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Many countries and regions are currently developing new forest strategies to

better address the challenges facing forest ecosystems. Timely and accurate

monitoring of deforestation events is necessary to guide tropical forest

management activities. Synthetic aperture radar (SAR) is less susceptible to

weather conditions and plays an important role in high-frequency monitoring

in cloudy regions. Currently, most SAR image-based deforestation identification

uses manually supervised methods, which rely on high quality and sufficient

samples. In this study, we aim to explore radar features that are sensitive to

deforestation, focusing on developing a method (named 3DC) to automatically

extract deforestation events using radar multidimensional features. First, we

analyzed the effectiveness of radar backscatter intensity (BI), vegetation index

(VI), and polarization feature (PF) in distinguishing deforestation areas from

the background environment. Second, we selected the best-performing radar

features to construct a multidimensional feature space model and used an

unsupervised K-mean clustering method to identify deforestation areas. Finally,

qualitative and quantitative methods were used to validate the performance of the

proposed method. The results in Paraguay, Brazil, and Mexico showed that (1) the

overall accuracy (OA) and F1 score (F1) of 3DC were 88.1–98.3% and 90.2–98.5%,

respectively. (2) 3DC achieved similar accuracy to supervised methods without

the need for samples. (3) 3DC matched well with Global Forest Change (GFC)

maps and provided more detailed spatial information. Furthermore, we applied

the 3DC to deforestation mapping in Paraguay and found that deforestation

events occurred mainly in the second half of the year. To conclude, 3DC is a

simple and efficient method for monitoring tropical deforestation events, which

is expected to serve the restoration of forests after deforestation. This study is also

valuable for the development and implementation of forest management policies

in the tropics.
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1. Introduction

Forests cover 4.06 billion hectares, almost one-third of the
global land area (Hansen et al., 2013; Smith et al., 2023). According
to the Global Forest Resources Assessment (FRA) data report,
an estimated 420 million hectares of forests have been lost to
deforestation globally between 1990 and 2020 (Arévalo et al., 2020;
Smith et al., 2023). Of these, more than 90% occurred in the tropics,
with an average annual deforestation of 9.28 million hectares in
2015–2020 (Smith et al., 2023). Deforestation in the Brazilian
Amazon has increased by 52% in the last 20 years (Silva et al., 2023).
Rapid forest loss has also been observed in Eurasia and Africa
(Mitchell et al., 2017). From 1985 to 2015, deforestation accounted
for 20.17% of total forest destruction in Canada (Hermosilla et al.,
2019). In South Asia, total forest loss area was estimated at 29.62%
between 1930 and 2014 (Sudhakar Reddy et al., 2018). Over
the past 40 years, deforestation in India, Bangladesh, Sri Lanka
and Nepal was 27,655, 2,482, 1,281, and 3,095 km2, respectively
(Sudhakar Reddy et al., 2018). Carbon emissions from tropical
deforestation increase the global mean temperature (Hansen et al.,
2013; Arévalo et al., 2020) and provide negative feedback to human
activities through climate change, such as floods and wildfires
(Duveiller et al., 2008; Giam, 2017; Bousquet et al., 2022; Smith
et al., 2023). Moreover, tropical deforestation leads to the loss
of biological habitats and biodiversity, posing a serious threat
to global ecological security (Xu et al., 2012; Eivazi et al., 2015;
Watanabe et al., 2018; Huang et al., 2019). To mitigate global
warming, a number of international conventions and initiatives
have been developed to achieve carbon neutrality, such as the
Reducing Emissions from Deforestation and Forest Degradation
(REDD+) framework and the Sustainable Development Goals
(SDGs) (Muthee et al., 2022; Sugimoto et al., 2022; Tang et al.,
2023). Timely and accurate mapping deforested area is essential
to for initiating appropriate forest management activities (such
as reforestation). Satellite remote sensing is an effective earth
observation technology as it provides objective records, wide
coverage, and frequent observations (Xiao et al., 2019; Lechner
et al., 2020; Zhao and Pan, 2023). However, current remote sensing-
based deforestation mapping methods still face many challenges
(e.g., poor timeliness, labor intensity), especially in the tropics.

