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Introduction: Drought-associated tree mortality has been increasing worldwide 
since the last decades, impacting structure and functioning of forest ecosystems, 
with implications for energy, carbon and water fluxes. However, the understanding 
of the individual vulnerability to drought-induced mortality is still limited.

Methods: We aimed to identify the factors that triggered the mortality of the 
widely distributed Pinus sylvestris L. in an extensive forest area in central Spain. 
We compared radial growth patterns in pairs of alive and recently dead individuals 
that co-occur in close proximity and present similar age and size, thereby 
isolating the effects of size and environment from the mortality process. Temporal 
dynamics of growth, growth synchrony, and growth sensitivity to water availability 
(precipitation minus potential evapotranspiration) were compared between alive 
and recently dead trees.

Results and discussion: Over the last 50 years, although we did not detect 
significant differences in growth between alive and dead trees, an increase in the 
growth synchrony and sensitivity to water availability (i.e. slope of the climatic 
water balance in the growth model) was observed in all trees as drought intensity 
increased. 20 years before mortality, dead individuals showed lower growth 
synchrony and growth sensitivity to water availability than alive ones, without 
significant differences in growth. Recorded reduction in growth synchrony and 
growth sensitivity to water availability in dead trees suggests a decoupling between 
tree growth and climate, which could increase the risk of hydraulic failure and/
or carbon starvation under increasingly arid conditions. Thus, the use of reduced 
growth sensitivity to water availability as potential early-warning signal of tree 
mortality, together with reduced growth synchrony, should be further explored, 
particularly in pine species in seasonally dry areas.
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1. Introduction

The widespread increase in tree mortality has become one of the 
most serious threats to forest ecosystems worldwide over the past few 
decades (Allen et al., 2010; Millar and Stephenson, 2015; Greenwood 
et al., 2017). Increased aridity, along with extreme droughts and heat 
waves have been identified as the main drivers of tree mortality (Park 
Williams et al., 2013; Ruiz-Benito et al., 2013; Hammond et al., 2022). 
Moreover, both human management legacies and biotic agents can 
interact with climatic stressors, further increasing tree mortality 
(Linares et al., 2010; Anderegg et al., 2015; Sangüesa-Barreda et al., 
2015; McDowell et al., 2022). The impact of increasing tree mortality, 
particularly in the form of massive mortality events, extends beyond 
individual trees and can have far-reaching effects on ecological 
communities, ecosystem functioning and services, and land-climate 
interactions (Anderegg et al., 2013). High tree mortality can alter 
species composition and distribution, and ultimately shifts forest 
communities towards higher dominance of shrub species (Allen and 
Breshears, 1998; Peñuelas et al., 2007; Herrero et al., 2013; Herrero and 
Zamora, 2014; Allen et al., 2015; Ruiz-Benito et al., 2017). The loss of 
tree cover can also have significant implications for energy, carbon and 
water fluxes, and nutrient cycling (Hughes et al., 2006; Allen, 2007; 
Royer et al., 2011; Xiong et al., 2011; Anderegg et al., 2013).

The current importance of tree mortality in forest functioning and 
resilience triggered the study of the tree mortality process (e.g., 
McDowell et al., 2022). However, the understanding of underlying 
mechanisms of tree mortality and the development of robust early-
warning indicators remain limited due to complex interactions 
between drivers and involved processes (Camarero et  al., 2015; 
Cailleret et al., 2017; Hartmann et al., 2018; McDowell et al., 2022). 
Tree mortality has been widely linked to hydraulic failure and carbon 
starvation, with evidence suggesting that they are not mutually 
exclusive but interdependent (McDowell et al., 2011). In this regard, 
dendroecology provides valuable information to unravel the 
physiological mechanisms behind tree mortality and to develop early 
warning indicators (Cailleret et  al., 2017; Hartmann et  al., 2018). 
Dendroecological studies allow for easy observation of growth rates, 
widely used as an indicator of tree vitality (Dobbertin, 2005), for 
almost the entire lifespan of sampled individuals across extensive 
areas, which is key for assessing climatic effects on tree functioning. 
Additionally, synchrony in radial growth, defined as coincident 
increases or decreases in radial growth over time across individuals in 
a single population, has been widely used as a sign of forest 
vulnerability to climate change. In this context, high coincidence in 
growth patterns between individuals (i.e., higher correlation in tree 
growth among individuals) reveals the strong impact of climatic 
stressors (Boden et al., 2014; Shestakova et al., 2016). Overall, the 
study of temporal changes in tree growth responses to drought and 
warming can provide insights into individual tree predisposition 
to mortality.

