Radosavljevic and Anderson,

2014).

2.3. Biophysical data

2.3.1. Climatic information
Climatic data from the University of East Anglia’s Climatic

Research Unit (CRU TS4.01) was used for this analysis alongside

PRISM (Parameter-elevation Relationships on Independent Slopes

Model) climate data fromOregon State University (PRISMClimate

Group, 2015).

2.3.2. CRU climate data
CRU TS4.01 is a gridded climate data set developed using

the Climate Anomaly Method (CAM) to interpolate commonly

used surface climate variables measured from meteorological

stations across the globe into a half-degree, latitude/longitude grid

(Harris et al., 2014). The CAM works by calculating a normal

(average) across a period of time (typically 1961–1990, referred

to as “climatology”) for each weather station that meets the strict

inclusion criteria (Jones, 1994; Peterson et al., 1998; Harris et al.,

2014). If a normal can be calculated for these 30 years, the

station’s series is included in the gridding process, and anomalies

are calculated by differencing the 1961–1990 normal from the

weather station’s monthly data values. Two of the anomalies used

in this analysis, precipitation and rain days, are calculated on a

percent difference basis and do not use the above subtraction

rule (Harris et al., 2014). The percent difference anomalies are

calculated using a different reference period (1995–2002) and are

then converted to the above 1961–1990 normal scale. Triangulated

linear interpolation is then used to grid each anomaly at the half-

degree resolution. Finally, each anomaly is converted back to an

absolute value using one of two formulas depending on if they use

the typical subtraction rule (Equation 1) or the percent difference
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FIGURE 1

Growth and yield model installation location county centroids used to fit the PMRC 2014 growth and yield model. The area of the surrounding

location correlates to the number of plots within that specific county, however only county centroids were used to fit the actual MaxEnt model.

rule (Equation 2):

x = xa + x̄ (1)

x =
xax̄

100
+ x̄ (2)

where x is the absolute value, x̄ is the normal (as described above),

and xa is the calculated anomaly.

Data for the CRU monthly climate data are primarily supplied

by the World Meteorological Organization (WMO) and the

National Climatic Data Center (NCDC) within the U.S. National

Oceanographic and Atmospheric Administration (Harris et al.,

2014). More specifically, data is collected from various data sets

provided by the above organizations including: the CLIMAT

monthly set (WMO), which pulls data from between 2200 and

2800 weather stations worldwide; the Monthly Climatic Data for

the World (MCDW—produced by the NCDC), which collects data

from an additional 1,500–2,600 weather stations; and data from

the World Weather Records (WWR) in the form of decadal data

publications exchanged between National Meteorological Services

and the NCDC archive center. The first two sets, CLIMAT and

MCDW are updated in near-real time, as mentioned WWR is

available in decadal series, which (Harris et al., 2014) notes should

theoretically match the monthly sets, but in practice, is cleaner than

the monthly sets with fewer missing values and outliers.

CRU variables used in this analysis included minimum

temperature (TMN), maximum temperature (TMX), precipitation

total (PRE), vapor pressure (VAP), cloud cover (CLD), rain

day counts (WET), potential evapotranspiration (PET), and the

number of frost day (FRS). Here we offer a brief explanation for

how each variable is calculated. However, in-depth explanations

for each variable are found in Harris et al. (2014). TMN and

TMX were calculated from absolute values of mean temperature

and diurnal temperature range. PRE was calculated using the

percentage anomalies multiplied by climatology and divided by

100, to which the climatology is added (2). VAP is derived using

a calculated, “synthetic” VAP and station observed values for VAP.

The synthetic VAP was calculated as a function of TMN. CLD is the

cloud percentage cover; it was derived from diurnal temperature

range anomalies coupled with CLD anomalies from the CLD

station database to create 1995–2002 normal. This value was then

adjusted to the 1961–1990 scale, and gridded absolute values were

produced using the percent difference method described above.

WET is calculated in a similar fashion to VAP, where a synthetic

WET value is calculated as a function of precipitation and used in

tandem with station-observed WET values to create the gridded

data set. WET represents counts of wet days with ≥ 0.1 mm of

precipitation. FRS is estimated as a function of mean temperature

and diurnal temperature rangeS and then constrained to ensure

realistic measures alongside TMN. PETwas calculated as a function

of the mean temperature, TMN, TMX, VAP, CLD, and fixed wind

speed using a variant of the Penman-Monteith equation.

Each monthly variable from the CRU data set was averaged

from 1981 to 2010 to create a 30-year normal value that coincides

with the 30-year normals from the PRISM data set. Conveniently,

measurement dates for most of the data used to fit the PMRC 2014

Model fall within these 30 years.

2.3.3. PRISM climate data
PRISM (Parameter-elevation Relationships on Independent

Slopes Model) is described as a knowledge-based system to
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interpolate climate data (Daly et al., 2008). It uses a regression-

based approach along with point data from a large number of

weather stations, a digital elevation model (DEM), other sets of

data, and a “spatial climate knowledge base” to generate different

climatic variables across the coterminous United States. Daly et al.