Many studies have applied space sensors to monitor forest
change in specific regions, tropical rainforests, and even globally
(Hou et al., 2013; Lehmann et al., 2015). The Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor provides satisfactory
temporal coverage in tropical areas with frequent cloud cover (Tang
et al., 2019, 2020), but many small-scale deforestation events are
missed due to its low resolution (Tarazona et al., 2018). MODIS
missed up about half of forest changes compared to Landsat image
(Hansen and Loveland, 2012). Landsat images are widely used as
data source for forest monitoring (Shimizu et al., 2019; Smith et al.,
2019; De Marzo et al., 2021; Cai et al., 2023), but frequent cloud
cover in the tropics makes the data unusable (Guimarães et al.,
2018), especially during monsoons (Ballère et al., 2021). As a result,
optical satellite-based forest monitoring systems fail to detect new
deforestation events in a timely manner (Rignot et al., 1997; Reiche
et al., 2015; Sugimoto et al., 2022; Tang et al., 2023). Synthetic
aperture radar (SAR) operates at microwave frequencies, is less
susceptible to cloud and rain interference and has better temporal

resolution for monitoring tropical deforestation events (Lehmann
et al., 2015; Ballère et al., 2021; Zhao et al., 2022).

Methods used in deforestation area identification research can
be divided into change detection methods (Tang et al., 2023) and
classification-based methods (Ortega Adarme et al., 2022; Slagter
et al., 2023). In recent years, change detection methods have proven
to be effective in identifying deforestation areas (Chen et al., 2021;
Ygorra et al., 2021; Cardille et al., 2022). Such an approach is a
promising method to accurately identify deforestation areas from
SAR images (Motohka et al., 2014; Reiche et al., 2015, 2018; Zhao
et al., 2022), as more observations describing vegetation seasonality
and deforestation are helpful to achieve more accurate results
(Shimabukuro et al., 2014; Zhu, 2017; Arévalo et al., 2020; Bullock
et al., 2020; Decuyper et al., 2022). Classification-based methods
mainly combine advanced classifiers with remote sensing features
to map deforested areas, including machine learning algorithms
and deep learning algorithms (Ghulam et al., 2014; Magdon et al.,
2014; Grecchi et al., 2017; Shumilo et al., 2020; Liang et al., 2023).
However, most of these methods are supervised methods that
rely on training samples, and their accuracy is heavily depend
on the quality and quantity of the samples (McRoberts, 2014;
Zhang et al., 2022; Zhao and Pan, 2023). Collecting training
samples is time-consuming and labor-intensive and is often
impractical in hard-to-reach rainforest areas (de Oliveira et al.,
2011; David et al., 2022). In addition, due to model or algorithm
limitations, the deforested areas identified by these two methods
have delayed effects that cannot meet the timeliness requirements
of deforestation monitoring.

Overall, for deforestation events in the tropics, existing
methods cannot avoid human involvement and sample support.
To address the existing limitations, this study aims to develop
an automated method for deforestation detection using Sentinel-
1 SAR data. Our specific objectives are as follows: (1) explore
the sensitive SAR features that distinguish the deforestation area
from the background environment, (2) develop an automatic
identification method for forest deforestation areas by constructing
a feature space model based on the sensitive SAR features;
and (3) apply the proposed method to map the deforestation
dynamics of specific areas and reveal their deforestation history.
Overall, this study provides an accurate and automated method for
monitoring deforestation events in the tropics, which helps to stop
malicious deforestation activities. In addition, our study provides
a theoretical reference for the formulation of forest management
policies, which is conducive to timely management and restoration
after deforestation.

2. Principle of 3DC

Radar backscatter intensities (BIs) are closely related to
vegetation biophysical parameters (Reiche et al., 2018) and are
widely used to identify deforested areas (Doblas et al., 2020; Ygorra
et al., 2021). Besides the BIs, vegetation index (VI) and polarization
feature (PF) are widely used for the quantitative description of
forest parameters, including aboveground biomass (AGB) and
canopy structure (CS) (Koch, 2010; Cutler et al., 2012; Xu et al.,
2012; Fremout et al., 2022; Sugimoto et al., 2022).

