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RNAi-chitosan biopesticides for
managing forest insect pests: an
outlook
Kanakachari Mogilicherla and Amit Roy*

Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Suchdol, Praha,
Czechia

The expanding world population demands superior forest protection to fulfil

feasible environmental certainty. The persistent pest infestations negatively

influence forest health and cause substantial economic losses. In contrast,

the traditional use of conventional pesticides results in a loss of soil

microbial biodiversity, a drop in the population of pollinators, and adverse

effects on other non-target organisms, including humans. Global forestry

is looking for solutions to reduce the adverse environmental effects of

current chemical pesticides. RNAi-nanotechnology has recently drawn much

attention for its use in pest management. The advantages of engineered

RNAi-chitosan nano-formulations in terms of simple digestion and dissolution,

non-toxicity, high adsorption power, potential biodegradation in nature, and

widespread availability and cost-effectiveness, have been well documented

for pest management in agroecosystems. However, deploying such control

strategies in forest ecosystems is still pending and demands further research.

Hence, we highlight the putative uses of RNAi-chitosan biopesticides and their

preparation, characterization, and putative application methods for forest pest

management. We also discussed potential environmental risks and plausible

mitigation strategies.
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Introduction

Given the ongoing increase in global population, many countries have lost forests and
facing climate change (Ritchie and Roser, 2021).1 Forestry is a crucial industry in many
developing countries, and it can produce food and gross income as a domestic product for
both people and animals, as well as contributes to balancing the environmental conditions,

Abbreviations: A. aegypti, Aedes aegypti; AchE, acetylcholine esterase; AMN, Aminopeptidase; AMY,
Alpha-amylase; A. gambiae, Anopheles gambiae; A. solani, Alternaria solani; BMI, bacterial metabolic
infiltrates; CAD, Cadheri; CHS, Chitin synthase; CHS1, chitin synthase 1; CHS2, chitin synthase 2;
CPB, Colorado potato beetle; D. melanogaster, Drosophila melanogaster; DCDA, degree of chitosan
deacetylation; dsRNA, double-stranded RNA; E. vittella, Earias vittella; H. armigera, Helicoverpa armigera;
IAP1, Inhibitor of apoptosis 1; JHAMT, juvenile hormone methyltransferase; mRNA, complementary
messenger RNA; N. lugens, Nilaparvata lugens; P. grisea, Pyricularia grisea; PEC, polyelectrolyte
complex; PRR, pattern recognization receptor; PSTV, Potato spindle tuber virus; RCNPs, RNAi-chitosan
nanopesticides; RISC, RNA-induced silencing complex; Sec23, Sec23 homolog A; SNF7, ESCRT-III subunit
protein SNF7; SRC, SRC proto-oncogene; S. frugiperda, Spodoptera frugiperda; S.litura, Spodoptera
litura; S. lycopersicum, Solanum lycopersicum; siRNA, small interfering RNA; TBSV, bean/tomato bushy
stunt virus; TNV, tobacco necrosis virus; Vg, vestigial; V-ATPase, V-type proton ATPase; V-ATPase B,
Vacuolar-type ATPase B; SMR, symbiont mediated RNAi.

1 https://research.wri.org/gfr/latest-analysis-deforestation-trend
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respectively. However, a variety of biotic factors like insect
pests (i.e., bark beetles, weevils, chewing, sucking, and foliage-
feeding insects) and diseases caused by pathogens (i.e., tree leaves
diseases, pine needle diseases, hardwood leaf diseases, tree bark
diseases, and tree root diseases) limit forest growth and tend
to get worse with a growing human population (Kan et al.,
2023). Consequently, to address pest-related issues, pesticides
(insecticides, fungicides, herbicides, etc.) have been overused
and often misused, which has had fatal short and long-term
effects on humans and other life forms (Chhipa, 2017). Pesticide
resistance is common in pest insects, and their preexisting
adaptive capabilities facilitate quick resistance in field conditions
(Bras et al., 2022). With the accessibility of new technologies,
superior approaches to controlling insect pests and disease-
caused pathogens can be considered. RNA interference (RNAi)
technology and nanotechnology have recently captured the interest
and imagination of scientists and researchers due to recent
advancements in the discipline. Delivering RNAi biopesticides
with the use of nanotechnology in the forestry sector is a quick,
innovative, and promising field (Shang et al., 2019; Joga et al., 2021;
Silver et al., 2021; Mogilicherla et al., 2022).

