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of silvopastoral systems in the low 
hilly area of western Henan 
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The low hilly area is a major landform in the west of Henan province, China, and 
it is suffering soil and water loss because of human activities. The silvopastoral 
system that combines trees and grasses has been widely used to restore this 
fragile area. We conducted in situ field experiments in 2011 in the low hilly area 
of Henan province involving pure forests of Populus simonii (PS; Salicaceae), 
Platycladus orientalis (PO; Cupressaceae), Quercus variabilis (QV; Fagaceae), 
and Robinia pseudoacacia (RP; Fabaceae), and also with each forest tree species 
being combined with Medicago sativa (MS; Fabaceae) as silvopastoral systems, 
i.e., PS-MS, PO-MS, QV-MS, and RP-MS, respectively. We recorded tree diameter 
at breast height (DBH) and tree height (TH) in the years 2014–2016, 2018, 2020, 
and 2022 for all the different vegetation types. Tree biomass load (TBL, i.e., tree 
biomass per unit area) was estimated based on DBH and TH using allometric 
equations for each tree species. Generally, the results showed that the DBH, TH, 
and TBL were promoted in the silvopastoral systems PS-MS, PO-MS, and QV-MS. 
Specially, the DBH and TBL of PS-MS and PO-MS tended to be higher and were 
significantly higher than the pure forests of PS and MS, respectively, in 2014–2016; 
the silvopastoral systems were not significantly different from the pure forests for 
DBH in 2018 and 2022, and for TBL in 2018 and 2020. TH was lower in PS-MS and 
PO-MS than that in PS and PO in 2014–2016, while there was no difference of 
TH between PS-MS and PS in 2018 and 2022, and TH was higher in PO-MS than 
that in PO in 2018, 2020 and 2022. The DBH, TH, and TBL were all higher in QV-
MS than QV. The TBL in RP-MS was non-significant or lower compared to that 
in RP. Moreover, TBL tended to be lower in upslope positions than downslope in 
the pure forests, while there was no difference in most silvopastoral systems. In 
summary, PS and PO may be suggested as the tree species selection in vegetation 
restoration processes for about five years, QV may be a better alternative for a 
long term, while RP is not recommended.
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1 Introduction

Low hilly areas cover about 28% of China with an elevation of 
200–500 m (Li et  al., 2023; Xiao et  al., 2023). This landform is 
characterized as a species reservoir of plants and invertebrates (Chen 
and Cao, 2014), with the main ecological functions of conserving 
water resources and preventing soil erosion (Chen et al., 2007, 2019). 
However, these areas are experiencing water and soil loss because of 
human activities (i.e., overgrazing, firewood mining, stone mining, 
and tree over-cutting; Zhang et al., 2018; Minea et al., 2022), resulting 
in the soil becoming barren with stones. The serious soil erosion of the 
low hilly areas has side effects on ecosystem health and ecosystem 
services, e.g., soil quality degradation, biodiversity decreases, and 
carbon release (Kihara et al., 2020).

Pure forests and silvopastoral systems (i.e., forest and grass 
composite systems, see Nair, 1985) have been widely used to restore 
these ecologically fragile areas (Grewal et al., 1994; Chebli et al., 2021; 
Olaya-Montes et al., 2021). Compared to pure forests, silvopastoral 
systems can often increase soil fertility (Amatya et al., 2002; He et al., 
2013; Fuchs et  al., 2022) and increase herbaceous plant/animal 
biodiversity (Wyss, 1996; Kong et  al., 2001; Santos et  al., 2019). 
However, most studies are confined to the effect of silvopastoral 
systems on soil quality, and the responses of tree growth to 
silvopastoral systems are not well examined in low hilly areas.

Silvopastoral systems can increase the utilization rate of light 
energy and promote the forest tree growth, improving its economic 
yield. For example, some studies have shown that planting herbage, 
especially leguminous species in young woodland or open woodland, 
can significantly promote the forest tree growth, shorten the closure 
years, and improve woodland productivity (Clason, 1998). The tree-
trunk circumference of the apple–alfalfa composite system increased 
compared with the clearing areas (Fan et al., 2004), and there was a 
higher tree height in Populus sp. (Salicaceae) × Melilotus alba 
(Fabaceae) than in the pure forest (Yin et al., 1994). Nevertheless, 
other studies have shown that the intercropping of forest and grass 
has negative effects on tree growth. For example, alfalfa may affect the 
diameter growth and branch length of Juglans regia (Juglandaceae) 
due to the competition for water and nutrients (Paris et al., 1995). 
These results collectively show that tree growth may respond in 
complex ways to different planting systems. However, the response of 
tree growth to silvopastoral systems is not well examined under long-
term monitoring. Considering that the reciprocal/competition 
relationship between the tree and the herbaceous plants (Muthuri 
et al., 2005), the responses of tree growth to silvopastoral systems in 
the long term in the context of climate change and anthropogenic 
disturbance may provide guidance for the orderly restoration in low 
hilly areas.

