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Laboratory of Agricultural Electronic Commerce of the Ministry of Agriculture, Hefei, Anhui, China

Introduction: Forest and grassland are the two main carbon-collecting terrestrial

ecosystems, and detecting their solar-induced chlorophyll fluorescence (SIF)

enables evaluation of their photosynthetic intensity and carbon-collecting

capacity. Since SIF that is retrieved directly from satellite observations su�ers from

low spatial resolution, discontinuity, or low temporal resolution, some vegetation

indexes (VIs) and meteorological factors are used as predictors to reconstruct

SIF products. Yet, unlike VIs, certain meteorological factors feature a relatively

low space resolution and their observations are not always accessible. This study

aimed to explore the potential of reconstructing SIF from fewer predictors whose

high-resolution observations are easily accessible.

Methods: A total of six forest and grassland regions across low, mid, and

high latitudes were selected, and the commonly used predictors-normalized

di�erence vegetation index (NDVI), enhanced vegetation index (EVI), and land

surface temperature (LST)—were compared for their correlation with SIF. Results

show that the combination of EVI and LST is more strongly correlated with SIF,

but each contributed di�erently to SIF at di�ering growth stages of forest and

grassland. Accordingly, we proposed the idea of a combined sampling approach

that considers both location and phenological phase, to explore the extent to

which time and space coverage samples’ span could enlarge the disparity of

EVI data in particular regions at specific growth stages. To do that, three kinds

of sample combination methods were proposed: monthly regression at a global

scale, seasonal regression at a regional scale, and monthly regression at a regional

scale. Following this, Sentinel-3 EVI and MODIS LST data were used to reconstruct

500m SIF in the six regions by implementing the proposed methodology.

Results and discussion: These results showed that the R2 values were ≥0.90

between the reconstructed SIF and MODIS GPP (gross primary productivity), 0.70

with GOME-2 SIF and 0.77 with GOSIF, thus proving the proposed methodology

could produce reliable results for reconstruction of 500m SIF. This proposed

approach, which bypasses dependence of traditional SIF reconstruction model

on numerous predictors not easy to obtain, can serve as a better option for more

e�cient and accurate high-resolution SIF reconstructions in the future.
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1. Introduction

Forests and grasslands, being the major carbon-collecting

terrestrial ecosystems worldwide, play key roles in regulating the

global carbon cycle (Yao et al., 2022). Solar-induced chlorophyll

fluorescence (SIF) is closely linked to plant photosynthetic rate

and plant physiological state (Guanter et al., 2012). Effectively

monitoring the SIF in forests and grasslands helps in evaluating

their photosynthetic intensity and capacity to collect carbon.

Some satellites provide SIF data retrieved from vegetation spectral

reflectance. For example, the Orbiting Carbon Observation-2

(OCO-2) satellite detects the discontinuous SIF soundings at a

1.25 km × 2.25 km scale on its orbits and revisits a given place

every 16 days. Scanning Imaging Absorption Spectrometer for

Atmospheric Charts on the Envisat satellite revisits the same

location every 6 days and detects the global SIF at a scale of 30 km×

240 km. GOME-2 retrieves the global SIF with a spatial resolution

of 0.5◦ and a revisitation cycle of 2 days. Finally, the Troposphere

Global Monitoring Instrument on the Sentinel-5 precursor satellite

monitors global SIF products at a 7 km× 3.5 km scale with a 1-day

revisit interval (Frankenberg et al., 2011).

Given that these SIF retrievals directly obtained from satellite

observations suffer from low spatial resolution, discontinuity,

or low temporal resolution, attempts have been made to

reconstruct SIF from relative factors [such as some vegetation

indices and meteorological factors (MFs)]. Guo et al. (2020)

used 0.05◦ MODIS normalized difference vegetation index

(NDVI), enhanced vegetation index (EVI), leaf area index (LAI),

fraction of absorbed photosynthetically active radiation (fAPAR),

and photosynthetically active radiation (PAR) as predictors for

reconstructing SIF, whose spatial resolution was 1 km and R2

= 0.71. Similarly, Li and Xiao (2019) used EVI, PAR, vapor

pressure deficit (VPD), and air temperature of 0.05◦ MODIS to

build a global seasonal scale regression model with an R2 = 0.79,

extending the discontinuous OCO-2 detection to 0.05◦ global SIF.

Bontempo et al. (2020) used the 0.05◦ MODIS-derived VIs, surface

temperature, precipitation rate, soil moisture data, and surface

reflectance, along with the rainfall rate and soil moisture product

of the Tropical Rainfall Monitoring Mission (TRMM-TMPA), in a

regional seasonal scale regression, thereby reconstructing the 0.5◦

GOME-2 SIF in northeastern Brazil to 0.05◦, with an R2 = 0.74.

Gensheimer et al. (2022) used NDVI, EVI, near-infrared reflectance

of vegetation (NIRv), kernel normalized difference vegetation index

(kNDVI), MODIS bands, and solar zenith angle (SZA), as well as

MFs, to construct a convolutional neural network (CNN), which

they named SIFnet (monthly regression at global scale), for non-US

regions spanning 2018–2021. Their study showed that SIFnet was

able to increase the resolution of Troposphere Global Monitoring

Instrument SIF by a factor of 10 with an R2 and root mean

square error (RMSE) of 0.92 and 0.17, respectively. Ma et al. (2020)

collected data from February 2007 to May 2019 and used various

stress factors, such as NDVI, reflectance, SZA, and air temperature,

to assemble a random forest model (monthly regression at a global

scale) to downscale SIF (Ma et al., 2020). Their results showed that

the R2 and RMSE could reach 0.74 and 0.28, respectively. Kang et al.