Polymeric nanoparticles are non-toxic, economical,
environmentally friendly, and most significant controlled-
release formulations, so researchers are interested in the feasibility
of their application in different sectors (Prajapati et al., 2022).
Nonetheless, employing some polymeric nanoparticles at higher
concentrations demonstrates a phytotoxicity effect on plants, and
it depends on initial material selection, nanoparticle preparation
methods, and the impact varies according to plant species (Jogaiah
et al., 2021). Remarkably, no instances of phytotoxicity have been
reported concerning RNAi-polymeric nanoparticles. Chitin is
the second-most common natural polymer after cellulose and
is obtained mainly from shrimps, crabs, lobsters, and crawfish
by-products (Figure 1; Faqir et al., 2021). Chitin is a linear, poly-
(1,4)-N-acetyl-D glucosamine that appears in nature as organized
crystalline microfibrils called α-chitin, β-chitin, and γ-chitin (Vani
and Stanley, 2013). Chitosan is a partly deacetylated polymer of
N-acetyl glucosamine produced by the alkaline deacetylation of
chitin (Figure 1). Chitosan has several unique features due to the
amine and hydroxyl groups, making it useful in many contexts
and accessible for chemical reactions (Chouhan and Mandal,
2021). Since it may produce safe and non-toxic complexes through
electrostatic interaction with its positive cationic group and the
negative anionic group of the RNAi molecules (dsRNA/siRNA), it
enhances the stability of RNAi molecules (Gurusamy et al., 2020a;
Sandal et al., 2023). A natural process of RNAi converts dsRNA
into 21-25-nucleotide-long siRNAs, which are then recruited to
the RNA-induced silencing complex (RISC), which then finds
and degrades the mRNA (Fire et al., 1998; Agrawal et al., 2003;
Yu et al., 2013). RNAi has demonstrated considerable potential
for formulating new pest control practices because of its species
specificity and high efficacy (Zhu and Palli, 2020; Joga et al., 2021).
However, it is underexploited in the forestry sector (Joga et al.,
2021; Mogilicherla et al., 2022).

Variable RNAi efficiency among insects has been linked
to several mechanisms, including dsRNA degradation in the
hemolymph and midgut lumen, decreased dsRNA uptake by
cells, decreased induction of RNAi components upon exposure
to dsRNA, missing components in the RNAi pathway, and

accumulation of dsRNA in endosomes (Katoch et al., 2013;
Shukla et al., 2016; Singh et al., 2017; Yoon et al., 2017; Cooper
et al., 2019). The last 10 years have spotted the development
and implementation of a chitosan-based dsRNA delivery method
that boosts the possibility of RNAi applications in insect pest
management (Table 1; Zhang et al., 2010; Das et al., 2015;
Gurusamy et al., 2020a; Kolge et al., 2021). In order to prevent
insect pests and diseases, chitosan-RNAi is utilized in the field
of agriculture (Reglinski et al., 2004; Fitza et al., 2013; Bharani
et al., 2014; Sahab et al., 2015; Silva-Castro et al., 2018; Ingle
et al., 2022) and can also be used for forest protection (Joga
et al., 2021; Mogilicherla et al., 2022). This succinct perspective
discusses the synthesis of RNAi-chitosan nanopesticides (RCNPs)
and characterization, as well as the evaluation of their effectiveness
and biocompatibility against insect pests and microbes from a forest
insect pest management and forest health point of view (Figure 1).