We restored the vegetation of silvopastoral and pure forest systems 
on a slope of a low hilly area of Henan province over a long-term scale 
of about ten years. We assumed that (1) the diameter breast height 
(DBH), tree height (TH), and tree biomass load (TBL) may be higher 
in the silvopastoral systems than the pure forests, and (2) the growth 
rate in the silvopastoral systems may be higher than the pure forests. 
Moreover, given that, compared to pure forests, the higher plant cover 
of the silvopastoral systems can decrease surface runoff, thus retaining 
water and soil on the low hilly slopes (Olsson et al., 2009; Sepúlveda 
and Carrillo, 2015; Mackay-Smith et al., 2022), we assumed that (3) 
the tree biomass would be higher in the downslope areas than the 

upslope areas in the pure forests, while there may be no difference of 
tree biomass among slopes in the silvopastoral systems.

2 Materials and methods

2.1 Study sites

The study was conducted in the low hilly region of western Henan 
Province (E112°40′, N33°45′). The altitude is ca. 220 m with an annual 
rainfall of 800–950 mm and an average annual temperature of 
13–14°C. The dominant tree species are Albizzia kalkora (Fabaceae), 
Platycarya strobilacea (Juglandaceae), Platycladus orientali 
(Juglandaceae), Populus simonii (Salicaceae), Quercus aliena 
(Fagaceae), Quercus glandulifera (Fagaceae), Quercus variabilis 
(Fagaceae), and Robinia pseudoacacia (Fabaceae). The dominant 
herbaceous species are Carex lanceolata (Cyperaceae), Carex rigescens 
(Cyperaceae), Cyperus rotundus (Cyperaceae), Dendranthema indicum 
(Asteraceae), Melica scabrosa (Poaceae), and Phlomis umbrosa 
(Lamiaceae). The common planted trees are Q. variabilis, P. orientali, 
P. simonii, and R. pseudoacacia (Liu et al., 2014).

2.2 Experimental design

The study site was built on a homogeneous wasteland with a slope 
of 22° that had not been used for more than 20 years. The wasteland 
is covered by loam soil with a volume proportion of 15–20% of gravels 
in soil depth 0–50 cm, with almost no trees and grass. The few saplings 
and grass were removed. Common trees were selected, including the 
P. simonii, P. orientalis, Q. variabilis, and R. pseudoacacia. Q. variabilis 
and R. pseudoacacia are endemic, and P. simonii and P. orientalis are 
exotic. Previous studies have proved that nitrogen-fixing plants (e.g., 
Medicago sativa) can serve as pioneer species in barren hills in 
vegetation restoration (Yang et al., 2020) because they can increase the 
soil quality (e.g., soil nutrients and moisture; Li and Liber, 2018). In 
the study site, 10 plots were designed horizontally along the contour 
line, including: one M. sativa (MS); four silvopastoral systems: 
P. simonii × M. sativa (PS-MS), P. orientalis × M. sativa (PO-MS), 
Q. variabilis × M. sativa (QV-MS), and R. pseudoacacia × M. sativa 
(RP-MS); four pure forest areas: PS, PO, QV, and RP; and one plot as 
a control (CK). Each plot had an area of 300 m2 (20 m length × 15 m 
width) with 3 m isolation zones from each other. Every plot was 
divided into a total of 12 subsections, each with an area of 25 m2 (5 m 
length × 5 m width; see Supplementary Figure S1). The slopes along 
the contour line were further divided into four plots, i.e., S1, S2, S3, 
and S4, with each plot being 75 m2 (5 m length × 15 m width).