The comparison of growth patterns between co-occurring dead 
and surviving trees has become a common method for understanding 
and modelling tree mortality (Pedersen, 1998; Ogle et  al., 2000; 
Cailleret et al., 2017). In many cases, a decline in growth prior to 
mortality has been observed, although the magnitude and duration of 
this decline varied depending on species’ functional characteristics 
and factors driving mortality (Gea-Izquierdo et  al., 2014, 2019; 
Cailleret et al., 2017). For example, while drought-tolerant species and 

trees that died due to competition showed strong and long-lasting 
growth declines, trees that died from biotic attacks often showed small 
and short-term reductions (Cailleret et al., 2017). Growth patterns 
prior to mortality can provide valuable information on the 
physiological mechanisms underlying the mortality process, as 
changes in tree function (e.g., hydraulic conductivity) and structure 
(e.g., leaf area) affecting tree growth often precede mortality 
(McDowell et al., 2011; Seidl et al., 2011). Growth synchrony can also 
serve as an early warning indicator of mortality. For example, Cailleret 
et al. (2019) showed a decrease in the synchrony of gymnosperm 
species 20 years before mortality. However, to make comparisons 
between alive and dead trees more robust, it is essential to standardize 
variables that may affect radial growth and its variability, such as tree 
size and biotic and abiotic effects (Muñoz-Gálvez et al., 2021; Neycken 
et al., 2022). Studies that compare growth patterns between alive and 
dead trees while controlling for these key variables may provide new 
insights into possible growth-based early warning indicators. Given 
the wide variety of species and population responses, types of climatic 
stress, and combinations of mortality drivers (Cailleret et al., 2017), it 
is necessary to take advantage of as many tree die-off events as possible 
in order to refine and expand the existing knowledge regarding the 
tree mortality process and mortality risk indicators.

Tree species at the limits of their distribution, such as temperate 
or boreal species in drought-prone Mediterranean areas, often face 
particularly adverse ecological conditions (Hampe and Petit, 2005; 
Hampe and Jump, 2011). This could be aggravated by the increasing 
magnitude and frequency of extreme drought events in Mediterranean 
areas projected by climate change scenarios (IPCC, 2021), making 
temperate and boreal species growing in Mediterranean areas 
especially vulnerable to drought-induced mortality (Galiano et al., 
2010; Herrero et al., 2013; Vila-Cabrera et al., 2013). Furthermore, 
reforestation and afforestation, and the abandonment of traditional 
forest management practices (e.g., tree harvest for wood fuel and 
forest clearing for cattle ranching) have increased the density of many 
Mediterranean forests, leading to increased inter-individual 
competition for water resources (Linares et al., 2010; Vila-Cabrera 
et  al., 2013) and ultimately to forest decline and mortality events 
(Martínez-Vilalta and Pinol, 2002; Galiano et al., 2010; Vila-Cabrera 
et al., 2013; Gazol and Camarero, 2022). In this context, there is a 
critical need to study growth-based early-warning indicators of 
mortality in tree species’ rear-edge populations in Mediterranean 
areas, which can aid in implementing forest management and 
biodiversity conservation actions for the adaptation of these 
ecosystems to climate change.