(2022) collected data from October to December 2020 in Xinjiang,

China, and used stress factors such as the FPAR, Sentinel-2 bands,

and surface reflectance to build a two-step CNN model (monthly

regression at regional scale) to downscale SIF, where the R2

reached 0.85. Similarly, Duveiller et al. (2020) used NDVI, EVI,

evapotranspiration (ET), and NIRv for SIF’s downscaling (regional

monthly regression) from the European Alps to the east of the

Andes and even around the Great Lakes of Africa, obtaining R2

values up to 0.80. In earlier work, Joiner et al. (2013) used monthly

regression at a global scale to extend the coverage, obtaining a

global 0.05◦ SIF product based on 0.05◦ MODIS NDVI, surface

reflectance, atmospheric absorption, and fluorescence radiance,

where model R2 =0.73.

In sum, these studies demonstrate that SIF reconstructions

can be improved by including auxiliary vegetation indices (VIs)

and MFs; however, challenges still remain. Some predictors have

a relatively low space resolution, and their observations are not

always accessible (e.g., PAR, FPAR, and MFs). In contrast, most

of the vegetation indices are relatively accessible and reliable, and

most vegetation index products have global coverage. Therefore,

we selected EVI or NDVI as the main predictors to characterize

vegetation conditions, as their data are available at a spatial

resolution of up to 30m. Moreover, the above-cited studies did

not consider the influence of different spatial and phenological

phases during the SIF reconstruction. Correlation analysis of

predictors and SIF at distinct growth stages of vegetation revealed

the contribution of predictors varying across phenological phases.

Hence, it is necessary to explore the potential of combining data

suitable to specific growth stages to improve the performance of a

SIF reconstruction model.

This study’s prime objectives were to shed the dependence

of the traditional SIF reconstruction model on many predictors

that are not easily obtained and to explore the potential of

different phenological phases and spatial locations augmenting the

SIF reconstruction model’s performance. To achieve these two

objectives, remote sensing data and scientific material collected

via a literature survey were used, and grassland and forest regions

across low, mid, and high latitudes were chosen as representative

ecosystems. In this study, we propose a data combination approach

that considers locations and phenological phases and discuss a

high-resolution SIF reconstruction solution.

2. Materials and methods

This study’s strategy is illustrated in Figure 1. It included the

following five steps: (1) A total of six forest and grassland regions

were selected, and a dataset consisting of their 0.5◦ EVI, NDVI,

and LST information resampled from 0.05◦ MODIS products and

0.5◦ GOME-2 SIF data was first established; the EVI and NDVI

data were then used to assess their relation with SIF. The results

suggested that the SIF was more related to EVI than NDVI, so

EVI and LST were selected as the final predictors for estimating

SIF. (2) The idea of a combined sampling approach was proposed

considering the locations and growth stages of vegetation to explore

the extent to which time and spatial coverage of sample spans

could improve SIF regression models in particular regions at

specific growth stages. Experiments were carried out using the

above dataset to investigate which data combination method was
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FIGURE 1

Framework for SIF reconstructions.

most suitable for the six forest and grassland regions for their

various phenological stages. Models for regressing SIF in forest

and grassland regions were then established by applying the above

methodology. Three data combinations were proposed in this

study: monthly regression at a global scale, seasonal regression

at a regional scale, and monthly regression at a regional scale.

(3) Sentinel-3 EVI data and MODIS LST data were adopted to

reconstruct the 500m SIF using these three models. (4) Both 0.5◦

GOME-2 SIF and 0.05◦ GOSIF were then employed to evaluate the

reconstructed SIF. (5) Finally, the degree of correlation between

GPP and SIF was assessed. Comparing the reconstituted SIF with

GPP (gross primary productivity) illustrated the potential of the

reconstituted SIF for estimating gross carbon fluxes (Gao et al.,

2021; Pierrat et al., 2022).

2.1. Study area

Six forest and grassland regions, located at low-, mid-, and

high-latitude ranges, were selected as follows: The low-latitude

forest (LLF; 0◦-6◦N, 9◦-29◦E) was near the border of Central Africa

and Congo in Africa, where a tropical rainforest climate prevails,

with high temperature and rain throughout the year. The mid-

latitude forest (MLF; 22◦-34◦N, 98◦-121◦E) was in the Qin-Ling

region of China, with a subtropical monsoon climate, where the

annual average temperature was 15–22◦C, and summer (June-

August) rainfall accounted for ∼50% of yearly precipitation. The

high-latitude forest (HLF; 57◦-65◦N, 36◦-58◦E) was located in the

Kostroma region of Russia, having a sub-frigid coniferous climate

and rainfall concentrated in the warm season (July-August). The

low-latitude grassland (LLG; 2◦-14◦N, 22◦-48 E) was in Sudan of

Africa, with a tropical grassland climate and high temperatures

throughout the year and an annual average temperature of

∼25◦C; here, rainfall was concentrated in June-September, with

the other months constituting a long dry season. The mid-

latitude grassland (MLG; 36◦- 45◦N, 105◦-122◦E) was near the

border area between Inner and Outer Mongolia, characterized by

a temperate monsoon climate, with high temperatures and rainy

summers (July-September) and winters that were cold and dry. The

high-latitude grassland (HLG; 45◦-53◦N, 49◦-80◦E) was North of

Balkhash, where the climate was temperate continental, being hot

and humid in summer (July-August), yet cold and dry in winter.

The study area is shown in Figure 2.