2.3 Tree biomass

The tree saplings for each species were uniform in thickness 
during the initial period of experimental plot construction in 2011. 
Each of the plots was planted with eight lines of trees for a total of 80 
trees, and each slope included two lines of trees. The M. sativa in each 
silvopastoral system was sown with a sowing rate of 22.49–37.48 kg/
ha along the contour (see Supplementary Figure S1).
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In order to address the responses of tree growth, in the year of 
2014–2016, 2018, 2020, and 2022, the diameter at breast height (cm; 
DBH) was recorded using a diameter-at-breast-height ruler (HYSTIC 
gnjz-680, Beijing) with an accuracy of 0.1 cm. Tree height (m; TH) was 
estimated using a Blume-Leiss Model BL6 ALTIMeter. The tree 
biomasses of PS, PO, QV, and RP were estimated based on DBH and 
TH, incorporating the allometric equations of previous studies (Liu 
et al., 1998; Li et al., 2007; Wang et al., 2009; Niu et al., 2017), and the 
whole individual tree biomass (WT) for each tree species including 
parts of the trunk, roots, and leaves was obtained (see 
Supplementary Table S1). Due to data loss of the downslopes of the 
pure forest of P. simonii in 2020, we only calculated the biomass of PO, 
QV, and RP in this year. To compare the tree biomass between the 
silvopastoral systems and pure forests, the tree biomass load (TBL) 
was defined as the biomass per individual tree per unit (g m−2):

 1
,T /BL

k
TW k=∑

where k is the number of individuals of trees on a slope and WT is one 
individual tree biomass.

2.4 Alfalfa biomass

In order to measure the alfalfa biomass, we  randomly placed 
twelve 1 m × 1 m quadrats in each plot, each of which were divided into 
10 × 10 cm grids to facilitate estimates of plant abundance in October 
2015 and 2016. We then recorded species presence and abundance. 
Moreover, we harvested aboveground plant organs by clipping using 
scissors. Then, all the aboveground plant organs were divided into 
individual plant species by hand-sorting. The aboveground plant 
biomass for each plant species was weighed after drying for 72 h 
at 65°C.

2.5 Soil nutrients

A total of 96 soil cores were collected from the 0–20 cm soil layer 
using a soil auger of 100 cm3 in each subsection of silvopastoral 
systems and pure forests in these years. The soil nutrient contents of 
soil total nitrogen were examined for the years 2014, 2016, 2018, 2020, 
and 2022, and soil total carbon only for 2018, 2020, and 2022. The soil 
samplings were firstly crushed, and then the gravels and other 
impurities were removed. Then the soil was naturally dried in the 
shade and passed through a 100 mesh screen (0.149 mm). A CHNOS 
Elemental Analyzer (Vario Macro Cube; specific instructions on www.
elementar.de) was used to determine the soil total carbon and nitrogen.

2.6 Data analysis

To approach normality, the DBH, TH, TBL, and soil nutrients 
were log (x + 1)-transformed. The t-test was used to determine the 
differences in DBH, TH, and TBL between PS-MS and PS, PO-MS 
and PO, QV-MS and QV, and RP-MS and RP in different years. In 
order to compare the tree growth rate between the silvopastoral 

systems and corresponding pure forests, the allometric relationships 
between TBL and years (the years 2014–2016, 2018, 2020, and 2022 
were defined as 1–6) in different vegetation types were established. 
The slopes were assessed by the function “diffslope” in the package 
“simba” in the R platform (Jurasinski and Retzer, 2015). In addition, a 
linear regression equation was used to determine whether the soil 
total carbon and total nitrogen could significantly account for the 
nutrient retention capacity in the silvopastoral systems.

The changes in relative alfalfa biomass were calculated using the 
formula: RAlf = (SilAlf – PurAlf)/ SilAlf, where SilAlf and PurAlf are the alfalfa 
biomass in the silvopastoral systems and pure forests, respectively. The 
changes in relative tree growth of DBH, TH, and TBL were calculated 
using RDBH = (SilDBH – PurDBH)/ SilDBH, RTH = (SilTH – PurTH)/ SilTH, and 
RTBL = (SilTBL – PurTBL)/ SilTBL, where SilDBH, SilTH, and SilTBL are the 
diameter at breast height, tree height, and tree biomass load in the 
silvopastoral systems, respectively, and PurDBH, PurTH, and PurTBL are 
those in pure forests, respectively. RAlf, RDBH, RTH, and RTBL were all 
standardized to mean = 0 and variance = 1 (z-score transformation) 
using the function “decostand” in the package “vegan” (Oksanen et al., 
2019). In order to test whether the alfalfa biomass affected tree growth, 
a linear regression equation was used to determine the relationships 
between RAlf and RDBH, RTH, RTBL for the years 2015 and 2016.