In this study, we  investigated growth-based mortality risk 
indicators in Scots pine (Pinus sylvestris L.) trees in a high-density 
forest in Central Spain. P. sylvestris is an economically important and 
widely distributed boreo-alpine species in Europe (Barbéro et al., 
1998), with its southernmost limit in the Iberian Peninsula where it 
has experienced recent mortality events (Galiano et al., 2010; Vila-
Cabrera et al., 2013). For this, we (i) evaluated the effects of intrinsic 
(tree size), biotic (competition) and abiotic (water availability) 
factors, and status (dead/alive) on the growth rates, (ii) analyzed the 
temporal pattern of growth sensitivity to water availability comparing 
dead and alive trees, and (iii) quantified growth synchrony comparing 
dead and alive trees. By doing so, we sought to gain insights into the 
mechanisms underlying tree mortality and help to develop a reliable 
growth-based mortality risk indicator for P. sylvestris in 
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Mediterranean areas. In agreement with previous findings in 
gymnosperm species, we expect lower growth rates in dead than in 
surviving trees before mortality, likely due to their isohydric water 
regulation (Salmon et al., 2015; Cailleret et al., 2017). Furthermore, 
we anticipate that competition had a greater impact on growth in 
dead trees, which could intensify the adverse impact of drought 
(Linares et al., 2010). Finally, we also expect a decrease in growth 
synchrony in dead trees before mortality (Cailleret et  al., 2019), 
suggesting a mismatch between growth and high-frequency 
climatic fluctuations.

2. Materials and methods

2.1. Study area

The study area is an extensive pine forest located in the Alto Tajo 
Natural Park of central Spain at an elevation of 1,450–1,600 m a.s.l. 
(40° 39′ 6.8″N, 1° 41′ 53.1″W). This forest experienced a widespread 
tree mortality event during 2016 and 2017. No sign of biotic agents 
was detected. The forest area is dominated by P. sylvestris. The soil type 
in the area is primarily calcium cambisols (Martín-Moreno et al., 
2014). The study area is submitted to a continental Mediterranean 
climate with cold winters and mild and dry summers, with a mean 
annual temperature of 10.5°C and a mean annual total precipitation 
of 468 mm (period 1948–2017), according to data from a 
meteorological station of AEMET (Spanish Meteorological Agency) 
located at Molina de Aragón, which is situated 25 km from the 
study area.

2.2. Sampling design and 
dendrochronological methods

During October 2017, we sampled 39 pairs of trees within the 
study area. For each pair, one tree was observed to be in a healthy state 
(with no signs of decline), while the other was dead, but with dry 
needles still present in the crown indicating recent mortality. Tree 
mortality was confirmed in the following years. The sampled pairs had 
similar size and they were located no more than 5 meters apart from 
each other (with an average distance of 3 meters). Two cores were 
taken from each tree in opposite directions using a Pressler increment 
borer. The diameter at breast height (DBH) of each sampled tree was 
also recorded, along with the DBH of every neighboring adult tree 
(i.e., DBH > 7.5 cm, height > 130 cm) within a circular plot of 10 meters 
radius measured from the target trees.

Cores were processed following standard ecological methods 
(Fritts, 1976). They were air-dried for 48–72 h, mounted on wooden 
supports, and sanded with progressively finer grades of sandpaper to 
highlight ring-width patterns. All cores were visually cross-dated 
following the procedures described by Yamaguchi (1991). Cores were 
scanned at 1,200 dpi resolution (EPSON Perfection v800) and tree-
ring width was measured using Image J software (Schneider et al., 
2012). Trees can die during the growing season before ring formation 
is complete, which induces an incomplete outermost ring. As tree 
could have died at different times during the 2017 growing season, 
we did not consider the last ring of sampled trees (Cailleret et al., 

2017). Ring width was converted to basal area increment (BAI, cm2 
year−1) assuming a circular stem cross-section and using the 
following formula:

 
2 2

1( )t tBAI r rπ −= −

where rt and rt-1 are the radius of the tree at the end and at the 
beginning of a given annual ring, respectively. For each tree and year, 
the BAI was calculated as an average of the two extracted cores. BAI 
is a meaningful indicator of tree growth as it removes the variation in 
growth due to increasing circumference, making it more related to 
biomass increment than ring width (Biondi and Qeadan, 2008).

To quantify inter-individual competition in sampled trees, 
we calculated the Lorimer’s competition index (CI, Lorimer, 1983) 
using the following formula:

 
CI BAv

BAt
i= ∑








where BAvi is the basal area of each neighbor tree within the 
circular plot of 10 m radius and BAt is the basal area of the target tree. 
We employed the distance-independent Lorimer’s competition index, 
since it is appropriate to measure competition in monospecific forests 
(Kanta Bhandari et al., 2023 and references within) and has been 
previously used in Mediterranean areas (e.g., Muñoz-Gálvez 
et al., 2021).