2.2. Data collection

GOME-2 observes the global SIF at a spatial resolution

of 0.5◦. The spectral signal (650–800 nm) emitted by the

photosynthetic center has two peaks of red light (∼690 nm) and

near-infrared (∼740 nm), which can reflect strong fluorescent

signals during peaks. We used the SIF values at 740 nm to

evaluate the photosynthetic intensities of the six forest and

grassland regions. The MODIS MOD13C2 and MOD11C3

data provided the global NDVI, EVI, and LST values once

a month at a spatial resolution of 0.05◦. As the spatial

resolution of GOME-2 SIF data differs from that of MODIS,

we first extracted the MODIS data points for the six forest

and grassland regions and then aggregated them from 0.05◦

to 0.5◦. For each GOME-2 SIF point with a latitude value of

x and longitude value of y, those MODIS pointed within the

latitudinal values of (x−0.025x + 0.025) and the longitudinal

values of (y−0.025y + 0.025) were collected, to calculate their

mean value, and this was used as the final matched value of

that GOME-2 SIF point. Accordingly, a low-resolution dataset

was generated, which contained the 0.5◦ GOME-2 SIF data for
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FIGURE 2

Six forest and grassland regions (areas enclosed by dark red lines). LLF (Low-latitude forest), MLF (Mid-latitude forest), HLF (High-latitude forest), LLG

(Low-latitude grassland), MLG (Mid-latitude grassland), and HLG (High-latitude grassland). Land cover information was obtained from MODIS’s

MCD12C1.

the six regions and their aggregated 0.5◦ NDVI, EVI, and LST

values, to explore the quantitative relationships between SIF and

its predictors.

In addition, Sentinel-3 images were geometrically corrected and

cropped accordingly and then used to calculate the 300m Sentinel-

3 EVI values for the six regions using near red, red, and blue bands.

Next, 300m Sentinel-3 EVI data and 1 km MODIS LST from the

six regions were resampled using ENVI to obtain the 500m EVI

information. For this resampling, the nearest-neighbormethod was

adopted to assign the nearest pixel value to the new pixel. Following

this, MODIS MOD17A2H data were used to extract the 500m

GPP values for the six regions. Finally, a high-resolution dataset

consisting of 500m EVI, LST, and GPP values was obtained for the

subsequent 500m SIF reconstructions and validation, as shown in

Table 1.

2.2.1. SIF data
The global SIF data used in this study were provided by

the NASA Aura Validation Data Center (http://avdc.gsfc.nasa.

gov/) (Nechita and Chiriloaei, 2018). This consisted of far-

red fluorescence (referenced wavelength: 740 nm) obtained from

hyperspectral observations of the Global Ozone Monitoring

Experiment-2 (GOME-2) instruments onboard the MetOp-A and

MetOp-B satellites. We used the MetOp-A data from V28, whose

daily observations are aggregated into monthly values, with cloud

pollution reduced, resulting in a 0.5◦ level 3 product. Another

SIF product obtained was GOSIF from the Global Ecology Group

Data Repository (Li and Xiao, 2019), available from the https://

globalecology.unh.edu/data/GOSIF.html.

2.2.2. MODIS data
The MODIS instrument, operating on the Terra and Aqua

spacecraft, has a viewing swath width of 2330 km and views the

entire surface of the Earth every 1 or 2 days. Three biophysical

variables derived from the MODIS instrument were used to

reconstruct the GOME-2 SIF in this study. The first two variables

were NDVI and EVI, reflecting the green vegetation biomass

on the planet’s surface, being widely used in Earth monitoring.

The reason for this is that NDVI and EVI, as commonly used

vegetation indices, are freely available from many meter-level

spatial resolution satellites. Both can be obtained fromNASA’s 0.05◦

MOD13C2 product and be computed using the following formulas:

NDVI =
ρNIR − ρRED

ρNIR − ρRED

(1)

EVI = G ·
ρNIR − ρRED

ρNIR + C1 · ρRED − C2 · ρBLUE + L
(2)

where the EVI coefficients for MODIS are L= 1, C1 = 5, C2 = 7.5,

andG= 2.5 (Ma et al., 2020); ρNIR is the near-infrared band, ρRED is

the red band, and ρBLUE is the blue band from theMODIS satellites.

The third variable was LST, the radiation temperature produced

by the thermal infrared radiation emitted by the land surface.

The LST of a given vegetation coverage area is mainly related to

the canopy’s top, representing the leaf layer having the highest
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TABLE 1 Number of data points in the six forest and grassland regions.

Resolution, satellite LLF MLF HLF LLG MLG HLG

0.05◦ , MODIS (NDVI & EVI & LST) 36734 30347 66986 57839 25546 88497

0.5◦ , GOME-2 SIF 389 305 706 609 264 921

300m, Sentinel-3 EVI 10212052 8436466 18622108 16079924 7101788 24602166

500m, MODIS GPP 3635153 2987634 6665356 5658308 2533626 8391346

1 km, MODIS LST 910034 744605 1666017 1410153 632253 2095151

LLF, Low-latitude forest; MLF, Mid-latitude forest; HLF, High-latitude forest; FLF, all three forest areas at different latitudes; LLG, Low-latitude grassland; MLG, Mid-latitude grassland; HLG,

High-latitude grassland.

photosynthetic rate. LST is also easier to obtain than other MFs,

especially in some urban areas; it can be obtained from MOD11C3

with a 0.05◦ spatial resolution and MOD11A2 with a 1 km spatial

resolution. To verify the reliability of the reconstructed SIF, we used

the GPP product derived from MOD17A2H, for which one image

is generated every 8 days with a spatial resolution of 500m. Land

use information came from the MCD12C1 product. All the above

products can be downloaded from https://ladsweb.modaps.eosdis.

nasa.gov/.

2.2.3. Sentinel-3 data
The Sentinel-3 satellite has two payloads: aWater Color Remote

Sensing Instrument (OLCI) and a Sea Land Surface Temperature

Radiometer (Zhang et al., 2020). OLCI is a push-broom imaging

spectrometer that measures the solar radiation reflected by the

Earth in 21 spectral bands with a ground-level spatial resolution

of 300m, spanning visible light to near-infrared (400–1020 nm).