All the statistical analyses were conducted in R v4.0.0 (R Core 
Team, 2020).

3 Results

The DBH and TBL of PS-MS and PO-MS were significantly 
higher than the PS and PO in 2015 and 2016, whereas there were no 
differences in 2018 and 2022 (except DBH and TBL between PO-MS 
and PO in 2022). From 2014 to 2016, the TH in the silvopastoral 
systems of PS-MS and PO-MS were (almost all significantly) lower 
than those in the pure forests of PS and PO, whereas there was a trend 
in 2018 and 2022 that the TH in PS-MS and PO-MS was not 
significant with PS and PO or higher than PS and PO, indicating that 
the TH showed a higher growth rate in silvopastoral systems. The 
DBH, TH, and TBL in QV-MS were all higher in QV-PS than those in 
QV. From 2014 to 2016, TH tended to be higher in RP-MS than in RP, 
whereas the DBH was higher in RP than in RP-MS, and there was no 
difference for the TBL between RP-MS and RP. In 2018, 2020, and 
2022, the TH was not significantly different between RP-MS and RP, 
the DBH tended to be lower in RP-MS than in RP, and the TBL was 
non-significantly different between RP-MS and RP (except in 2020 
when it was lower in RP-MS than in RP; see Figure 1).

The TBLs were all significantly positive with the increasing 
planting years (2014–2016, 2018, 2020, and 2022) in both the 
silvopastoral systems (Figures  2A,C,E,G) and pure forests 
(Figures  2B,D,F,H). In all the years, the growth rate of TBL was 
significantly higher in the PS-MS and PO-MS than in the PS and PO 
(p = 0.028 and 0.01, respectively; Figures  2A–F), while it was 
significantly lower in QV-MS than in QV (p = 0.038; Figures 2E,F), 
and the RP-MS was non-significantly different from RP (p = 0.209; 
Figures  2G,H). Moreover, the pattern of growth rate between the 
silvopastoral systems and pure forests from 2014 to 2016 was similar 
to that in the whole experimental period (PS-MS vs. PS: p = 0.001; 
PO-MS vs. PO: p = 0.001; QV-MS vs. QV: p = 0.001; RP-MS vs. RP: 
p = 0.392).
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FIGURE 1

Variations in diameter breast height (A–F), tree height (G–L), and tree biomass load (M–R) with increasing years. Different lowercase letters above the 
error bars denote statistically significant differences between PS-MS (Populus simonii × Medicago sativa) and PS, between PO-MS (Platycladus 
orientalis× Medicago sativa) and PO, between QV-MS (Quercus variabilis× Medicago sativa) and QV, and between RP-MS (Robinia pseudoacacia × 
Medicago sativa) and RP. The differences between means are non-significant if no letters are provided in each panel.
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Both the change in relative DBH and change in relative TBL 
manifested a significant positive correlation with the change in relative 
alfalfa biomass (p < 0.001, Figure  3A; p = 0.022, Figure  3C, 
respectively), but the change in tree height was not significantly 

associated with the change in relative alfalfa biomass (p = 0.234, 
Figure 3B). The alfalfa species was not found since the year 2018.

Almost all the TBLs of PS-MS and PS were higher in the 
downslopes (or S3 + S4) than the upslopes (or S1 + S2) in all years. In 

FIGURE 2

Log–log bivariate plots for the relationships between the year and tree biomass load of PS-MS [Populus simonii × Medicago sativa] (A), PS (B), PO-MS 
[Platycladus orientalis × Medicago sativa] (C), PO (D), QV-MS [Quercus variabilis × Medicago sativa] (E), QV (F), RP-MS [Robinia pseudoacacia × 
Medicago sativa] (G) and RP (H) (original units for year and tree biomass load are ind. and mg m−2, respectively). Each point represents the biomass per 
individual tree per unit for all the relationships.
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the PO-MS, QV-MS, and RP-MS, most of the TBLs in the slopes 
showed no differences in all the years, whereas the TBLs were higher 
on downslopes (or S3 + S4) than on upslopes (S1 + S2) in the PO, QV, 
and RP (Figure 4).