2.3. Water availability

To quantify the annual water availability, we calculated the annual 
climatic water balance by subtracting the annual potential 
evapotranspiration (PET) from the total annual precipitation (P). The 
PET was determined following the method proposed by Thornthwaite 
(1948). To account for the influence of previous year conditions on the 
current growing season, we calculated annual climatic water balance 
from October of the previous year to September of the present year. 
Previous autumn and winter precipitation can play an important role 
recharging soil water reserves, and can boost current year radial 
growth in P. sylvestris (Sánchez-Salguero et al., 2012). We used climatic 
data from the AEMET meteorological station at Molina de Aragón.

2.4. Data analysis

We used a linear mixed-effect model to compare BAI series 
between alive and dead trees and assess the effect of tree size, 
competition and water availability on tree growth during the 1948–
2017 period (a period selected to increase sample size). We included 
tree identity nested within tree-pairs as a random effect to account for 
the repeated measurements on the alive/dead paired individuals. 
We also used an autoregressive structure to consider the temporal 
autocorrelation of successive annual growth increments (Pinheiro 
et  al., 2018). Tree size (DBH at the beginning of each year), 
competition (CI), water availability (P-PET), status (alive vs. dead), 
and the interactions status × competition and status × water 
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availability were considered as fixed effects in the model. Size was 
included as a second-degree polynomial to allow for nonlinear 
responses of growth to variations in size (Sumida et al., 2013). All the 
variables were standardized by subtracting from its sample mean and 
by dividing by its standard deviation.

In order to assess the temporal variation of growth sensitivity to 
water availability in both alive and dead trees we used the mixed effect 
model described above. The model was fitted to 5-year lagged 
windows of 20 years (Díaz-Martínez et al., 2023; i.e., 11 time-windows 
of 20 years with a starting year from 1948 to 1998).

To assess growth synchrony within alive and dead trees 
we followed the procedure described by Alday et al. (2018). Briefly, 
we used variance–covariance mixed modelling using year as random 
term and calculated the mean inter-chronology correlation (i.e., 
growth synchrony) as the common inter-annual growth variance to 
all dead and alive trees. To do this, we  tested different variance–
covariance structures (see Alday et al., 2018 for a complete overview 
of variance–covariance structures) that allow to characterize 
synchrony for each level of the grouping variable (i.e., dead and alive 
trees). The best variance–covariance structure was selected using the 
Akaike Information Criterion (AIC, Zuur et al., 2009). The temporal 
changes in growth synchrony for alive and dead trees were also 
assessed using 20-year intervals with a 5-year moving window.

All statistical analyses were done in R 4.1.3 (R Core Team, 2022) 
using the nlme (Pinheiro et al., 2018), MuMIn (Barton, 2019) and R 
DendroSync (Alday et al., 2018) packages.

3. Results

3.1. Characteristics of sampled trees

Considering raw growth data (BAI) for the 1900–2017 period, 
alive and dead trees showed similar patterns along the 1900–2017 
period, yet alive trees showed significantly lower mean BAI than dead 
trees (Table 1), especially between 1930 and 1980 (Figure 1). After 
1980s, alive and dead trees showed similar growth rates, except in the 
last years when dead trees also showed greater growth than alive trees 
(Figure 1). No significant differences were found for age, size (DBH), 
competition index (CI) and surrounding basal area of sampled 
individuals (BA) between alive and dead trees (Table 1). All sampled 
trees presented an average age of 130 years and average DBH of 34 cm 
(Table 1).

3.2. Effect of size, competition and climate 
on growth

Tree radial growth was significantly influenced by tree size 
(F = 86.74, p < 0.001), competition index (F = 7.35, p = 0.01), water 
availability (F = 207.11, p < 0.001) and its interaction with tree status 
(i.e., alive or dead; F = 8.97, p < 0.01). Overall, no significant differences 
were found on tree growth between alive and dead trees for the 1948–
2017 period (F = 1.98, p = 0.17; Table  2). However, when water 
availability was low, dead trees showed greater growth than live trees 
(Figure 2). Competition had a negative effect on growth, whereas the 
effect of the water availability was positive (Table  2). Dead trees 
showed significantly less sensitivity to water availability (lower slope) 
than alive trees.

3.3. Temporal changes in growth patterns

Time windows analysis showed similar growth patterns between 
live and dead trees for the studied period (Figure  3; 
Supplementary Table S1).