We used the full-resolution atmospheric radiation top product of

OL_1_EFR in OLCI, with a revisitation period of 2 days and a

spatial resolution of 300m. That data product can be downloaded

from https://scihub.copernicus.eu/dhus/#/home.

2.3. Variables selection

Light use efficiency (LUE) is a productivity model widely

used to estimate GPP, net primary productivity, or crop yield in

terrestrial ecosystems at different scales. According to LUE, we first

identified explanatory variables that could explain SIF. Similar to

the LUE approach for estimating GPP (Pei et al., 2022), SIF can be

expressed as follows:

SIF = fAPAR · PAR · εf (3)

According to the above formula, SIF is proportional to

the product of incoming PAR and fAPAR and the efficiency

at which absorbed radiation is used in the photosynthesis

process (εf ). Therefore, we considered that vegetation conditions,

meteorological conditions, and land cover information could

be indispensable factors in predicting SIF. Considering which

variables are easier to obtain for this factor, we used LST to

characterize meteorological conditions because it can serve as a

proxy of thermal stress in predictive models of SIF. Furthermore,

we selected different dimensions as well as phenological phases

of grassland and forest ecosystems as classification variables to

develop the model, aiming to test whether a biome-specific

model could improve the accuracy of SIF prediction. Finally, we

prioritized EVI or NDVI to characterize vegetation conditions.

To select the optimal explanatory variables, we compared the

correlations of EVI and NDVI to SIF. Linear regression was

applied to the low-resolution datasets in subsection 2.2, and the

determined coefficient of determination (R2) and RMSE were used

to compare the fit between SIF and its candidate predictors—NDVI

and EVI. The above metrics were also used to evaluate the general

performance of the SIF reconstruction model. Relative standard

deviation (RSD) was used tomeasure the relative dispersion of data.

Finally, the selected optimal predictor variables were applied for

model development.

R2 = 1−

m
∑

i=1
(yi − ŷi)

2

m
∑

i=1
(yi − ȳ)2

(4)

RMSE =

√

√

√

√

1

m

m
∑

i=1

(yi − ŷi)
2 (5)

RSD =
s

x
=

√

∑n
1 (xi−x̄)2

n−1

x̄
(6)

whereyiis the true value, ŷiis the predicted value, and ȳdenotes the

sample average; the term
m
∑

i=1
(ŷi − yi)

2 is the error caused by the

predicted value, while the term
m
∑

i=1
(yi − ȳ)2is the error caused by

the sample average value; x is the mean of the sample, n is the total

sample size, s is the sample variance, and xi is a given sample’s value.

2.4. Model development

The first step was to establish a linear regression model having

the following regression equation:

ŷ = a+ b1x1 + b2x2 (7)

where x1 and x2 are 0.5
◦ EVI and 0.5◦ LST obtained in subsection

3.1 as the predictors, ŷ is 0.5◦ GOME-2 SIF as the predicted value,

and a, b1, and b2 are undetermined parameters; using our generated
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FIGURE 3

Comparison of correlations between SIF and candidate predictors EVI, NDVI, and LST. (A) Pooling forest regions across low, mid, and high latitudes.

(B) High-latitude grassland region. (C) Mid-latitude grassland region. (D) Low-latitude grassland region.

dataset, the least-squares fitting method was applied to estimate

those parameters and then bring them into the regression equation

to obtain the prediction model.

The second step was to train the model. First, 75% of the

samples were used as the training set (by default), setting aside the

remaining 25% to serve as the testing set for the model. Then, using

a 10-fold cross-validation method, the data were divided into 10

parts, one of which was designated as the validation set, and the

others formed the training set. This was repeated 10 times. In this

process, the hyper-parameters were kept constant, and their quality

was gauged by the average training loss and average validation loss

of the 10 model iterations. Finally, after obtaining a satisfactory

hyper-parameter, we used all the data as the training set to obtain

an optimal model.

3. Results

3.1. Variables’ importance in the model

For forest regions in all three latitudes, relying solely on a

greater spatial span did not perform well year-round (Figure 3A).

Furthermore, the R2 of SIF-EVI was higher than that of SIF-LST

from April to August and November and exceeded that of SIF-

NDVI from March to December. A similar pattern was found for

low, mid, and HLGs, where the R2 of SIF-EVI surpassed that of

SIF-LST and SIF-NDVI in most months (Figures 3B–D).

The three factors of NDVI, EVI, and LST can yield four

predictor combinations, including “NDVI&LST,” “EVI&LST,”

“NDVI&EVI,” and “NDVI&EVI&LST.” Since “NDVI&EVI”

was not representative, it is not discussed later as both are

related to the photosynthesis of plants. The results showed

that EVI and LST used in tandem could achieve the effect

of combining all three factors, with the R2 of EVI&LST-SIF

outperforming that of NDVI&LST-SIF, with a smaller RMSE

for EVI&LST-SIF (Figure 4). Therefore, the combination

of EVI&LST was selected for the correlation experiment

with SIF.

3.2. Model performance over time and
across latitude

First, to examine their temporal performance, we fit monthly

linear regressions of SIF as a function of its EVI and LST predictors.

These were derived by pooling all data from low-, mid-, and high-

latitude forests. This showed that the monthly R2 values from

June to September were <0.38, much lower than those in other

months where the R2 was between 0.55 and 0.76, as shown in
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FIGURE 4

Results of SIF linear regressions from di�erent combinations of NDVI, EVI, and LST in March in three forest regions. The coe�cient “a,” “b,” and “c” of

the regression equation in this study represents the variables on the horizontal axis.

FIGURE 5

Comparison of the SIF regression models’ performance with its

predictor EVI’s data dispersion. The numbers above the bars indicate

the R2 values of fitted SIF regression models in forest regions across

low, mid, and high latitudes. The blue line indicates the relative

standard deviation (RSD) of the EVI.