(2008) offers an extensive summary of the methodology used

to develop the 1971–2000 normal values for temperature and

precipitation, while Daly et al. (2015) expands upon this approach

and further describes the development of the 1981–2000 normals

for vapor pressure deficit (both minimum and maximum) used

in this analysis. PRISM uses a large number of weather station

networks to estimate its vapor pressure elements. Because its

normals are used for interpolating other climatic variables, they are

subjected to intense peer review (PRISM Climate Group, 2015).

Only one climatic variable was taken from the PRISM data

set, 30-year normal (1981–2010) average vapor pressure deficit

(AVPD). AVPD was calculated by averaging the minimum vapor

pressure deficit and maximum vapor pressure deficit normals.

2.3.4. Soils data
Three, easily accessible soil-derived predictors were used in

this analysis, bulk density of the fine earth fraction (BD, kg m−3),

percent clay (CLAY, percent weight), and percent organic carbon

(SOC, percent weight). Bulk density was selected because of its

relationship with root growth where it can become limiting once it

crosses a certain threshold (Kelting et al., 1999; Will et al., 2002).

Percent clay was selected because of its relationship with water

(Rawls et al., 2003) and nutrient availability (Sampson et al., 2008).

Soil organic carbon was selected based on its relationship with

soil organic matter which has notable impacts on physical soil

properties as well as chemical and biological composition as well

(Johnsen et al., 2013).

Bulk density, percent clay, and soil organic carbon were selected

from the data set created by Ramcharan et al. (2018) using a

point data/machine learning approach to predict soil properties

across the United States at seven different depths (0, 5, 15, 30,

60, 100, and 200 cm). Training data for this project was collected

from three sources, the National Cooperative Soil Survey (NCSS)

Characterization Database, the National Soil Information System

(NASIS), and the Rapid Carbon Assessment (RaCA) Project.

Data from these sources were used with various environmental

covariates to develop 100 × 100 m predictive soil maps using two

machine learning methods for classification, random forests, and

gradient boosting. For the purpose of this analysis, the first four

depths (0, 5, 15, and 30 cm) were combined to create an average

bulk density to 30 cm depth (BD30), average percent clay to 30

cm depth (CLAY30), and an average percent organic carbon to

30 cm depth (SOC30). The 30 cm depth threshold was selected

based on studies about loblolly pine rooting depth (Mou et al., 1995;

Parker and Van Lear, 1996). For the reader’s convenience, a table of

commonly used abbreviations is listed below (Table 1).

2.3.5. Combining the climatic and soils data layers
Each set of predictors was first projected using the World

Global Mercator—Spherical Mercator. This projection system was

used to ensure that each cell was the same size across the

TABLE 1 Table of common abbreviations used throughout the paper.

Abbreviation Explanation

LCP Lower coastal plain

PMRC Plantation management research cooperative

PUCP Piedmont/Upper coastal plain

AUC Area under the receiver operating characteristic (ROC)

curve

OR Omission rate (minimum training presence [MTP] or 10%)

AVPD Average vapor pressure deficit

BD30 Bulk density of the fine earth fraction averaged over the first

30 cm of soil

CLAY30 Percent clay averaged over the first 30 cm of soil

CLD Cloud cover

FRS Frost day frequency

PET Potential evapotranspiration

PRE Precipitation

SOC30 Percent organic carbon averaged over the first 30 cm of soil

VAP Vapor pressure

WET Wet day frequency

entire study region as the half-degree resolution of the gridded

climate data changes sizes with differing degrees of latitude. After

reprojecting both data sets, the CRU climatic data (half-degree

resolution), PRISM data (0.8 km resolution), and the soils data

(initially at the 0.1 km resolution) were re-sampled to a 1 × 1

km resolution using bilinear interpolation. This was done because

MaxEnt requires all predictors to have the same resolution. Bilinear

interpolation was used for both data sets and produced reasonable

smoothed surfaces, especially for the gridded climate data (Wang

et al., 2006).

Each individual variable was then cropped and masked to the

appropriate study areas previously described. The LCP variant

of the model only included biophysical factors from Alabama,

Florida, Georgia, and South Carolina. The PUCP variant included

biophysical factors from the entire region shown in Figure 1. This is

important because it also determines the landscape over which the

evaluation background points are drawn.