Growth sensitivity to water availability increased along the study 
period, coinciding with a decrease in water availability (Figure 4). 
Alive trees showed greater sensitivity than dead trees during the first 
half of the study period. However, this difference disappeared, as water 
availability decreased, until the last two 20-year intervals, when dead 
trees showed lower growth sensitivity to water availability than alive 
ones (Figure 4).

3.4. Growth synchrony

The best-fit variance–covariance structure for calculating 
synchrony was a heterocedastic matrix with a composite symmetry 
structure (mHeCS; Supplementary Table S2). Firstly, the selection of 
a heterocedastic matrix implies that the magnitude of the common 
growth signal (i.e., growth synchrony) varied significantly between 
live and dead trees. Secondly, a matrix with a symmetrical structure 
suggests the existence of fluctuations in growth that were common for 
both live and dead trees. Overall, alive trees exhibited significantly 
higher synchrony than dead ones (0.23 ± 0.03 and 0.16 ± 0.02, 
respectively).

Regarding temporal changes in synchrony, growth synchrony 
values were relatively low until the last 30 years, when a steep increase 
in synchrony was recorded (Figure 5). The synchrony values of alive 
and dead trees diverged markedly during two periods: in the second 
quarter of the study period and in the last interval analyzed (just 
before the mortality event; Figure 5).

4. Discussion

Our study revealed significant differences between alive and dead 
trees in growth-related parameters under a context of increasing 
aridity. Both, growth sensitivity to water availability and synchrony 
were lower in dead than in alive trees before mortality. This suggests 
a decoupling of tree growth from climatic fluctuations in dead trees 
that may have increased their risk of sudden death due to hydraulic 

TABLE 1 Characteristics of the sampled trees (mean  ±  SD).

All Live Dead

BAI (cm2) 5.33 ± 4.42 4.81 ± 3.89a 5.84 ± 4.84b

Age at breast 

height (years)

129.96 ± 40.53 127 ± 44a 133 ± 37b

DBH (cm) 33.97 ± 7.17 33.51 ± 7.3 34.30 ± 7.14

BA (m2 ha−1) 26.93 ± 10.88 26.83 ± 11.64 27.27 ± 8.03

CI 13.79 ± 10.33 14.15 ± 11.24 12.50 ± 6.34

BAI, Basal Area Increment (1900–2017); DBH, Diameter at Breast Height (1.3 m); BA, Basal 
Area of the 10 m radius neighborhood around the target tree; and CI, Lorimer’s Competition 
Index. Letters indicate significant differences between groups (p < 0.05, paired t-test). 
asignificant differences between groups (alive and dead) for BAI. bsignificant differences 
between groups (alive and dead) for BAI.
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failure and/or carbon starvation. Thus, reductions in growth sensitivity 
to water availability, together with decreased tree growth synchrony, 
should also be  considered as an early-warning indicator of tree 
mortality in Mediterranean P. sylvestris populations located at the 
southern distribution limit of the species.

Contrary to our first hypothesis, our study did not find lower 
growth in dead than in alive trees prior to mortality, nor a sustained 
decrease in growth in dead trees or any other apparent signs of growth 
decline. These results contrast with those reported by Cailleret et al. 
(2017) for several gymnosperm species. Nevertheless, our results are 
consistent with other studies that have found no differences between 
dead and alive trees at stand and regional scales (Ferrenberg et al., 
2014; Rowland et al., 2015; Berdanier and Clark, 2016; Herguido et al., 
2016). When considering our design based on dead/alive tree pairs, 
there was no significant difference in growth between dead and alive 
trees during the first 50 years of life (data not shown), ruling out the 
possibility that mortality was due to a trade-off between early-growth 
and longevity (Bigler et  al., 2007; Bigler and Veblen, 2009). 
Additionally, the size of alive and dead trees studied was similar. 
Therefore, we  argue that dead trees could have prioritized radial 
growth (over other tree functions) until death regardless of 
environmental stress, or that mortality occurred abruptly due to an 

extreme environmental stress leading to tree death without a previous 
impact on its carbon balance (Cailleret et al., 2017).