Figure 5. Evidently, the mixed data of the three forest regions

used for linear regression were not robust for all months of

the year.

To investigate linear regression’s poor performance from June

to September, the following comparisons were made. Given that

the EVI data were better correlated with SIF than the LST data

(as mentioned in subsection 3.1), the dispersion of EVI data was

examined to explain the variation in the SIF linear regression

performance over time. The blue dots in Figure 5 show the extent

to which the RSD of EVI data varies by month; clearly, the RSD

values of EVI data decline steeply after March, bottoming out in

August and then rising rapidly. Similar to the RSD of EVI data, the

R2 values of the SIF linear regression (yellow bars in Figure 5) also

fell sharply from March, reached their lowest (worst) in August,

and then rose rapidly. The variability of RSD values for EVI was

basically consistent with that of the SIF linear regression’s R2.

The monthly EVI and LST data in June-September, though

they came from all three regions corresponding to low-, mid-,

and high-latitude forests, still had too narrow value ranges to

produce satisfactory SIF regression models. Arguably, June to

September is a crucial period for forests to capture carbon through

intensive photosynthesis. In the following experiments, we tried to

expand the value ranges of SIF and EVI by collecting data over

a larger temporal span instead of a spatial span to bolster the

linear regression performance. For the high-latitude forest region,

the whole year can be divided into the following three stages:

a dormant season (December-March), a growing season (April-

July), and an aging season (August-November). Each growth stage

entails 4 months, and all the 4-month SIF and its predictors’ data

were gathered together to fit linear regressions. Similarly, for the

mid-latitude forest region, linear regressions were conducted on

its dormant season (December-February), growing season (March-

June), and aging season (July-November) separately. These results

are presented in Table 2.
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FIGURE 6

Comparison of the SIF regression models’ performance and its

predictor EVI’s data dispersion in mid- and high-latitude forest

regions at di�erent phenological stages. The numbers above the

bars indicate the R2 values of fitted SIF regression models. The lines

indicate the relative standard deviation (RSD) of the EVI data.

For mid- and high-latitude forests, the R2 values in their

growing seasons (respectively, March-June and April-July) were

0.60 and 0.63, higher than that of either their dormant (mid-latitude

forest: December-February, high-latitude forest: December-March)

or aging seasons (mid-latitude forest: July-Noemberv, high-latitude

forest: August-November). Figure 6 shows how R2 and the RSD of

EVI data vary over time in mid- and high-latitude forests. Similar

to the results seen in Figure 5, a relatively wider value range of

SIF and its predictor data could provide a better linear regression

performance with a higher R2 value. The RSD value of EVI data in

the growing season was 0.055 for the high-latitude forest and 0.052

for the mid-latitude forest, both much higher than that of dormant

and aging seasons (0.006 and 0.015, respectively) for the high-

latitude forest, and likewise the 0.012 and 0.037 in dormant and

aging seasons for the mid-latitude forest. Besides, in the growing

season, the R2 for the high-latitude forest (yellow bar) was 0.63,

higher than the 0.60 for the mid-latitude forest (blue bar), whereas,

in the dormant and aging seasons, the R2 for the high-latitude

forest (yellow bar) was 0.01 and 0.38, respectively, both lower

than the corresponding 0.12 and 0.58 values for the mid-latitude

forest (blue bar).

Linear regressions were also separately performed for the low-,

mid-, and high-latitude grasslands. Table 3 presents their R2 values

on a monthly basis. Similar to the mid-latitude and high-latitude

forests, the grasslands also had better SIF linear regression fits

during the growing season but poorer ones during the other

months. Specifically, although grass began to grow in the low-

latitude region earlier than May, there was no significant increase
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in EVI due to their consumption by herbivory. From May onward,

with a rising temperature and appropriate rainfall, grassland

vegetation entered its rapid growth period, and the corresponding

EVI values started to increase rapidly, generating relatively larger

EVI disparities even within a single month; hence, the RSD of EVI

data gradually increased from 0.015 to 0.061 in May to November,

with the corresponding R2 value improving from 0.22 to 0.65

during this period (Figure 7). A similar phenomenon was also

observed in the mid- and high-latitude grassland regions, except

that their growing periods were shorter than in the LLG region.

Therefore, just like forests, the grasslands were also distinguished

by a better SIF linear regression performance during their growing

season than in other months. However, unlike forests, grasslands

grew rapidly and could generate EVI data with large disparities

even within a single month, so a large space or time span was not

necessary for robust grassland SIF linear regressions. The following

regressions were valuable for further SIF reconstructions: monthly

regressions in June-October for low latitude, July-August for mid-

latitude, and July for high latitude. Moreover, observations from

both grassland and forest regions confirmed that using wider value

ranges of EVI data could improve the SIF linear regressions.

Overall, the following three data combinations were proposed

in this study: monthly regression at a global scale, seasonal

regression at a regional scale, and monthly regression at a regional

scale (Table 4). For forests, data collected over large spatial spans

provided adequate SIF linear regressions because tree leaves have

completed their growth globally, but no significant differences were

found in their EVI data during the intensive photosynthesis period

from June through September (Figure 5; RSD of EVI was ≤0.013).

Instead of the commonly used large-space span of global scales, we

combined samples over an extended time span of growing seasons

to amplify the disparities in EVI data. This revealed significantly

improved R2 values of SIF regression models in June-September

for the mid-latitude forest region and in June-July for the high-

latitude forest region. Therefore, the following regressions were

valuable for the further reconstruction of SIF: Low-latitude forest

from January to May, mid-latitude forest in January and February,

and high-latitude forest from January toMarch, with all three forest

regions from October to December recommended for conducting

monthly SIF regression models based on EVI and LST at global

scales. The mid-latitude forest in March-September and high-

latitude forest in April-July were suitable for seasonal regression

at regional scales, yet neither a large space nor time span could

enhance the SIF regression models for the LLF in June-September

and the high-latitude forest in August-September. The monthly

regression at regional scales fit the LLG in June-October, the MLG

in July-August, and the HLG in July.