Studies have revealed that radar backscatter intensity
decreases after deforestation, with VH being more pronounced
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FIGURE 1

Technical flow chart of this paper.

than VV (Sugimoto et al., 2022; Borlaf-Mena et al., 2023).
Partial deforestation changes the radar signal less than obvious
deforestation (Lei et al., 2018; Hethcoat et al., 2021). Considering
the change in “vegetation”–“deforested area,” the VIs and PFs
provide more information that is conducive to identifying
deforested areas. First, this “vegetation”– “deforested area”
variation is a direct result of AGB loss, and VIs can be a more
valid indicator of AGB (Chang et al., 2018; Periasamy, 2018).
Second, there are secondary reflections between the tree canopy
and the tree trunks, and forests mainly show volume scattering
(Sugimoto et al., 2022). In deforested areas, the removal of trees
mainly manifests as surface scattering.

We used sample data to count the distribution of deforested
and forested areas on the above three types of radar features
(Supplementary Figure 1). We found that for each type of radar
feature, there was a partial overlap between deforested areas and
forests (Supplementary Figure 1A). Therefore, it is difficult to
determine an appropriate threshold to distinguish deforested areas
from forests. We showed the distribution of sample points in the
three-dimensional (3D) spatial model formed by BI, VI and PF
(Supplementary Figure 1B). We found that the discrimination
between deforested and forested areas increased seemingly. The
deforested area was mainly distributed in the lower part of the

3D space, while the forest area was located in the upper part
of the 3D space.

Based on the above analysis, we constructed a three-
dimensional (3D) feature space model using three types of features
from Sentinel-1 radar data, and coupled it with a clustering
algorithm to develop a simple and efficient deforestation area
identification method (3DC) (Figure 1B). In this study, we
chose the K-means clustering algorithm because it is a classical
unsupervised learning method with the advantages of simple
implementation form and low linear complexity (De Luca et al.,
2021; Maurya et al., 2021). Notably, we also constructed feature
space models in other dimensions (see section “3.4.1. Comparison
with other feature combination strategies”) to demonstrate the
performance of the proposed method. The technical flowchart is
shown in Figure 1.

3. Materials and methods

3.1. Study area

To ensure the applicability of the 3DC, we selected three study
areas in Paraguay, Brazil, and Mexico (Figure 2). All three regions
have high rates of forest cover and deforestation. Paraguay has a
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FIGURE 2

Overview of the study area. (A) Geographic location, (B) sample data, and (C) description.

tropical dry forest climate with 54% forest cover. The dominant
vegetation type of in Region A is closed deciduous broad-leaved
forest. Brazil has 62% forest cover, accounting for one-fifth of the
world’s forest area. Region B has a tropical rainforest climate, and
the dominant vegetation type is closed evergreen needle-leaved
forest. The eastern plain of Mexico has a subtropical humid climate,
and open evergreen needle-leaved forest is the dominant vegetation
type. The areas of regions A, B, and C are 180 km × 130 km,
150 km× 110 km, and 120 km× 70 km units, respectively.

3.2. Data analysis

3.2.1. Data sources
We downloaded the Level-1 ground range detected (GRD)

and single look complex (SLC) data (Supplementary Table 1)
covering the study area freely from the ASF website. The image
acquisition dates for regions A, B, and C are September 16, 2019,
August 13, 2021 and June 6, 2022, respectively. In addition, we
downloaded auxiliary data for Sentinel 1 pre-processing, including
precision orbit data and Digital Elevation Model (DEM) data.
Sample points were generated by visual interpretation based
on Planet satellite data from the Global Forest Watch (GFW)
maps and Google Earth images. We selected 8,192 samples in
three study areas, as detailed in Supplementary Table 2. The
sample points were randomly selected and evenly distributed
within the study area. In addition, we used Global Forest Change

v1.9 (2000–2021) (GFC) data as reference maps (Hansen and
Loveland, 2012; Hansen et al., 2013). GFC maps were generated
using 654,178 Landsat images with a spatial resolution of 30
m (Hansen et al., 2013). The accuracy of forest loss detection
in GFC products is 87.0–87.8% globally (Li et al., 2017). We
evaluated the accuracy of the proposed method using annual
tree loss maps of the GFC. Detailed data sources are listed in
Table 1.