We found that the effect of water availability on growth varied 
between alive and dead trees, with the later showing higher growth 
during extremely dry conditions (i.e., lower growth sensitivity to 
water availability). Thus, under severe drought conditions, dead trees 
may exhibit a less conservative water use than live trees, which could 
expose them to a higher risk of hydraulic failure due to the 
accumulation of enbolisms in the xylem (McDowell et al., 2022). Our 
results contrast with previous studies on P. sylvestris, which showed 
greater sensitivity to drought and hot conditions for dead trees and a 
sustained decline in growth (Hereş et al., 2012). However, our results 
are consistent with previous studies performed on saplings, where 
P. sylvetstris appears unable to decrease its height growth through 
more strict stomatal control under extreme drought conditions 
(Herrero et  al., 2013). These differences in growth responses to 
drought conditions in dead trees between studies may be  due to 
intraspecific variability and the intensity and recurrence of drought 
events (Cailleret et al., 2017).

We did not find support for a greater impact of competition on 
growth in dead than alive trees. Our results showed that negative 
effects of competition on tree growth were similar for alive and dead 

FIGURE 1

Basal Area Increment (BAI, cm2, ± SE) of alive and dead trees evaluated for the 1900–2017 period.

TABLE 2 Growth model parameters (mean  ±  standard errors).

Value Standard error df t-value p-value

Intercept (state = dead) 1.749 0.049 5,152 35.320 0.0000

Poly (size) 1 19.687 1.886 5,152 10.434 0.0000

Poly (size) 2 −11.158 1.524 5,152 −7.319 0.0000

State (live) −0.066 0.053 35 −1.245 0.2213

P-PET 0.037 0.005 5,152 8.005 0.0000

LCI −0.126 0.049 35 −2.533 0.0160

State (live)*P-PET 0.020 0.007 5,152 2.995 0.0028

State (live)*CI 0.026 0.054 35 0.494 0.6244

It includes the effect of the size as a second-degree polynomial transformation [size poly (1) and size poly (2)], the water availability (P-PET), the competition index (CI) and the interaction 
between status (alive or dead) and water availability. The intercept refers to dead trees. Degrees of freedom (df), t-value and probabilities are given.
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trees, as well as the inter-individual competition index (CI), which 
suggests a limited effect of competition on the mortality event. 
Nonetheless, the consistent negative effect of competition on radial 
growth of alive and dead trees suggests the key role of competition on 
exacerbating drought impacts on Mediterranean forests (Linares et al., 
2010; Vila-Cabrera et al., 2013). However, it should be noted that 
we used a static competition index measured at sampling, so it can not 
reflect the effect of competition on the entire growth series. This 
represents an important limitation in clarifying the role that 
competition may play in drought-induced growth reductions over 
time (Marqués et al., 2021).

The study area experienced a progressive decrease in water 
availability over time. As drought conditions intensified, sampled 
trees increased their growth sensitivity to water availability. However, 
at the beginning and at the end of the study period, dead trees 

showed lower sensitivity to water availability, indicating potential 
differences in physiological responses to water stress between alive 
and dead individuals. Lower growth sensitivity to water availability 
preceding mortality implies lower stomatal responsiveness, which 
can lead to higher stomatal conductance and water use under dry 
conditions as confirmed by higher growth of dead trees under low 
water availability conditions. This exposes trees to higher risk of 
xylem embolism, increasing the probability of drought-induced 
hydraulic failure through accumulation of cavitation processes 
(McDowell et al., 2008, 2022). The gradual increase in aridity may 
have pushed individuals closer to threshold values where cavitation 
processes occur. However, the interdependence of water and carbon 
fluxes in tree functioning and vigor preclude us to exclude carbon 
starvation as the main mechanism involved in the mortality process 
(McDowell et al., 2022). Rising temperatures increase respiration 
costs, decreasing even more the carbon supply for tree functions 
during dry periods of low carbon assimilation (Adams et al., 2009; 
McDowell et  al., 2011). Also, the less conservative water use 
associated to lower growth sensitivity to water availability could 
increase tree allocation to aboveground biomass (particularly leaf 
area) during favorable conditions, which cannot be hydraulically and 
metabolically sustained during extreme and hot droughts (i.e., 
structural overshoot, Jump et al., 2017). Therefore, in this context of 

FIGURE 2

Predicted growth response (BAI, cm2, ± SE) to water availability 
(P-PET) for the period 1948–2017 in dead and alive trees.