Pearson’s Correlation Coefficient (r) was used to examine

the correlation between predictor variables. Though MaxEnt is

equipped to handle highly correlated predictors (Elith et al.,

2011; Merow et al., 2013), variables with correlation coefficients

≥ 0.90 were excluded from the model. Correlation coefficients

for the original set of predictors are presented in Table 2. After

evaluating correlation coefficients, the minimum temperature and

maximum temperature were dropped from the analysis. These

two variables were dropped because the number of frost days

closely resembles the spatial patterns of both the minimum and

maximum temperatures and because potential evapotranspiration

includes average temperature in its calculation. Summary statistics

for each potential predictor are presented in Table 3. All work in

this section was completed using the raster package version 2.6–7
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TABLE 2 Pearson Correlation Coe�cients (r) for 12 environmental and soils variables.

avpd bd30 clay30 cld frs pet pre soc30 tmn tmx vap wet

avpd 1.00 0.22 −0.31 −0.56 −0.77 0.78 0.15 0.03 0.73 0.84 0.62 −0.38

bd30 1.00 −0.13 −0.17 0.06 −0.01 −0.14 −0.75 −0.16 −0.04 0.17 −0.40

clay30 1.00 0.19 0.19 −0.26 0.11 −0.05 −0.20 −0.28 −0.23 −0.06

cld 1.00 0.60 −0.75 −0.17 0.12 −0.58 −0.58 −0.72 0.72

frs 1.00 −0.88 −0.54 −0.16 −0.96 −0.97 −0.51 0.48

pet 1.00 0.27 0.11 0.92 0.89 0.79 −0.52

pre 1.00 −0.04 0.50 0.43 −0.25 −0.32

soc30 1.00 0.20 0.16 −0.07 0.35

tmn 1.00 0.95 0.57 −0.39

tmx 1.00 0.57 −0.39

vap 1.00 −0.48

wet 1.00

Variables include average vapor pressure deficit (avpd, hPA); bulk density of the fine earth fraction averaged over the first 30 cm of soil (bd30, kg m−3); percent clay averaged over the first 30 cm

of soil (clay30, percent weight); cloud cover (cld, percent); frost day frequency (frs, days month −1); potential evapotranspiration (pet, mm day−1); precipitation (pre, mm month−1); percent

organic carbon averaged over the first 30 cm of soil (soc30, percent weight); minimum temperature (tmn, degrees C); maximum temperature (tmx, degrees C); vapor pressure (vap, hPA); wet

day frequency (days month−1).

TABLE 3 Thirty year normal (1981–2010) climatic and soil variables used for the MaxEnt model for the Lower Coastal Plain (LCP) and Piedmont/Upper

Coastal Plain (PUCP).

LCP PUCP

Variable Min. Mean Max. SD Variable Min. Mean Max. SD

avpd 4.7 9.0 10.9 0.8 avpd 3.4 8.4 10.9 1.0

bd30 175.7 1233.5 1551.8 152.0 bd30 175.7 1250.2 1580.7 145.1

clay30 0.0 14.6 71.9 8.5 clay30 0.0 18.1 77.7 9.1

cld 55.2 58.9 62.6 1.6 cld 50.9 59.1 68.0 2.4

frs 0.0 3.0 8.3 1.8 frs 0.0 4.3 10.9 2.4

pet 79.2 100.0 122.4 7.6 pet 69.2 96.3 122.4 8.1

pre 89.2 109.4 138.1 10.6 pre 82.8 108.7 142.7 11.8

soc30 19.4 86.5 450.0 42.6 soc30 17.3 75.2 485.9 41.7

vap 9.8 25.1 41.6 5.5 vap 6.7 23.5 41.6 5.5

wet 8.9 9.6 11.1 0.3 wet 7.6 9.4 12.2 0.7

Values presented include the minimum (Min.), mean, maximum (Max.), and standard deviation (SD) for each individual variable in both study areas as previously defined. Variables include

average vapor pressure deficit (avpd, hPA); bulk density of the fine earth fraction averaged over the first 30 cm of soil (bd30, kg m−3); percent clay averaged over the first 30 cm of soil (clay30,

percent weight); cloud cover (cld, percent); frost day frequency (frs, days month −1); potential evapotranspiration (pet, mm day−1); precipitation (pre, mm month−1); percent organic carbon

averaged over the first 30 cm of soil (soc30, percent weight); vapor pressure (vap, hPA); wet day frequency (days month−1).

(Hijmans, 2017) in Microsoft R Open statistical software version

3.5.0 (Microsoft R Core Team, 2017).

2.4. Maximum entropy models

Each maximum entropy model was trained using the MaxEnt

algorithm version 3.4.1 (Phillips et al., 2018) in the dismo package

version 1.1–4 (Hijmans et al., 2017) in Microsoft R Open statistical

software version 3.5.0 (Microsoft R Core Team, 2017). The default

model settings were used for the regularization multiplier (β =

1), convergence threshold, 10−5, maximum number of iterations,

500, and random background points used in the evaluation,

10,000. Feature types were included in the model based on the

software’s default rules relating to the number of provided presence

points and included linear (L), quadratic (Q), and hinge (H)

classes—product and threshold feature types were not included

in this analysis. It is important to note that background points

for the LCP simulations were drawn from only Alabama, Florida,

Georgia, and South Carolina; background points from the PUCP

simulations were drawn from the entire region depicted in

Figure 1.