3.2.2. Data pre-processing
The Sentinel 1 data were pre-processed using the SNAP

software available on the European Space Agency website (see

TABLE 1 Description of the data used in the study.

Data description Data source

Sentinel GRD data https://scihub.copernicus.eu/dhus/#/home

Sentinel SLC data https://scihub.copernicus.eu/dhus/#/home

Precision orbit data https://s1qc.asf.alaska.edu/

Digital Elevation Model
(DEM) data

https://dwtkns.com/srtm/

Global Forest Change
v1.9 (2000–2021) (GFC)

https:
//storage.googleapis.com/earthenginepartners-

hansen/GFC-2021-v1.9/download.html

Planet data Global Forest Watch (GFW) map
(https://www.globalforestwatch.org/map/)
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Figure 3). We then used three masks on the pre-processed Sentinel
1 data to generate a valid image element value. The use of forest
masks to exclude other land cover is a common approach in
forest degradation studies (Ballère et al., 2021; Tang et al., 2023).
Tropical forests often take 12 or more years to recover their pre-loss
biodiversity and biological structure (Poorter et al., 2021). First, we
used GFC forest cover data from the year before the study period
to mask the Sentinel-1 data. In general, the backscatter coefficient
of dual-band co-polarization (VV) is larger than that of cross-
polarization (VH) (Yang et al., 2018; Wang et al., 2022). Second,
we set (VV>VH) to ensure that the pixel values of the radar image
match the natural scene. Third, we set (VV >−20 dB) to separate
water bodies (Bhogapurapu et al., 2021).

3.2.3. Candidate radar features
We selected 15 radar variables, including four BIs, four VIs and

seven PFs. Details of the features are given in Table 2. To the best of
our knowledge, other features have been widely used for vegetation
(e.g., biomass) studies, except for these two features (C11 and C22)
obtained from the SAR coherence matrix, which have never been
used for forest area extraction.

3.2.4. Separation indicators
The M-index (eq. 1) and the Jeffries-Matusita (JM) distance (eq.

2) (Xun et al., 2021) were selected for the separability analysis. They
are calculated as follows.

M =
|µ1 − µ2|

σ1 + σ2
(1)

JM = 2(1− e−B) (2)

B =
1
8
(µ1 − µ2)

2 2
σ2

1 + σ2
2

1
2
ln(

σ2
1 + σ2

1
2lσ1σ2

) (3)

where µ1 and µ2 denote the mean values of forested and non-
forested area, respectively. σ1 and σ2 denote the standard deviation
of forested and non-forested area, respectively. When the value of
M (JM) is greater than 1, it indicates good separability; otherwise, it
indicates poor separability.

3.3. Extraction of deforestation areas
using 3DC

Based on the separability analysis, we selected the features
with the highest separability among the features of each SAR
type as the three axes of the 3D feature space. In the feature
space, the deforested and non-forested deforested areas are divided
into two clusters (Supplementary Figure 1). Then, the pixels
in the deforested areas can be extracted using the K-mean
clustering algorithm.

The K-mean clustering algorithm is an unsupervised
classification method (De Luca et al., 2021; Maurya et al.,
2021). Its implementation principle, including the following steps:

Input: dataset D = {x1, x2, · · · , xn}, the number of class
clusters is k, and the maximum number of iterations is υ.

Output: k number of class clusters, C = {C1,C2, · · · ,Cn}.

Step 1: Select k sample points from the dataset D randomly as
the initial mean vector µ (eq. 4) representing the clusters.