The TBL was all significantly positive with soil total nitrogen in 
pure forests in 2018, 2020, and 2022 (Figures 5C,E,G) and with soil total 
carbon in 2018, 2020, and 2022 (Figures 5D,F,H), while TBL was not 
significantly associated with soil total nitrogen in the silvopastoral 
systems in 2014, 2016, 2018, 2020, and 2022 (Figures 5A–C,E,G) and 
with soil total carbon in 2018, 2020, and 2022 (Figures 5D,F,H).

4 Discussion

Silvopastoral systems have been regarded as sustainable 
restoration ways to improve soil quality (Polanía-Hincapié et  al., 
2021), species diversity (Barros et al., 2018), and tree growth (Ares 
et al., 2003). This study is one of the first studies to explore the tree 
growth of silvopastoral systems compared to pure forest systems over 
a long-term period. Consistent with our hypothesis, the tree growth 
has been generally improved in the silvopastoral systems, although the 
effect varies with time duration (i.e., PS-MS and PO-MS systems 
performed well in the first five years, and the QV-MS always 
performed well during the entire experimental period). Through 
monitoring of the tree growth in different restored vegetations, this 
study provides experimental evidence on tree species choice.

Our results showed that the DBH and TBL were higher in the 
silvopastoral systems of PS-MS and PO-MS than in the pure forests of 
PS and PO in the years 2014–2016, consistent with previous studies 
(Meng et al., 1994). This may be due to the fact that M. sativa may 
generally form nodules attacked by rhizobia with increasing years 
which can increase the nitrogen fixation rate (Manchanda and Garg, 
2007). A higher N content in silvopastoral systems promotes the 
growth of DBH significantly, and the effect on the DBH growth of 
poplars is parabolic (Yang et al., 2018), resulting in no difference of 
PS-MS vs. PS and PO-MS vs. PO at the later stage (e.g., 2018 and 2022).

TH may respond slowly to the effects of the silvopastoral systems 
of PS-MS and PO-MS; this is indicated by a lower TH in PS-MS and 
PO-MS than in PS and PO in 2014–2016, while there was no difference 
between them in 2018 and 2022. This indicated that the effects on tree 
height mainly occurred in the late stages of the silvopastoral systems. 
It is likely that the rapid growth duration of tree height occurred later 
than that of DBH, and the application of M. sativa is conducive to the 
cultivation of large diameter wood (Shi et al., 2013).

Generally, the tree biomass was not significantly different or lower 
in the RP-MS silvopastoral system compared with RP. This is because 
the DBH tended to be lower in RP-MS than in RP, while the TH of RP 
was higher or non-significant in RP-MS compared with RP. The most 
likely reason may be that the canopy closure may be promoted in an 
early year in the silvopastoral system (Clason, 1998), and the canopy 
closure affected the diameter at breast height more than the tree height 
(Guo et al., 2010). Therefore, thinning is necessary to reduce the black 
locust tree canopy closure in tree planting.

M. sativa tends to have a positive effect in the first 5–6 years after 
restoration. This may be in relation to the growth of M. sativa. As a 
perennial forage, M. sativa has its highest yield in the 3–5 years after 
planting and gradually decreases after >6 years (Li and Shao, 2005). In 
the study, tree growth was associated with the alfalfa biomass, and this 
is indicated by a positive relationship between the change in relative 
alfalfa biomass and the change in relative diameter at breast height and 
tree biomass load. However, the alfalfa species was not found since 
2018, indicating a rapid community succession in the ecologically 
vulnerable areas such as the low hilly areas. Moreover, the planting of 
M. sativa can significantly accelerate the natural succession process of 
vegetation with increasing years, and the invasion of herbaceous plants 
in the late growth stage of M. sativa will lead to the increase in plant 
species diversity. For example, M. sativa grassland can naturally succeed 
into a stable prairie community in 10 years (Stipa bungeana community) 
(Li et  al., 2006). Considering that M. sativa may facilitate plant 
communities and soil conditions and interact with trees reciprocally or 

FIGURE 3

Relationships of the change in relative diameter at breast height (A), 
change in relative tree height (B), and change in relative tree biomass 
load (C) against the change in relative alfalfa biomass.
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competitively (Muthuri et al., 2005), these factors may collectively have 
an effect on tree growth. Further studies should be conducted to explore 
the mechanisms of tree growth involving these factors.