A detailed explanation of the software and all equations

referenced in this section can be found in Dudík et al. (2004),

Phillips et al. (2006), and Phillips et al. (2017). TheMaxent software

(Phillips et al., 2018) uses the principle described in the previous

section along with a deterministic, sequential-update algorithm to
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estimate a probability distribution by determining the distribution

of maximum entropy with respect to a set of constraining features

(Dudík et al., 2004; Phillips et al., 2006). Applied to presence-only

data, a user-specified study area is supplied to the software in the

form of a pixelated or rasterized landscape along with recorded

presence points and covariates such as environmental, soils, and

physiographic data; the software then generates the maximum

entropy distribution and overlays it across the pixels of the study

area (Phillips et al., 2006). The entropy of the approximated

distribution is written as:

H(π̂) = −
∑

x∈L

π̂(x) lnπ̂(x) (3)

where π represents the unknown, target distribution and π̂

represents its approximation over a finite set of pixels L. L

represents the entire, user-defined landscape, and is composed of

individual elements or points x.

The following represents an unconditional maximum entropy

model and presents it through a machine learning framework.

Though less common than conditionalmodels inmachine learning,

the unconditional method must be used here due to a lack of

absence data (Phillips et al., 2006). It should be noted that there

are several papers that attempt to describe Maxent in a statistical

framework that is much more similar to that seen in the statistical

and ecological modeling literature (Elith et al., 2011; Merow et al.,

2013) though these explanations are not presented here.

The Maxent software estimates the target probability

distribution by imposing a set of constraints on the unknown

probability distribution, π , through the use of features

(transformed environmental variables, soils variables, etc.), fj,

on L. Here, fj assigns a real value, fj(x) to all points x in L; the

expectation of this feature under π is symbolized using π[fj]. Such

expectations can be approximated by sampling from L, drawing

xn number of points, independently. The probability distribution

of maximum entropy is then defined as the approximated

distribution, π̂ , with the constraint all features, fj, have the same

mean under π̂ written as:

π̂[fj] = π̃[fj], for each feature fj (4)

where the empirical mean of fj is expressed as π̃[fj] =
1
m

∑m
i=1 fj(xi)

and π̃ represents the uniform distribution on the sample points.

This expectation is somewhat unrealistic and results in over-fit

models as empirical feature means typically do not equal true

feature means. The solution to this issue is addressed below.

A dual characterization of π̂ may also be defined using

principles from mathematical optimization theory and convex

duality (Della Pietra et al., 1997; Phillips et al., 2006; Elith et al.,

2011). Considering probability distributions of the following form:

qλ(x) =
eλ∗f (x)

Zλ

where λ is a vector of n feature weights, f is a vector of all real

features, and Zλ ensures that qλ equals 1. This type of distribution

is formally classified as a Gibbs distribution. Convex duality proves

that the maximum entropy distribution, π̂ is equivalent to the qλ

distribution that maximizes the likelihood of the m sample points,

or minimizes the negative log likelihood of the sample points,

described as the log loss function and written as:

π̃[−ln(qλ)]

or,

lnZλ −
1

m

m∑

i=1

λ ∗ f (xi)

Relaxing the constraint in Equation (4) using a regularization

multiplier allows the means under π̂ to vary slightly from the

empirical mean (Dudík et al., 2004; Phillips et al., 2006). Doing so

changes Equation (4) to:

|π̂[fj]− π̃[fj]| ≤ βj, for each feature fj

where βj are some constants. Relaxing the constraint in Equation

(4) also changes the log loss function from Equation (2.4) to a

regularized log loss function of the form:

π̃[−ln(qλ)]+
∑

j

βj|λj|

the second term here is a penalty and forces Maxent to focus on

the most important features thus penalizing features with minimal

contribution to the model. The goal of regularization here is to

reduce model complexity to ensure that the model is not overly

specific (Elith et al., 2011). Maxent uses a form of regularization

known as l1-regularization that results in the reduction of overall

terms in a model (Phillips et al., 2006; Elith et al., 2011), thus

lowering its overall complexity and producing sparse models

(James et al., 2013). Using the above loss function, Maxent starts

from the uniform probability distribution and iteratively adjusts the

weights to minimize the log loss function in order to compute the

maximum entropy probability distribution.

The above formulation is equivalent to maximizing the

likelihood of a parametric exponential distribution (Phillips et al.,

2017). A recent evaluation of this formulation found that the

same exact model can be derived from an inhomogeneous Poisson

process (IPP) (Aarts et al., 2012; Fithian and Hastie, 2013;

Renner and Warton, 2013; Phillips et al., 2017). Phillips et al.

(2017) discusses the implications of this finding for modeling in

great detail. For the purpose of this thesis, the most important

implication is that the “raw” model output can now be interpreted

as a model of relative abundance and can be transformed

using a complimentary log-log (cloglog) transformation. This

transformation is deemed appropriate because the predicted mean

abundance in any given cell across the user defined landscape is

modeled as a Poisson variable:

Predicted mean abundance = cpA exp(α + β ′x(z))

according to the Poisson distribution and as stated in Phillips et al.