RNAi-chitosan biopesticides synthesis
methods

Chitosan is a polycationic polysaccharide that occurs
naturally and is produced when chitin is partially deacetylated
(Figure 1). Chitosan has several physicochemical characteristics,
including molecular weight, viscosity, degree of deacetylation, and
crystallinity (Kas, 1997; Riseh et al., 2022). A primary amine group
with a pKa value of around 6.5 is present in every deacetylated
subunit of chitosan; as a result, chitosan is soluble in acidic pH, like
acetic acid but insoluble in neutral and alkaline pH. The amount
of chitosan© deacetylation, molecular weight, ionic strength
of the solution, and pH significantly impact its solubility (Mao
et al., 2010). Chitosan dissolved in acetic acid and spontaneous
mechanical churning at room temperature leads to caused
nanoparticles. In addition, adjusting the chitosan-to-stabilizer ratio
altered the particle size and surface charge (Hosseini et al., 2015).
Several methods have been described for synthesizing RCNPs,
such as electrostatic interaction, encapsulation, and adsorption
(Figure 1). When chitosan is dissolved in acidic circumstances,
the degree of chitosan deacetylation (DCDA) value influences
the positive charge density; more DCDA results in an enhanced
positive charge, allowing a better dsRNA/siRNA binding capacity
(Liu et al., 2007; Mao et al., 2010). The ionotropic gelation method
uses the electrostatic contact between a negatively charged group
of nucleotides (e.g., in dsRNA) and the amine group of chitosan
and self-assembled to form the polyelectrolyte complex (PEC)
as a result of a decrease in hydrophilicity caused by charge
neutralization between the cationic polymer and dsRNA. When
dsRNA is added to chitosan (in acetic acid) solution and with
continuous stirring at room temperature, the RCNPs can be
produced spontaneously (Figure 1). Also, chitosan© molecular
weight affects the physicochemical characteristics of RCNPs,
including their size, zeta potential, shape, and complex stability
(Mao et al., 2010). The surface charge of the RCNPs is dependent
on the molar ratio of chitosan nitrogen (N) to dsRNA phosphate
(P) (N/P ratio), which affects the particle capacity to efficiently
condense dsRNA and interact with negatively charged cells, which
in turn affects the transfection efficiency (Köping-Höggård et al.,
2001; Huang et al., 2005; Jeong et al., 2007; Nafee et al., 2007).
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FIGURE 1

Scheme illustrating the RNAi-chitosan biopesticides formulations and their applications for forest insect pest management. (A) Synthesis of chitosan
nanoparticles: marine by-products will produce chitin, which has been partially deacetylated and yields chitosan. Chitosan nanoparticles produced
by chitosan dissolved in acetic acid under spontaneous mechanical churning at room temperature. (B) Production of RCNPs: RCNPs can be created
via the adsorption, encapsulation, and electrostatic interaction approaches. Also, chitosan can be used as a coating material for dsRNA-expressed
symbiotic microbes. RCNPs can be characterized in terms of size, zeta potential, and shape. (C) Putative application of RNCPs: RCNPs can be
applied to forests to control forest pests and diseases using the foliar application, trunk injection, and soil drenching approaches leading to the
species-specific killing of forest insect pests (bark beetles, termites, ants). (D) Environmental impact: deploying RNCPs will reduce the application of
commercial pesticides.

The chitosan salt form also impacted the RCNPs, such as chitosan
glutamate, which had a larger molecular weight, created smaller
complexes with dsRNA/siRNA, and had a higher siRNA loading
efficiency than chitosan hydrochloride (Katas and Alpar, 2006).
The amount of dsRNA at a certain point within the RCNPs plays

a fundamental role in host cell transfection efficiency, whereas
more concentration of dsRNA will increase the diameter of the
particles and form an aggregation, and will decline the transfection
(MacLaughlin et al., 1998; Romøren et al., 2003; Zhao et al., 2006;
Mao et al., 2010). Chitosan can be employed as a dsRNA-chitosan
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TABLE 1 RNAi-chitosan biopesticides: current status against pest insects.