µ = {µ1,µ2, · · · ,µk} (4)

Step 2: Calculate the distance (eq. 5) from each sample xi to
each mean vector µj in the dataset D.

dist
(
xi,µj

)
= xi − µ2

j , i ∈ [1, n] , j ∈ [1, k] (5)

Step 3: Divide each sample in dataset D into the closest cluster.

λi = argj∈[1,k] min dist
(
xi,µj

)
(6)

Cλi = Cλi ∪
(
xj
)

(7)

Step 4: Update the class cluster centers (eq. 8) for each category.

µ
′

j =
1∣∣Cj
∣∣ ∑
x∈|Cj|

x (8)

where
∣∣Cj
∣∣ represents the sample count in the j th cluster.

Step 5: Repeat Step 2, 3, and 4 until the class cluster centers no
longer change or reach the pre-given maximum iterationumber υ.

After completing the above steps, the algorithm terminates. In
this study, we set the number of classes for the K-mean clustering
algorithm to be 2, and the default ENVI software settings were used
for the other parameters.

3.4. Performance test of the proposed
method

3.4.1. Comparison with other feature
combination strategies

To test the performance of the 3D feature space, we established
four other types of datasets (Figure 4). In these datasets, D1
considers only BI; D2 considers only VI; D3 considers only PF; D4
includes BI, VI, and PF. For dataset D5, the four best separation
indicators were selected from all candidate radar parameters (BI-
VI-PF, BVP). After assigning suitable parameters to each dataset,
the K-means clustering algorithm was applied to identify the
deforestation area.

3.4.2. Comparison with supervised classifiers
Four commonly used supervised classification methods

(Maurya et al., 2021), including object-oriented (OOC), maximum
likelihood (MLC), neural network (NN), and support vector
machine (SVM), were selected for comparison with the 3DC.
To ensure the best performance, we tested different parameter
settings for the supervised classifiers. In this study, we used a
rule-based object-oriented feature extraction workflow. The data
scale factor of the MLC model was set to 1. The hidden layers
and training iterations of the NN model were set to 1 and 1000,
respectively. We selected the Radial Basis Function (RBF) as the
kernel function of the SVM model. To train the SVM classifier,
the kernel function gamma, penalty parameter and pyramid levels
were set to 0.5, 100, and 0, respectively. The VV and VH images
of the Sentinel-1 data are the input data for the four classifiers.
We conducted experiments on supervised classification methods
using ENVI software.
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FIGURE 3

Pre-processing workflow for Sentinel 1 (A) GRD, and (B) SLC data.

TABLE 2 Candidate radar parameters.

Types Description Calculation References

BI Cross-polarization (VH) – Castillo et al., 2017; Ballère et al., 2021

Co-polarization (VV) –

Backscattering ratios (q) q =
vh
vv

Bhogapurapu et al., 2021

Pseudo-scattering type (θ) tanθ =
(1− q)2

1+ q2 − q

VI Radar forest degradation index
(RDFI)

RFDI =
vv− vh
vv+ vh

Joshi et al., 2015

Radar vegetation index (RVI) RVI =
4vh

vv+ vh
Trudel et al., 2012

Polarimetric radar vegetation
index (PRVI)

PRVI = (1−DOP) · vh Chang et al., 2018

Inverse dual-polar diagonal
distance index (IDPDD)

IDPDD =
(vvmax − vv)+ vh

√
2

Periasamy, 2018

PF Diagonal elements (C11, C22) C2 =

 C11 C12

C21 C22

 =
 〈
|vv|2

〉 〈
vv · vh∗

〉
〈
vh · vv∗

〉 〈∣∣vh∣∣2〉
 Sun et al., 2022

Phase (C12, C21)

Entropy (H) H = −
∑2

i = 1 pilog2pi, ∀ 0 ≤ pi =
λi∑2

i = 1 λi
≤ 1 Cloude and Pottier, 1997

Anisotropy (A) A =
λ1 − λ2

λ1 + λ2

Alpha angle (α) α =
∑2

i = 1 piαi = p1α1 + p2α2

Here, the degree of polarization (DOP) can be calculated using equation DOP = (1−q)/(1+ q); pi represents the pseudoprobability of occurrence of the scattering mechanism; λ1 and λ2

represent the eigenvector and eigenvalue of the complex scattering matrix [C2].