(2017), the probability of presence is therefore:

Probability of presence = 1− exp(−cpA exp(α + β ′x(z)))

The above is a Bernoulli generalized model with a cloglog link

function (Phillips et al., 2017). The largest caveat here is that the
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presence points are independent. This assumption should hold true

for this analysis, although it is frequently violated in other studies

relating to wildlife species based on sampling designs, etc., (Fithian

et al., 2015; Renner et al., 2015). The cloglog transformation of the

Maxent estimates is then:

Probability of presence = 1− exp(−exp(H)pλ(z))

where H represents the entropy, H = −Eλ[ln(pλ)], and pλ is

the probability distribution. As previously mentioned this further

extension of Maxent and its description as an IPP are discussed at

great length in Phillips et al. (2017).

The models for each physiographic region were trained using

a different occurrence partitioning method. The LCP model was

fit using a jackknife technique (k − 1 jackknife); this partitioning

method is suitable for small data sets (Pearson et al., 2007; Kumar

and Stohlgren, 2009; Shcheglovitova and Anderson, 2013) and was

selected because of the small number of occurrence localities for

this region. For the LCP, 17 different models were fit using 16

occurrence localities; the 17th locality was withheld and used as

a test point to assess the model’s performance. Thus, 17 different

predictions were computed and then combined. The PUCP model

was fit using the more traditional k-fold cross-validation, in this

case five-fold cross-validation. Once again, model predictions were

combined for all 5 models. Neither method considers the potential

spatial autocorrelation between testing and training localities

because none of the data collection locations were within 20 km

of each other.

The area under the receiver operator curve (AUC) metric was

used to assess the ability of both models as classifiers and is a rank-

based, non-parametricmeasure of howwell amodel can distinguish

presence points from random background points (Fielding and

Bell, 1997; Phillips et al., 2006, 2017). This threshold-independent

measure has an upper bound of 1 (Fielding and Bell, 1997) and

considers both the sensitivity (probability of correct classification,

P) and the specificity (probability of incorrect classification, 1-

P) of a model; the AUC value’s interpretation is, therefore, the

probability that a model can correctly classify a random occurrence

or a random background point (Phillips et al., 2006). An AUC value

of 0.5 is no better than a random guess. A model producing a value

of 0.75 is considered an adequate model (Graham and Hijmans,

2006; Pollock, 2015), though this threshold is somewhat arbitrary

and is subject to change given a user’s specific objectives. Two

types of AUC values were evaluated, both AUCtrain, calculated using

the training points, and AUCtest, calculated using the occurrence

localities withheld from the training set for testing. Both AUC

metrics were averaged across the k iterations; each was evaluated

because AUCtrain is typically inflated for models with many

parameters (Warren and Seifert, 2011). Because each model was fit

to a different geographic extent, the LCP and PUCP model’s AUC

values are not comparable (Peterson et al., 2011), and the author

acknowledges that AUC does not asses the overall fit of a model

(Lobo et al., 2008; Peterson et al., 2011; Muscarella et al., 2014).

In an attempt to quantify overfitting, three different metrics

were evaluated. All three were calculated following the procedures

described in Muscarella et al. (2014). The first is the threshold-

independent, average difference AUC metric (AUCdiff), calculated

as the average difference between AUCtrain and AUCtest across all

k folds (Warren and Seifert, 2011; Boria et al., 2014; Muscarella

et al., 2014; Radosavljevic and Anderson, 2014). This metric is

based on the premise that overly complexmodels should fit training

data well but not necessarily testing data. Therefore, models with

high AUCdiff values are positively correlated with overfitting.

The other two methods are threshold-dependent metrics; the

minimum training presence omission rate (ORMTP) and the 10%

training omission rate (OR10; Pearson et al., 2007; Boria et al.,

2014; Muscarella et al., 2014; Radosavljevic and Anderson, 2014).

Omission rates are the proportion of testing locations incorrectly

predicted when converted to a 0, 1 binary scale (Boria et al., 2014).

The minimum training threshold sets the threshold value at the

lowest prediction value for a training locality; if a locality in the test

data set yields a prediction above this threshold it is identified as

“suitable,” and assigned a value of 1 (Radosavljevic and Anderson,

2014). The omission rate is the proportion of testing locations

with values below this threshold. The 10% threshold is similar

except that the threshold value is set at whatever omits the 10%

of training sites with the lowest predicted values. Lower omission

rates typically express high model performance. Omission rates

greater than the theoretical expected values are possibly subject to

overfitting (Shcheglovitova and Anderson, 2013; Muscarella et al.,

2014; Radosavljevic and Anderson, 2014).

3. Results

The MaxEnt model for the LCP had an AUCtrain value of

0.9524, and the average AUCtest across all jackknife simulations

was 0.9080 with a corrected variance estimate of 0.0989 (Table 4).

This variance is corrected for the non-independence of testing

data across the jackknife simulations using the method described

in Shao and Wu (1989) and discussed in Shcheglovitova and

Anderson (2013) and Muscarella et al. (2014). AUCdiff for this

model was 0.0547 with a corrected variance estimate of 0.0860. The

minimum training presence threshold omission rate for this model

was 0.2353, while the 10% training presence threshold omission

rate for this model was 0.3529. These two values are higher than

the expected theoretical values, implying that the LCPmodel might

suffer from overfitting.