Insect species Target gene Nanomaterial dsRNA/siRNA/miRNA Delivery method References

Anopheles gambiae Chitin synthase 1 and Chitin
synthase 2

Chitosan dsRNA Feeding by diet Zhang et al., 2010;
Zhang et al., 2015

Aedes aegypti Semaphorin-1a Chitosan siRNA Feeding by diet Mysore et al., 2013

Aedes aegypti Vacuolar-sorting protein
SNF7 and SRC

proton-oncogene

Chitosan dsRNA Feeding by diet Das et al., 2015

Aedes aegypti Vestigial (vg) Chitosan dsRNA Feeding by diet Kumar et al., 2016

Aedes aegypti Inhibitor of apoptosis Chitosan-sodium
tripolyphosphate

dsRNA Feeding by diet Dhandapani et al.,
2019

Spodoptera frugiperda Inhibitor of apoptosis Chitosan dsRNA Feeding by diet Gurusamy et al.,
2020a

Ostrinia nubilalis lethal giant larvae protein
(OnLgl; MT467568)

Chitosan dsRNA Feeding by diet Cooper et al., 2020

Chilo suppressalis Glyceraldehyde-3-phosphate
dehydrogenase

Chitosan dsRNA Feeding by oral drinking Wang et al., 2020

Helicoverpa armigera Acetylcholinesterase (AChE) Chitosan dsRNA Feeding by topical spray Kolge et al., 2021

Helicoverpa armigera Lipase and chitinase Chitosan dsRNA Feeding by diet and leaf Kolge et al., 2023

Nilaparvata lugens Chitin synthase A Rosin-modified PEG
and chitosan

dsRNA Feeding by topical
application

Lyu et al., 2023

complex as well as a coating material for symbiotic microbes that
express dsRNA to provide a flexible technology platform for the
management of forest insect pests (Figure 1; Mao et al., 2010; Joga
et al., 2021; Riseh et al., 2022).

RNAi-chitosan biopesticides: current
status

RNAi-chitosan nanopesticides extend to precision use due
to their minuscule dimensions, high surface area, enhanced
permeability, thermal stability, dispersion, and biodegradability to
improve forest yield and to control target action based on insect
pests or microbes infection (Figure 1; Adisa et al., 2019; Kumar
et al., 2019). For applying RCNPs in forestry, several methods
like foliar application, trunk injection, and soil drenching can be
considered (Figure 1; Joga et al., 2021; Mogilicherla et al., 2022).
Chitosan nanoparticle-mediated RNAi has been developed over the
last 10 years as an alternative to traditional pest control methods
(Table 1).

The formulations of RCNPs have significant potential to
control the attack of several common pests like aphids, moths, and
beetles (Sahab et al., 2015; Gurusamy et al., 2020a). Silencing of the
CHS1, CHS2, semaphorin-1a, and vestigial (vg) genes by feeding
chitosan-dsRNA nanoparticles to mosquitoes (Anopheles gambiae
and Aedes aegypti) showed more pesticide-susceptible (Zhang
et al., 2010, 2015; Mysore et al., 2013; Kumar et al., 2016). Our
group and colleagues successfully knocked down the target genes
(CAD, AMN, CHS, JHAMT, AMY, V-ATPase, IAP1, V-ATPase B,
Sec23, SNF7, and SRC) using chitosan-dsRNA nanoparticles and
observed decent mortality in A. aegypti and Spodoptera frugiperda
(Das et al., 2015; Gurusamy et al., 2020a). Also, the complexes
of chitosan-sodium tripolyphosphate-dsRNA (CS-TPP-dsRNA)