3.4.3. Comparison with GFC maps
Visual comparison with the GFC maps further demonstrates

the ability of the 3DC to detect deforestation. To obtain objective
evaluation results, (1) the consistency of 3DC results with GFC
products was tested in three study areas; and (2) the 3DC was
applied to map the deforestation dynamics in Paraguay for 2021.

3.5. Validations

The overall accuracy (OA) (eq. 9), F1 score (F1) (eq. 10) and
intersection over union (IoU) (eq. 13) were employed to evaluate

the performance of the 3DC. They are calculated as follows.

OA =
TP + TN

TP + TN + FP + FN
(9)

F1 =
2 × PA × UA

PA+ UA
(10)

IoU_0 =
TN

FN + TN + FP
(11)

IoU_1 =
TP

FP + TP + FN
(12)
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FIGURE 4

SAR dataset (A) D1: BI1 and BI2; (B) D2: VI1 and VI2; (C) D3: PF1 and PF2; (D) D4: BI1, VI1 and PF1; and (E) D5: BVP1, BVP2, BVP3 and BVP4. “∗1” and
“∗2” are the first and second ranked by “Separation Indicators,” respectively.

mIoU =
1
2

(
TN

FN + TN + FP
+

TP
FP + TP + FN

)
(13)

where TP, TN, FP, and FN denote the number of true-positive, true-
negative, false-positive, and false-negative samples, respectively.
IoU_0 and IoU_1 indicate the IoU of the non-deforested and
deforested area, respectively (Ma et al., 2022).

4. Results

4.1. Sensitive remote sensing parameters
of forest change

Among the BIs (Figure 5), the separation of VV and VH values
for the deforested area and forest samples was greater than 1, with
M (JM) values of 1.68 (1.50) and 1.75 (1.55), respectively. For
the parameters q and tanθ, there was a large overlap between the
forest and deforested area samples, indicating that less information
was available to help identify deforested areas. In the VIs, the
overlap between the RVI and RFDI values for deforested areas
and forests was large, while there were large differences in the
PRVI and IDPDD, with M (JM) values of 1.10 (1.02) and 1.15
(1.04), respectively. Among the PFs, the C11 and C22 values of the
deforested areas and forest samples were highly variable, with M
(JM) values of 2.20 (1.81) and 2.15 (1.78), respectively.

Furthermore, the PFs (i.e., C11 and C22) performed better
than the BIs (i.e., VV and VH) in separating deforested areas
from forests. For parameters with a separation greater than 1, the
deforested areas had low values, and the forests had high values
except for IDPDD.

4.2. Comparison with other feature
combination strategies

Table 3 shows the mapping accuracy of the five strategies
(Supplementary Figure 2). It is easy to see that dataset D4 achieved

the highest accuracy in all study areas compared to the other
four feature combination strategies. The OA, F1, and mIoU of
the deforested area extraction results in region A based on dataset
D4 were 98.3, 96.4, and 96.5%, respectively. The identification
accuracy of study area A was better than that of study areas B
and C. The deforested areas in study area A are large and densely
distributed, while the deforested areas in study areas B and C
are scattered and in small patches. The diversity of distribution
patterns and deforested area sizes led to differences in identification
accuracy between regions. This is because the degree of landscape
fragmentation affects the classification accuracy based on remote
sensing images (Xun et al., 2021; Zhang et al., 2022; Zhao and Pan,
2023). To compare the feature space models in more detail and
comprehensively, we visualized the extraction results for the three
regions (Supplementary Figures 3–5). Overall, the accuracy of the
3D feature space model proposed in this paper is obviously superior
to other feature space models.