The estimated MaxEnt model for the LCP variant of the 2014

model utilized the soil organic carbon, percent clay, frost day

frequency, cloud cover, precipitation, bulk density, average vapor

pressure deficit, and wet day frequency predictors. Bulk density,

precipitation, average vapor pressure deficit, and wet day frequency

contributed <1% to the model. Potential evapotranspiration and

vapor pressure were not used. The highest contributing variable

for this model, as ranked by percent contribution, was soil organic

carbon. Percent contribution and permutation importance for each

predictor are presented in Table 5. The percent contribution is

a heuristic estimate determined by the increase in gain to the

model with respect to each individual variable (Baldwin, 2009). To

determine the permutation importance the values for each variable

are permuted randomly and the model is reevaluated using the

new data, the drop in AUCtrain is calculated as a percent (Phillips

et al., 2017). While they reveal pertinent information, especially the

overall rank, these contributions can be heavily influenced by highly

correlated variables and depend on the path the algorithm takes to
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the final solution. Because of this, the MaxEnt jackknife analysis

for each variable included in the model was also evaluated. Results

of the jackknife test of variable importance concur with those

of the percent contribution values and are presented in Figure 2.

This test revealed that the environmental variable that contains the

most helpful information for the distribution is soil organic carbon

because it increases the overall model gain when used by itself (blue

bars in Figure 2). This same variable also results in the highest

decrease in gain when omitted from the model, meaning it contains

information not present in the other nine predictors (green bars

in Figure 2). Thus, leaving this variable out notably changes the

MaxEnt predictions (Pollock, 2015).

The MaxEnt model for the PUCP had an AUCtrain value of

0.8580, and the average AUCtest across all 5 replicates was 0.8055

with a corrected variance estimate of 0.0196 (Table 4). AUCdiff for

this model was 0.0625 with a corrected variance estimate of 0.0217.

TABLE 4 Model information for each region (LCP and PUCP).

LCP PUCP

Partition method Jackknife 5-fold Cross-validation

Train points 16 57

Test points 1 14

AUCtrain 0.9524 0.8580

AUCtest 0.9080 (0.0989) 0.8055 (0.0196)

AUCdiff 0.0547 (0.0860) 0.0625 (0.0217)

ORMTP 0.2353 (2.8789) 0.0429 (0.0294)

OR10 0.3529 (3.6540) 0.1562 (0.0284)

Included are partition method, the number of training points for each iteration of the model,

the number of testing points for each iteration of themodel (17 total replicates for the LCP and

5 for the PUCP). Metrics include AUCtrain , AUCtest , AUCdiff , Minimum Training Presence

omission rate (ORMTP), and 10% training omission rate (OR10). Corrected variance values are

in parenthesis and were calculated using the methodology described in Shao and Wu (1989)

and Shcheglovitova and Anderson (2013).

The minimum training presence threshold omission rate for the

PUCPmodel was 0.0429, while the 10% training presence threshold

omission rate for this model was 0.1562.

The estimated MaxEnt model for the PUCP variant of the 2014

model utilized all ten available predictor variables; precipitation,

bulk density, potential evapotranspiration, and vapor pressure

all contributed <1%. Percent clay, cloud cover, and average

vapor pressure deficit contributed <10%. The highest contributing

variable for this model, as ranked by percent contribution, was

the number of frost days. Percent contribution and permutation

importance for each predictor are presented in Table 5. Once again,

the jackknife test of variable importance was also evaluated for the

PUCPmodel. Results from this test are illustrated in Figure 3. These

results agree with the results of the percent contribution results. The

variable that results in the highest gain when used by itself is the

frost day frequency, conversely, it decreases the gain the most when

excluded from the model.

Finally, complementary log-log (cloglog) prediction maps

based on the selected models are illustrated for both regions in

Figures 4, 5. As previously described, this transformation of the

raw output values represents the “probability of occurrence” for

that particular cell (Phillips et al., 2017), or for this particular use

of MaxEnt it represents our level of confidence that the PMRC

2014 growth and yield model has the potential to characterize the

growth that loblolly pine plantations correctly could experience

across the given landscape. Warm-colored regions represent areas

with similar environmental and soil characteristics to those at the

occurrence localities.

4. Discussion

Analyzing the output predictions for each individual model

(Figures 4, 5) both seem to provide adequate predictions for

the respective regions of the PMRC 2014 model. Unlike other

approaches that typically label growth and yield models suitable

TABLE 5 Percent (%) contribution and permutation (Permu.) importance for each variable (Var.) in the MaxEnt model for each region.