showed improved mortality in A. aegypti (Dhandapani et al., 2019).
In another study, the chitosan-dsRNA nanopesticides showed good
stability, cellular uptake, and mortality in Chilo suppressalis (Wang
et al., 2020). Helicoverpa armigera was significantly controlled
when RCNPs were applied topically to chickpea plants (Kolge
et al., 2021). Additionally, RCNPs were stable for 5 days on leaf
surfaces, effectively protected from nuclease degradation and insect
gut pH, and efficiently knocked down the targeted genes (JHAMT
and AChE), resulting in 100% insect mortality, whereas the non-
targeted insects like Spodoptera litura and Drosophila melanogaster
were unaffected and showed no signs of toxicity (Kolge et al., 2021,
2023). A recent study demonstrated that topically applying dsRNA-
coated with rosin-modified PEG and chitosan (dsRNA/ROPE@C)
to Nilaparvata lugens (Brown plant hopper) causes excellent gene
knockdown and mortality (Lyu et al., 2023). Recently, our team
created chitosan-dsRNA nanopesticides, fed them to bollworms
(Earias vittella), and observed considerable target gene knockdown
and mortality (Sandal et al., 2023). Additionally, the price drop
from $12500 to $2 for 1 g of dsRNA has increased the likelihood
that RNAi technology will be applied in the field (Zotti et al.,
2018). Our colleagues successfully applied bacterially expressed
dsRNA in a tropical setting and observed a significant reduction in
Colorado potato beetle (CPB) infection (Máximo et al., 2020; Petek
et al., 2020). Most recently, researchers developed an RNAi-based
biopesticide known as “ledprona” against the CPB, which inhibits
enzyme expression, facilitates protein breakdown, and ultimately
causes mortality (Pallis et al., 2023). These investigations could pave
the path for creating and using RCNPs as a safe, effective, and novel
way to protect crops and forest trees.

Furthermore, researchers used the chitosan domain to
encapsulate metal-based nanoparticles (Ag, Au, Fe, Co, Cu,
TiO2, ZnO, SiO2, and CaCO3) to increase plant resilience to
salt, drought, and heavy metal environments (Souri et al., 2017;
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Behboudi et al., 2019; Sen et al., 2020; Ali et al., 2021; Sheikhalipour
et al., 2021) and improve their health for protecting themselves
from other biotic stresses (Naidu et al., 2023). The previous
studies successfully used double-layered hydroxide (LDH), carbon
quantum dots (CQD), branched amphiphilic peptide capsules
(BAPCs), and lipid nanoparticle-based dsRNA formulations
to address biotic stress caused by insects (Mitter et al.,
2017; Christiaens et al., 2020; Gurusamy et al., 2020b; Kaur
et al., 2020). Such findings encourage researchers to adopt
similar approaches to improve forest health. However, the
above-mentioned nanomaterials have some limitations, i.e.,
manufacturing synthetic nanomaterials is expensive, and excessive
nanoparticle concentrations may negatively impact forest soil
health and microfauna. Dedicated studies can evaluate the
feasibility of these nanoparticles in forest protection.

Chitosan encapsulated microbes: new
hope against forest insect pests

Chitosan is frequently utilized as a carrier for encasing
microbial agents because of its ability to take the form of
particles, films, capsules, gels, fibres, and porous forms and its
unquestionable success in field applications (Lakkis, 2016; Saberi
Riseh et al., 2021). Three potential methods (diffusion, osmotic
burst, and erosion or breakdown) will work separately or together
and release the microbial substances from chitosan encapsulations.
Encapsulating chitosan-microbes (chitosan-ATCC393 and
chitosan-139S1) can protect against several environmental
challenges (Li et al., 2011; Vejan et al., 2019). Moreover, the
Harpinpss-chitosan, BMI-chitosan, B. thuringiensis-chitosan,
B. cereus-chitosan, E. fergusonii-chitosan, B. thuringiensis-chitosan,
and Pseudomonas-chitosan encapsulations tested on tomato,
soybean, cotton, tobacco, bean, corn, and Hyaloptera peroni
plants showed a reduction in egg-laying in female insects,
thereby reducing the population and insect damage (Badawy and
El-Aswad, 2012; Zeng et al., 2012; Chandrashekharaiah et al.,
2015; Sahab et al., 2015; Badawy and Rabea, 2016; Kitherian,
2017; Ureña Saborío et al., 2017; Nadendla et al., 2018; De
Oliveira et al., 2021). Based on the aforementioned findings,
RNAi molecules expressed in microbes that can be encapsulated
with chitosan are a viable technology and can be used as RNAi-
biopesticides in forest pest management (Figure 1). However,
such potential demands further dedicated studies and pilot field
experiments.