3.3. Additional research on LLF

First, a relatively wider value range of SIF and its predictor data

yielded a good SIF linear regression (as mentioned in subsection

3.2). However, the LLF had a much narrower range of SIF and

EVI values, as evinced by Figure 8, which compared how SIF and

EVI varied throughout the year. Unlike at mid or high latitudes,

the LLF produced an annual EVI value within a much smaller
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FIGURE 7

Comparison of the SIF regression models’ performance and its predictor EVI’s data dispersion in the grassland growing season (May-Nov). (A) In

low-latitude grassland; (B) mid-latitude grassland; and (C) high-latitude grassland. The numbers above the bars indicate the R2 values of fitted SIF

regression models. The lines indicate the relative standard deviation (RSD) of the EVI data.

TABLE 4 Summary of sampling combination methods found suitable for forest and grassland regions.

Monthly regression
at a global scale

(large spatial span)

Seasonal regression at
regional scale (large

temporal span)

Monthly regression
at the regional scale

Performed poorly at
large spatial and
temporal span

Forest Low-latitude January-May,

October-December

- - June-September

Mid-latitude January-February, December March-November - -

High-latitude January-March,

October-December

April-July - August-September

Grassland Low-latitude - - June-October -

Mid-latitude - - July-August -

High-latitude - - July -

FIGURE 8

Variation in the EVI and SIF data across months in 2017. (A) Low-latitude forest. (B) Mid-latitude forest. (C) High-latitude forest. Green and orange

scatter are the SIF and EVI data, with their fitted regressions curves in blue and red.

range of variation (0.4∼0.6). This was slightly lower in winter

and spring and slightly higher in summer and autumn. RSD was

used to evaluate the disparity in EVI and SIF data (Table 5). The

RSD of EVI was 0.010 for LLF, much lower than 0.063 for the

mid-latitude forest or 0.053 for the high-latitude forest. Similarly,

the RSD of SIF was 0.037 in the low-latitude forest and likewise

lower than 0.188 in the mid-latitude forest and 0.209 in the

high-latitude forest.

3.4. Comparisons with other SIF products

We further compared the reconstructed SIF dataset with the

results of 0.5◦ GOME-2 SIF and 0.05◦ GOSIF (Tables 6, 7).

Regarding the comparison with GOME-2 SIF, we first aggregated

the 500m reconstructed SIF data to 0.5◦. RMSE and R2 were

then used to evaluate the difference between the aggregate 0.5◦

SIF and 0.5◦ GOME-2 SIF data. Figures 9A–K shows the visual
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TABLE 5 The RSD values of SIF and EVI for LLF, MLF, and HLF.

LLF MLF HLF

SIF_RSD 0.037 0.188 0.209

EVI_RSD 0.010 0.063 0.053

LLF, Low-latitude forest; MLF, Mid-latitude forest; HLF, High-latitude forest.

comparison of 0.5◦ GOME-2 SIF data and the 500m reconstructed

SIF data, which prove that the SIF images of forest and grassland

have a finer spatial resolution after model reconstruction. The

RMSE value of low-, mid-, and high-latitude grasslands was 0.097,

0.099, and 0.098, with an R2 of 0.66, 0.51, and 0.62, respectively.

For the mid-latitude forest, its RMSE values were 0.146 in March,

0.140 in April, and 0.152 in May; these were significantly better

than the 0.446 in June, and the R2 value for March-June was

0.70. The Sentinel-3 EVI data used to reconstruct SIF was more

sensitive to clouds than the GOME-2 SIF data despite our efforts

in searching for EVI images with lower cloud coverage. Specifically,

the Sentinel-3 EVI data were more severely cloudy in June than

in other months, as shown in the true-color images (Figure 10;

the white portions are clouds). These clouds would block the

satellite’s field of view, seriously affecting their image acquisition

and rendering the EVI in the blocked area invalid. The EVI index

of bare ground tended to be zero, corresponding to the brown

area in Figure 10A. However, due to the decoupling between SIF

and EVI caused by other stress factors, the correlation between SIF

and EVI was poor. The above two conditions seriously affected the

reconstruction results of SIF. Accordingly, the RMSE between the

reconstructed SIF data and GOME-2 SIF was significantly higher

in June than in the other months. A similar phenomenon also

occurred in the high-latitude forest, where RMSE values between

the aggregated 0.5◦ SIF data and 0.5◦ GOME-2 SIF data were

0.178 in April, 0.167 in May, and 0.138 in July, all better than

the 0.440 in June, which was clouded more than in other months,

as shown in the true-color image (Figure 10; the white parts are

clouds). Evidently, the proposed SIF reconstruction method, which

considers a finer latitude differentiation and a reasonable time span

and relies on only two predictors, EVI and LST, could provide

reliable 500m SIF. Nonetheless, this method was more sensitive

to clouds than SIF satellite products due to its dependence on the

vegetation index.

For the comparison with GOSIF, we obtained 2017 data

from the GOSIF website at a spatial resolution of 0.05◦ and a

temporal resolution of 1 month. The RMSE values fluctuated

around 0.118 for grasslands and 0.246 for forests. The R2

values reached 0.77 in both high- and low-latitude grassland

regions in June-October and 0.75 in the mid-latitude forest

region in March-June. Most of these GOSIF-based RMSE and

R2 values were slightly higher than those of GOME-2 SIF and

the reconstructed SIF, and they did not work well when cloud

cover was present, such as the high-latitude forests in June.