LCP PUCP

Var. % contribution Permu. importance Var. % contribution Permu. importance

soc30 55.2 52.6 frs 48.6 40.7

cld 14.4 22.7 wet 22.9 14.4

clay30 14.4 3.9 soc30 15.2 15.1

frs 14.1 18.6 clay30 8.4 8.4

bd30 0.9 1.5 cld 2.1 7.2

pre 0.7 0.7 avpd 1.5 4.3

avpd 0.2 0.0 pre 0.5 1.2

wet 0.1 0.0 bd30 0.4 1.1

pet 0.0 0.0 pet 0.2 5.9

vap 0.0 0.0 vap 0.2 1.8

Values presented are averaged across all replicates (17 and 5 for the LCP and PUCP, respectively) and are presented in order of decreasing importance based on percent contribution. Variables

include average vapor pressure deficit (avpd, hPA); bulk density of the fine earth fraction averaged over the first 30 cm of soil (bd30, kg m−3); percent clay averaged over the first 30 cm of soil

(clay30, percent weight); cloud cover (cld, percent); frost day frequency (frs, days month −1); potential evapotranspiration (pet, mm day−1); precipitation (pre, mm month−1); percent organic

carbon averaged over the first 30 cm of soil (soc30, percent weight); vapor pressure (vap, hPA); wet day frequency (days month−1).
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FIGURE 2

Results of the jackknife test of variable importance for regularized training gain in the LCP. Values shown are averages across all 17 replicates.

FIGURE 3

Results of the jackknife test of variable importance for regularized training gain in the PUCP. Values shown are averages across all five replicates.

for use in wide physiographic areas simply based on where

data was collected to fit a growth and yield model, this

technique provides explicit estimates of uncertainty for any

location within the specified region. Users can then extract

these estimates to determine how suitable the PMRC 2014

model might be for a given area allowing them to make

better informed decisions based on their model predictions

and projections.

The LCP model shows that many areas across the lower coastal

plain of Georgia and parts of North Florida are very similar to

the areas where data was collected to fit the model. Observers also

note that the model is isolating the Okefenokee Swamp in South
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FIGURE 4

Cloglog probability of occurrence predictions for the best LCP model. Occurrence localities (county centroids) are shown in black.

Georgia, which shows a very low probability of occurrence, a trend

we would expect to see. Upon further investigation, this area has

likely been omitted due to its notably different soil organic carbon

levels in comparison with the rest of the region. Interestingly, the

northern portion of the South Carolina LCP shows lower predicted

suitability meaning that one or some of the environmental variables

or an interaction between them is different from the other regions

showing higher predicted values. Further evaluation of PMRC 2014

model predictions and projections should be conducted for this

area to determine if any discrepancies exist in model predictions

compared to growth data from this region. Another region that

should be investigated is the southwestern portion of Florida and

Alabama where despite being very small, there are some areas that

show high suitability predictions. These locations have similar soil

organic carbon values, cloud cover, frost day frequencies as the

areas used to fit the model. Again, more work should be done to

determine the validity of PMRC model predictions in these areas

that are well outside the area described for this model’s use.

The PUCP MaxEnt model shows high predicted values across

the PUCP of Alabama, Georgia, and the upstate of South Carolina,

despite the fact that only one installation in South Carolina was

used to fit the PUCP variant of the PMRC 2014 model. The model

also shows high predicted values for the southern Upper Coastal

Plain of eastern Mississippi and some very small areas along the

coast of southeastern Virginia and northeastern North Carolina;

areas not prescribed for application in the model publication, but

that have similar frost day frequencies and seasonal temperatures

as the areas where data was collected to fit the PMRC PUCP

model. The model shows low predicted values for the Ridge and

Valley, Blue Ridge, and Appalachian Plateau physiographic region

of Georgia; it also shows low predicted values for the Highland

Rim and parts of the Cumberland Plateau in Alabama. The black-

belt region and a majority of Louisiana and Arkansas were also

identified as having low predicted values. These trends are expected

and also make biological sense with respect to how loblolly pine

plantations would be expected to grow differently in each of these

regions (Hasenauer et al., 1994; Gallagher et al., 2019) based

on their differing geologic formations, climates, and many other

factors that influence growth.

AUC values for both models were above the previously

described threshold of 0.75 at 0.9080 and 0.8055 for the LCP and

PUCP models, respectively. Though the use of AUC to evaluate

models has been argued both for and against, it does at least provide

some measure of a model’s overall ability as a classifier. The fact

Frontiers in Forests andGlobal Change 11 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1215713
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Peay et al. 10.3389/�gc.2023.1215713

FIGURE 5

Cloglog probability of occurrence predictions for the best PUCP model. Occurrence localities (county centroids) are shown in black.

that both models returned average AUC values above the threshold

supports the rationality behind each model (Pollock, 2015).

Results from both models show different conclusions with

respect to overfitting. The LCP model, despite having a relatively

high AUCtest value and a low AUCdiff value, appears to suffer from

overfitting based on the ORMTP andOR10 metrics (Table 4). Both of

these values are well above the theoretically expected values of 0.00

and 0.10 for the ORMTP and OR10 metrics, respectively. Were the

regularization multiplier to be increased above the default value,

these omission rates would likely drop as the model constraints

would be loosened, however, no attempt was made to increase the

regularizationmultiplier because of the context of use for the results

from this maximum entropy model. In this case, an overfit model

simply represents a conservative estimate of the areas we feel the

PMRC 2014 model could be applied.