Chitosan-symbiont-mediated RNAi
(CSMR): an appealing idea

SMR is a potent tool, and researchers have developed
endogenous symbionts to express target dsRNAs for insect
control (Chen et al., 2015; Hu and Wu, 2016; Whitten
et al., 2016; Hu and Xia, 2019). Recent research identified the
bacterial symbionts, used them to express dsRNA effectively,
and controlled the two evolutionarily divergent insect species
(R. prolixus and F. occidentalis) (Whitten et al., 2016). Additionally,
entomopathogenic fungi were identified and used to induce

fungal-induced gene silencing (FIGS) in the insects B. tabaci
and L. migratoria (Chen et al., 2015; Hu and Xia, 2019). Our
colleagues from the United States are deploying fungal-induced
gene silencing (FIGS) technology to manage bark beetles, i.e.,
genetically modifying the bark beetle-associated yeast Ogataea
pini, to generate specific dsRNA molecules that target Ips
calligraphus (information based on personal communication).
Our team has also successfully identified and isolated insect-
symbiotic bacteria and fungi (Chakraborty et al., 2020a,b, 2023b)
and may use them as a CSMR for tropical application to
control the bark beetles and termites (Gupta et al., 2023).
Recently, our group identified 69 core bacterial genera and
19 fungal genera among six bark beetles (Ips typographus, Ips
duplicatus, Ips cembrae; Ips sexdentatus, Ips acuminatus, and
Polygraphus poligraphus). Notably, the most abundant bacterial
genera were Erwinia, Sodalis, Serratia, Tyzzerella, Raoultella,
Rahnella, Wolbachia, Spiroplasma, Vibrio, and Pseudoxanthomonas
whereas the most abundant fungal genera belong to the phylum
Ascomycota (Chakraborty et al., 2020a,b, 2023a). Further, our
group focused on exploring how varying ages of Norway spruce
wood and different terpene concentrations affect the microbial
compositions associated with two termite species, Reticulitermes
flavipes and Microcerotermes biroi (Chakraborty et al., 2023b).
In termite-infested wood samples, the relative abundance of
bacterial genera like Pseudomonas, Massilia, and Rhizobium was
high, and Spirochaeta and Treponema revealed notable changes
in relative abundance between these two species. Moreover,
within termite-infested wood, fungal communities affiliated with
the Eurotiales, Sordariales, Hypocreales, Trichospornales, and
Ophiostomatales orders were identified, notably, the fungal
genera Apiotrichum, Fusarium, Hawksworthiomyces, Lasiodiplodia,
Sporothrix, Trichosporon, and Trichoderma displayed substantial
prevalence in the termite-infested wood. As described thoroughly
in our recent review, some identified microbial associates of bark
beetle or termites can be good candidates for Symbiont-mediated
RNAi or SMR (Gupta et al., 2023). Nevertheless, SMR technology
can be considered for its potential in forest conservation; additional
refinements are necessary before applications.