Figures 11A–K shows the visual comparison of 0.05◦ GOSIF

data and the 500m reconstructed SIF data, which proved

that the SIF images of forests and grasslands after undergoing

model reconstruction had a high degree of similarity with those

of GOSIF. T
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TABLE 7 The R2 values between the reconstructed SIF and other SIF products.

LLG in
June-October

MLG in
June-October

HLG in
June-October

MLF in
March-June

HLF in
April-July

GOME-2 0.66 0.51 0.62 0.70 0.52

GOSIF 0.77 0.56 0.77 0.75 0.61

LLG, Low-latitude grassland; MLG, Mid-latitude grassland; HLG, High-latitude grassland; MLF, Mid-latitude forest; HLF, High-latitude forest.

3.5. Comparisons with GPP products

To further evaluate the reconstructed SIF product, we explored

the relationship between it and GPP using the latter’s estimates

from the 500m resolution MODIS. As Figure 12 shows, the

reconstructed SIF product was closely related to GPP. The best

R2 of 0.97 appeared in the seasonal regression of mid-latitude

grassland, and the lowest R2 (0.90) came from the forest monthly

regressions across low, mid, and high latitudes.

3.6. Interannual variations of coe�cients in
SIF model

Figure 13 compares the SIF model coefficients of 2017 and

2018. Pearson correlation coefficient (r) (eq. 8) was used to assess

interannual variation in the SIF model coefficients, as follows:

r = corr
(

x, y
)

=

∑

i (xi − x)(yi − y)
√

∑

i (xi − x)2
∑

i (yi − y)2
(8)

where x and y represent the average value of a set of coefficients,

xi and yi represent the coefficient value for each month separately.

The results revealed that the EVI (LST) coefficients differ between

years, even within the same month, especially during the summer.

Nevertheless, the EVI (LST) coefficients still exhibited a high

interannual correlation: the r was 0.744 for EVI coefficients and

0.820 for LST coefficients in forest regions. In contrast, significant

interannual variation was detected in the grassland’s EVI (LST)

coefficients (Figure 13B), with r being −0.085 for EVI coefficients

and 0.752 for LST coefficients. Grasslands were more sensitive to

meteorological variation, herbivory (by vertebrates), and human

interventions than forests.

4. Discussion

4.1. E�ects of EVI’s RSD on model
performance

EVI is less affected by the saturation effect than NDVI and

performs better for forests and grasslands at certain stages of the

growing season (Sun et al., 2020). For mixed forest areas at three

latitudes, in most months of the year, the forests’ phenology in

low-, mid-, and high-latitude regions differed from each other, and

their corresponding EVI also showed a pronounced discrepancy

between latitudes and distribution within a wider range. Possible

explanations for the changes in the RSD of EVI data are as follows:

the high temperature at low latitudes allows its forest vegetation

to grow vigorously, while the forests at mid-high latitudes must

contend with a low-temperature environment and have few leaves,

resulting in a large disparity of EVI values between the forests

at low-latitude vs. mid-high latitudes. At mid-high latitudes, the

temperature rises gradually from March, and the forests start

to grow from then onward, forming dense stands in August;

in tandem, their EVI values consequently increase, peaking in

August, leading to the declining EVI disparity between the forests

at low-latitude vs. mid-high latitudes from March until its trough

in August. At mid-high latitudes, vegetation coverage gradually

decreases from September onward as the temperature dips, while

the LLF remains relatively dense due to the particularity of

its tropical rainforest climate; hence, the EVI disparity between

low-latitude forest vs. mid-high latitude forests rises again after

September. Therefore, from June to September, because the tree

leaves at all latitudes have basically completed growing, no obvious

differences between latitudes in EVI data are discernable, and the

EVI data at all latitudes are concentrated in a relatively smaller

range, leading to a poor linear regression result. This explains why

the R2 values from June to September are lower.

For both mid- and high-latitude forests, the temperature and

humidity in the growing season vis-à-vis the dormant or aging

season are more suitable for vegetation growth—going from bare

trees to those with dense leaves. Accordingly, the corresponding

disparities of EVI values in the growing season exceed those of

the other two seasons for both mid- and high-latitude forests.

The latter has a subtropical coniferous forest climate where the

warm period is shorter, and its precipitation falls only in the

growing season, leading to green vegetation being sparse in

the dormant and aging seasons (Nechita and Chiriloaei, 2018).

In contrast, the mid-latitude forest has a subtropical monsoon

climate with an annual average temperature of 15◦C−22◦C and

abundant precipitation, so some vegetation coverage persists even

during the dormant and aging season (Xia et al., 2019). As

a result, the mid-latitude forest in the dominant and aging

seasons provides EVI data with larger value ranges than the

high-latitude region. Unlike the mid- and high-latitude regions,

the low-latitude forest does not feature stark seasonal differences

in terms of leaf areas index and photosynthetic intensity due

to its tropical rainforest climate with high temperature and

rainfall throughout the year (Leigh, 1975), leading to low EVI

disparities over time and poor linear regressions of R2 = 0.08

(please see subsection 3.2 for details). Therefore, the key to

obtaining a sound and meaningful regression lies in using a

relatively wider value range of EVI data. Consequently, it is

recommended to collect the SIF and its predictors’ data over a

relatively larger spatial or temporal span to yield datasets with

wider value ranges of SIF and its predictors for a more accurate

SIF reconstruction.
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FIGURE 9

Comparisons of the 0.5◦ GOME-2 SIF and the 500m reconstructed SIF in (A–K). (A) Low-latitude grassland in July. (B) Mid-latitude grassland in July.