FIGURE 3

Predicted temporal growth evolution (BAI, cm2, ± SE) in alive and 
dead trees for the 1948–2017 period applying the model at 20-year 
intervals with a 5-year moving window. The years appearing on the 
x-axis correspond to the midpoints of each 20-year interval.

FIGURE 4

Temporal evolution of (A) predicted (± SE) growth sensitivity to water 
availability (i.e., slope of climatic water balance in the growth model) 
in dead and alive trees, and of (B) the water availability (P-PET) for the 
1948–2017 period. Data are showed for 20-year intervals with a 
5-years moving window. The years appearing on the x-axis 
correspond to the midpoints of each 20-year interval.
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increasing aridity, reduced sensitivity of growth to water availability 
may increase the risk of drought mortality and could be used as an 
early-warning signal of tree mortality.

The observed patterns of increased growth synchrony over time 
are similar to the increased sensitivity to water availability. In fact, 
higher growth sensitivity could explain, in part, the increase in growth 
synchrony, since tree growth would be more and more linked to water 
availability as conditions becomes progressively drier, homogenizing 
growth responses across the population. The observed increase in 
growth synchrony is consistent with previous studies at local and 
regional scales recording pervasive climatic effects on tree growth 
(Boden et al., 2014; Shestakova et al., 2016; Gazol et al., 2020). Actually, 
increased synchrony is considered an indicator of tree vulnerability to 
climate change, as it reduces individual variability and resilience 
capacity at population level (Clark et al., 2012; Tejedor et al., 2020). 
That is, increased growth synchrony to climatic stressors amplify the 
risk of extensive negative impacts on tree vigor at population level. In 
this context of increased aridity and vulnerability at individual and 
population levels, differences in growth responses between individuals 
could play a key role in mortality risk through the aforementioned 
susceptibility to xylem embolism and decreased carbon supply to tree 
functions. Therefore, under drier conditions trees would be closer to 
threshold values related to key tree functions (e.g., stomatal 
conductance) leading to permanent drought-induced damage, and 
ultimately to tree death. From this perspective, and in line with our 
third hypothesis, lower synchrony was observed in dead trees both 
prior to the mortality event and during the first half of the study period. 
The observed decrease in synchrony before mortality agrees with 
previous studies in gymnosperms (Cailleret et al., 2019) and is also 
consistent with the reduction in growth sensitivity to water availability. 
Both aspects indicate a decoupling between growth and climatic 
fluctuations, which could be  linked to the aforementioned less 
conservative water use in dead than in alive individuals (Herrero et al., 
2013; present study), and the subsequent increase in vulnerability to 
cavitation processes (McDowell et  al., 2008). Thus, reductions in 
growth synchrony should be also considered as a potential indicator 
for tree mortality risk in seasonally water limited areas within 
P. sylvestris distribution.

Overall, our study, which takes advantage of a paired design that 
minimizes the effects of size and immediate tree environment on 
potential causes of mortality, highlights reduced sensitivity to water 
availability and growth synchrony as potential indicators of drought-
mortality risk in southern populations of the widely distributed 
P. sylvestris. These indicators could also be relevant for other isohydric 
pine species (Salmon et  al., 2015) in seasonally dry areas. Thus, 
we suggest the need for assessing changes in growth sensitivity to water 
availability in further studies (Suarez et al., 2004; Férriz et al., 2021; 
present study). We also recommend to further study the responses of 
growth sensitivity to water availability to elucidate the underlying tree 
mortality mechanisms at different spatial extents and standardize the 
assessment method of growth sensitivity to water availability, in order 
to make studies comparable. Despite our sampling protocol is aimed 
to reduce environmental differences between dead and alive trees, 
we  cannot discard that intraspecific differences between trees in 
functional traits (e.g., rooting depth) and/or in soil properties might 
lead to different drought impacts in sampled trees. In this regard, the 
quantification of other variables, in addition to radial growth, related 
to tree vigor (e.g., branch and foliar biomass) and physiological 
responses to drought (e.g., water use efficiency) as well as a more robust 
evaluation of competition along tree lifespan, may also provide valuable 
insights into the mechanisms involved in the tree mortality process and 
inform forest management for the adaptation to climate change.
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