Environmental risks and regulatory status
of RNAi-chitosan biopesticides

In order to increase forest production and health, RCNPs will
be utilized more frequently in forestry and dispersed into the
environment. Due to their biodegradable nature, these substances
may not harm non-target organisms; they may not bioaccumulate
and not interact with other environmental contaminants and
dissolved organic matter, which means they will not harm the
environment as well as humans and animals (Chandy and Sharma,
1990; Aspden et al., 1997; Rao and Sharma, 1997). RNAi-
biopesticides made of chitosan are easily dissolved in nature and
unable to accumulate in the food chain, stunt plant growth, or
potentially harm people and animals. Although studies have shown
that nanoparticles pose a risk to the environment, they have also
sparked much interest in environmental cleanup (Roy et al., 2021).
Therefore, more research is necessary to comprehend RCNPs and
their relationship to the environment thoroughly. Understanding
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the characteristics of various RNAi-chitosan bioformulation is
crucial, as is making comparisons between pure active ingredients
and both nanoformulations and traditional formulations to see how
the behaviour of the active components changes (Kah et al., 2018).

Future of RCNPs in forestry: a long way
to go

Applications for RCNP in the forest have numerous obstacles,
including developing different delivery strategies for various
microbes and insect pests, facilitating plant uptake and in planta
systemic movement of RCNPs, looking for synergistic effects,
such as dsRNAs targeting multiple genes and combining RNAi
with other pest control methods, and establishing a congruent
confluence, building a regulatory framework that is widely accepted
for the commercialization, therefore lowering the price for their
widespread use. Recently, RCNPs were used in the field, and
the result demonstrated their compact size, cationic charge,
effective loading, resistance to degradation, effective cellular uptake,
stability, and adhesion to leaf surfaces (Petek et al., 2020; Kolge
et al., 2021, 2023). Few RNAi-based insecticides have so far been
licensed and will soon be available on the market (Li et al., 2023;
Pallis et al., 2023).

The advancement of RNAi-nanotechnology has been beneficial
to forestry. However, strict controls are in place for forests to ensure
the security of feed and food sources, possible risks to human and
animal health, non-target organisms and beneficial microbes, and
the long-term environmental effects of the deliberate release of
RNAi-nanomaterials (Kumar et al., 2019; Gilbertson et al., 2020;
Hofmann et al., 2020; Mogilicherla et al., 2022). The European
Union is developing regulatory rules for engineered RNAi-
nanomaterials in forestry food safety (Lowry et al., 2019). Preparing
regulatory guidelines for RNAi-nanomaterials is more difficult due
to several factors, including the difficulty in defining nanomaterials,
tracing their sources and transport pathways, quantifying them
in environmental samples, assessing their bioavailability, and
interpreting their toxicity (Lai et al., 2018; Hofmann et al., 2020;
Gottardo et al., 2021). Under such circumstances, creating cutting-
edge analytical methods for regulatory purposes is necessary.

The capacity of researchers and scientists to develop forest
pest-specific dsRNAs will increase as more omics data for
forest insects, helpful microorganisms, and non-target organisms
become accessible and help to reduce possible risks. Fortunately,
our group and CZU colleagues (CZU, Prague) have recently
involved forest insects (bark beetles and termites) genome
and transcriptome sequencing and their symbiotic microbes
transcriptome sequencing, which along with other excellent efforts
from colleagues worldwide, will significantly enhance sequence
information on forest insect pests and facilitate future species-
specific RNAi-based biopesticides development.

Conclusion

RCNPs may replace currently used pesticides since they
are biodegradable, biocompatible, and low toxicity (Figure 1).
Chitosan nanoparticles can encapsulate different RNAi molecules
(dsRNA/siRNA) and RNAi-symbiotic microbes and form RCNPs.

They are more effective and have better bioavailability, a longer
half-life, and a higher surface-to-volume ratio and act as a bio-
stimulant used to combat microbial illnesses and insect pests
in forest management. RCNPs can be applied in forests using
various techniques, including foliar application, trunk injection,
and soil drenching. Based on current findings, using RCNPs
can also increase forest productivity, protect forests from insect
pests, and extend their commercialization. However, research
on product development and technique optimization is required
before commercial manufacture and environmental application.
Nevertheless, this perspective will provide new direction to the
research community working on forest protection and enhance
their interest in using alternative approaches, such as deploying
molecular toolboxes against forest insect pests.
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