(C) High-latitude grassland in July. (D) Mid-latitude forest in March. (E) Mid-latitude forest in April. (F) Mid-latitude forest in May. (G) Mid-latitude

forest in June. (H) High-latitude forest in April. (I) High-latitude forest in May. (J) High-latitude forest in June. (K) High-latitude forest in July.
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FIGURE 10

True-color Sentinel-3 EVI images of forest regions. (A) Mid-latitude forest in June 2017. (B) High-latitude forest in June 2017.

4.2. Poor performance in LLF

There are two plausible explanations for the poor performance

of linear regressions in the LLF region. This forest alone had

a much narrower value range of SIF and EVI data, as seen

in subsection 3.3. At mid-high latitudes, both SIF and EVI

displayed an obvious seasonal cycle—they started to grow from

March and peaked in summer given the favorable temperatures,

soil moisture conditions, and longer sunshine hours, whereas in

autumn (September, October, and November), SIF and EVI began

to decline due to a drop in temperature and precipitation, reaching

their lowest values in winter (December, January, and February).

Unlike mid- or high-latitude regions, the forest at low-latitude

produced an annual EVI value within a much smaller range of

variation; it was slightly lower in winter and spring and slightly

higher in summer and autumn. The RSD values for EVI and SIF

were much lower for the LLF than for either the mid-latitude or

high-latitude forest.

Another reason for the decoupling of SIF and EVI in LLF is that

SIF, as a proxy of photosynthesis, is attributed to phenologically

related structural changes (e.g., leaf abscission and leaf aging) as

well as biochemical shifts in leaves (e.g., chlorophyll synthesis

and degradation) (Chang et al., 2021), but EVI only depends on

chlorophyll content, canopy structure, and green leaf area. The LLF

region was mostly tropical rainforest with lush vegetation all year

round and characterized by seasonal transitions between dry and

wet. Under drought conditions—the dry season in the rainforest

suggests a period of little, if any, rainfall—photosynthesis decreased

in response to less light. On the contrary, the trees’ deep roots

kept absorbing groundwater during the dry season, enabling their

EVI value to remain at a relatively high level, sustaining the lush

vegetation of the tropical rainforest.

4.3. Comparisons with other relevant
methods

Table 8 lists the predictors and model performance of past SIF-

refactoring products. Comparatively, the model performance in

this study reached a level on par with recent regional-scale SIF

reconstruction products (Bontempo et al., 2020; Guo et al., 2020),

i.e., our model R2 for high and LLG regions reached 0.77 for

the June-October period. In addition, we found that for the mid-

latitude forest and HLG, their R2 could be increased further when

using a more complex algorithm. Compared with recent global-

scale SIF reconstruction products (Li and Xiao, 2019; Ma et al.,

2020; Gensheimer et al., 2022), the novelty of this study lies in

not having to rely on predictors that are difficult to access, namely

PAR, FPAR, and MFs. Only two predictors, EVI and LST, are

required to reliably predict SIF, and it is easy to access the global

rasterized high-spatial-resolution data for both (for instance, EVI

data products have a spatial resolution of up to 30m), enabling SIF

to be predicted at a spatial resolution up to 10–100m.
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FIGURE 11

Comparisons of the 0.05◦ GOSIF and the 500m reconstructed SIF in (A-K). (A) Low-latitude grassland in July. (B) Mid-latitude grassland in July. (C)

High-latitude grassland in July. (D) Mid-latitude forest in March. (E) Mid-latitude forest in April. (F) Mid-latitude forest in May. (G) Mid-latitude forest in

June. (H) High-latitude forest in April. (I) High-latitude forest in May. (J) High-latitude forest in June. (K) High-latitude forest in July.
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FIGURE 12

Correlations between the reconstructed SIF and GPP data. (A) Mid-latitude forest in Mar-Jun (B) High-latitude forest in Apr-Jul (C) All three forest

regions across low, mid, and high latitude in Feb-Apr (D) Low-latitude grassland in July. (E) Mid-latitude grassland in July. (F) High-latitude grassland

in July.

FIGURE 13

Variation in EVI and LST coe�cients by month in the SIF regression models. (A) In forest regions across low, mid, and high latitudes. (B) Low-latitude

grassland region. The red and blue lines represent EVI and LST, respectively, in both 2017 (circles) and 2018 (squares).

5. Conclusion

We proposed a simple method to reconstruct high-resolution

SIF relying only on EVI and LST and explored the possibility of

different phenological periods and spatial locations to augment

the performance of SIF reconstruction models. Undoubtedly, high-

resolution (e.g., 30m) EVI information can now be freely acquired

from many satellites, and temperature data are also widely and

easily accessible, especially for human habitations. Our experiments

show that the performance of SIF reconstruction models could be
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TABLE 8 Predictors and research scales used in previous SIF reconstruction studies (R2: coe�cient of determination).

References Spatial scale Temporal scale Predictors R2

Guo et al. (2020) Regional scale Seasonal scale NDVI, EVI, LAI, FAPAR, and PAR 0.71

Li and Xiao (2019) Global scale Seasonal scale EVI, PAR, VPD, and air temperature 0.79

Bontempo et al. (2020) Regional scale Seasonal scale VIs, surface temperature, precipitation rate, soil moisture data, and surface

reflectance

0.74

Gensheimer et al. (2022) Global scale Monthly scale NDVI, NIRv, kNDVI, EVI, MODIS bands, temperature, precipitation,

surface soil moisture, SZA, and elevation

0.92

Ma et al. (2020) Global scale Monthly scale NDVI, reflectance, SZA, and air temperature 0.74

improved by further increasing the complexity of the algorithm.

Our proposed method is, therefore, expected to be useful for

reconstructing the SIF of forests and grasslands in and around

urban and rural regions to help better evaluate the capacities of

those vegetation ecosystems in collecting the carbon emitted by

human activity.
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