In this study, DBH, TH, and TBL were all higher in QV-MS than 
in QV in all years. The main reason may be that the Chinese cork oak 
has obvious deeper roots compared to M. sativa, and the oak has a 
strong ecological adaptability, resulting in a better ability to retain 
water and cement soil (Gautam et al., 2002; Ma et al., 2013; Jia et al., 
2022). Moreover, trees with allelopathic effects on herbaceous plants 
mostly belong to Quercus spp. and may inhibit seed germination and 
radicle growth of understory grassland, as well as their competitive 
ability (Lodhi, 1976; Facelli et al., 1991).

The growth rates were higher in PS-MS and PO-MS than in PS and 
PO, indicating that the silvopastoral systems play a role in growth rates 
during the long term; similar results were also found in other plants of 

Pinus radiata (Gautam et al., 2002). The main reason may be that large 
amounts of soil water and nutrients may be  absorbed by the fast-
growing poplars (Lukac et  al., 2003; Randriamanana et  al., 2014). 
However, the growth rate of QV in the pure forest system was higher 
than that in QV-MS, and this may be due to the fact that the tree 
growth rate in QV-MS may have a relatively smooth growth in the early 
stages. Previous studies have shown that pure forests have 
inconspicuous growth in the first few years but a higher growth rate 
than mingled forests after more than 5 years (He et al., 2021). It is 
noteworthy that the effect was more pronounced in the first few years, 
but gradually diminished in the last few years, and this is mostly likely 
because of the decline of M. sativa as noted above. Therefore, it is 
suggested that rational topdressing is key to the high yields of M. sativa, 
and fertilization can also properly delay the M. sativa decline time (Li, 
2002; He et al., 2022), especially after planting for more than five years.

FIGURE 4

Variations in tree biomass load of slope positions of different vegetation types in different years of 2014 (A), 2015 (B), 2016 (C), 2018 (D), 2020 (E), 2022 
(F). The different lowercase letters within a plant type indicate a significant difference among slope positions at 0.05 level; the * indicates a significant 
difference between S1  +  S2 and S3  +  S4, and ns indicates a non-significant difference between S1  +  S2 and S3  +  S4.
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TBL tended to be higher in the downslope positions (S3, S4, or 
S3 + S4) than the upslope positions (S1, S2 or S1 + S2) in the pure 
forests, while there were no differences in TBL in most silvopastoral 

systems, indicating that M. sativa has a balanced effect on the tree 
biomass among the slope positions in the silvopastoral systems. This 
is presumably because the TBL was significantly positive with the soil 

FIGURE 5

Log–log bivariate plots for the relationships between soil total nitrogen and tree biomass load in years of 2014 (A), 2016 (B), 2018 (D), 2020 (F), 2022 
(H), and between soil total carbon and tree biomass load in years of 2018 (C), 2020 (E), 2022 (G) in silvopastoral systems and pure forests. Red points 
indicate the slopes of pure forests and blue points indicate the slopes of silvopastoral systems.
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total carbon and soil total nitrogen in the pure forests and was not 
significant in the silvopastoral systems, indicating that the silvopastoral 
systems have better nutrient retention capacities. Studies have shown 
that silvopastoral systems can reduce surface runoff through the 
interception of rainfall by herbaceous plants (Liu et al., 2008; Wang 
et al., 2012), and the effect may also be significantly enhanced with 
increasing planting years (Zhang et al., 2000; Xu et al., 2001). Thus, 
silvopastoral systems may contribute to an even tree growth, especially 
on the slope positions in low hilly areas.

5 Conclusion

In summary, tree growth could be an indicator for the effects of 
silvopastoral systems compared to pure forests. Specifically, the tree 
biomass load in the Populus simonii × Medicago sativa and Platycladus 
orientalis × Medicago sativa has a short-term growth effect, while 
Quercus variabilis × Medicago sativa may last for a longer term 
although the growth rate was lower in the silvopastoral system than 
the pure forest. As tree growth was not promoted in the pure forest of 
Robinia pseudoacacia, R. pseudoacacia may not be considered a 
suitable tree species for silvopastoral systems. Moreover, the tree 
biomass load showed no difference among slope positions in the 
silvopastoral systems, while it was higher on the downslope positions 
than the upslope positions in the pure forests, and this may 
be  associated with a better nutrient retention capacity in the 
silvopastoral systems than the pure forests.
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