Unlike the LCP model, the PUCP model does not suggest

overfitting with a low AUCdiff value and omission rate values close

to the theoretical expectations (Table 4). The PUCP model also

shows much lower levels of variability when compared with the

LCP model for all four metrics evaluated in this study, this is likely

in part due to the higher number of training localities available to

fit the PUCP MaxEnt model.

The variables with the most significant impact for each

model, as determined from both the percent contribution values

(Table 5) and the jackknife contribution tests (Figures 2, 3), make

biological sense when thinking about environmental and soils

factors that influence the growth of loblolly pine in the southeastern

United States. This is important because if a variable significantly

contributes to a model, it likely contains differences across the

region not found in the other predictor variables. Thus, ideally,

these variables should have known importance for, or be related to

a variable of importance for the species being evaluated.

In this case, bothmodels found the soil organic carbon and frost

day frequency predictors important in determining the maximum

entropy distribution. SOC is directly related to soil organic matter

(SOM), which helps to shape soil structure, chemistry, and biology

(Johnsen et al., 2013) and is related to several important factors

and processes in forest soils that can influence and regulate growth

(Binkley and Fisher, 2013). These functions include water storage

capacity (Rawls et al., 2003; Binkley and Fisher, 2013) along with

nutrient pooling and cycling. It is also related to a site’s drainage

class. Frost day frequency follows a very similar geographic pattern

to a minimum temperature which relates to growing season length

and many physiologic processes that affect the growth of loblolly

pine in the Southern United States (Nedlo et al., 2009).

Additionally, the LCP model found both the percent clay and

cloud cover predictor variables to be important. Clay content can

affect and influence many soil properties that affect loblolly pine,

either directly or through complex interactions with many other

soil factors. These processes and properties are related to soil

chemistry (Binkley and Fisher, 2013), structure (Allen et al., 1990;

Parker and Van Lear, 1996; Carlson et al., 2006), nutrient holding

capacity (Fox et al., 2007), water storage capacity (Willett and Bilan,

1990), and many others. The cloud cover percentage variable is

calculated using the diurnal temperature range alongside observed

sun hours (Harris et al., 2014).While a bit less intuitive, this variable
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is related to solar radiation intensity and availability at Earth’s

surface (Matuszko, 2012) and thus the amount of solar radiation

available for use by living organisms as photosynthetically active

radiation (Cannell, 1989).

Similarly, the PUCPmodel also included percent clay, however,

it also notably incorporated the wet day frequency predictor

variable. The wet day frequency predictor variable shows the

overall frequency of precipitation on a monthly basis (average

days month−1 yr −1). When analyzed in conjunction with the

precipitation layer used here, one can draw inferences about the

intensity of overall rainfall events by comparing the wet day

frequency and average precipitation for a given area. While this

variable may have no seemingly direct link with loblolly pine,

rainfall frequency, and intensity can affect a site’s hydrological

characteristics (Amatya et al., 2000; Amatya and Skaggs, 2001) such

as excess water storage and soil saturation levels. The intensity of

rainfall events may also influence nutrient cycling as well (Schreiber

et al., 1990).

5. Conclusion

The work presented here uses a novel approach for defining

the geographic bounds on growth and yield model usage based

on different biophysical variables at the locations where data was

collected to fit the model and across an area of interest. Using

MaxEnt models for both the LCP and PUCP variants of the PMRC

2014 growth and yield model, this approach is able to better define

geographic bounds on where we feel confident in the potential

of the PMRC 2014 model to correctly characterize the growth

experienced by loblolly pine plantations. This of course depends on

these plantations being similar to those used to fit the model with

respect to factors such as genetic material and silvicultural regimes.

The regularization multipliers were not adjusted for either

model, hence the estimated ranges presented here represent

conservative estimates of where the models should be used,

especially for the LCP variant because its evaluationmetrics suggest

some level of overfitting. If an area falls outside of the predicted

ranges presented here, it does not necessarily mean the PMRC

2014 model would not produce accurate growth predictions and

projections for these areas as well, it simply means the predictor

variables included in this work differ from those where data was

collected to fit the models. Of course, regardless of the confidence

one has in their growth and yield models, users should continually

evaluate model outputs to ensure the most appropriate growth and

yield model is being used for any area.

Further work needs to be completed to improve the tuning

of MaxEnt models for this specific use. Additionally, a large-scale

evaluation of PMRC 2014 growth and yield model predictions

in areas the MaxEnt models are predicting as suitable vs. areas

with lower prediction values could further validate the results

of these MaxEnt models. Users may also use current and future

environmental variables to project the areas suitable for PMRC

model usage in the future. Adding in this temporal component

could prove very useful for future management decisions and

model deployment.
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