4.3. Comparison with supervised
classification methods

Table 4 shows the mapping accuracy of the supervised
classifiers. Among the four supervised classification methods, SVM
had the highest accuracy, and OOC had the lowest accuracy
(Table 4). The proposed method outperformed OOC and had
similar accuracy to MLC, NN, and SVM classifiers. Specifically, in
region B, the OA, F1, and mIoU values of the 3DC were higher than
those of the OOC, MLC, NN, and SVM classifiers, indicating that
the proposed method performed similarly to supervised classifiers
without the use of training samples. In regions A and C, the OA,
F1, and mIoU values of the proposed method were all superior
to OOC and slightly lower than MLC, NN and SVM classifiers.
The results show that (1) the supervised classifier is robust when
there are sufficient and high-quality training samples; and (2) when
there are no or insufficient training samples, the 3DC is a more
appropriate choice.
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FIGURE 5

Frequency histograms of candidate feature values for forest and deforested area samples. C12_imag and C12_real are the phase features in the [C2]
coherence matrix, representing C12 and C21, respectively.

For a more detailed and comprehensive comparison of
the proposed approach with other supervised classifiers, typical
deforestation conditions in three regions were selected for further
discussion. Supplementary Table 3 describes typical deforestation
conditions. Figures 6–8 show the identification results of
deforestation areas for the proposed method and the supervised
classifiers. In condition 1, the proposed method was highly
consistent with the supervised classification method in that both
could accurately detect deforested areas. In condition 2, compared
to the 3DC, the supervised classification methods suffered from
a high omission error. Most of the missing areas correspond to
areas of vegetation regeneration on the planet map (for example,
natural grass growth or artificial crops after deforestation). In
condition 3, the proposed method overestimated the deforestation
area compared to the supervised classification method. In condition
4, there were obvious omissions in the supervised classification
results, and the deforestation areas detected by the 3DC were highly

consistent with the actual map. As shown in Figures 7, 8, there
were more speckles in the classification results of region B and
region C, which severely affected the accuracy of deforested area
identification, which is consistent with the quantitative evaluation
results in Table 4. In general, the proposed method is consistent
with the four supervised classifiers in the spatial distribution of
deforested areas.

4.4. Consistency with the GFC maps

Figure 9 shows the 3DC results and GFC maps in the
three study areas for a given year. In general, the 3DC results
closely matched the GFC maps in all study areas. Moreover, the
3DC results provided more adequate and detailed distribution
information. In Region B, for forest loss at two locations on the GFC
map, 3DC was able to identify areas as deforested. Furthermore,
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TABLE 3 Mapping accuracy of the five strategies.

Region Dataset OA (%) F1 (%) IoU_0 (%) IoU_1 (%) mIoU (%)

A D1 94.0 94.6 87.4 89.8 88.6

D2 80.1 93.0 78.9 86.9 82.9

D3 97.2 96.9 94.9 93.9 94.4

D4 98.3 98.5 96.0 97.0 96.5

D5 97.4 97.7 94.0 95.5 94.7

B D1 89.8 93.6 59.5 88.0 73.7

D2 85.2 90.4 51.0 82.5 66.7

D3 91.4 94.4 68.5 89.3 78.9

D4 94.1 96.2 76.6 92.6 84.6

D5 92.7 95.3 70.8 91.1 80.9

C D1 80.9 85.1 58.0 74.0 66.0

D2 76.2 81.9 48.5 69.3 58.9

D3 84.7 88.2 64.3 78.8 71.6

D4 88.1 90.2 73.7 82.1 77.9

D5 86.2 89.4 67.0 80.8 73.9

TABLE 4 Mapping accuracy of the supervised classifiers.

Region Method OA (%) F1 (%) IoU_0 (%) IoU_1 (%) mIoU (%)

A OOC 97.4 97.8 93.6 95.7 94.6

MLC 98.8 99.0 97.2 98.0 97.6

NN 98.5 98.7 96.5 97.5 97.0

SVM 99.3 98.5 95.9 97.1 96.5

3DC 98.3 98.5 96.0 97.0 96.5

B OOC 84.9 89.3 59.9 80.6 70.2

MLC 93.3 95.5 76.8 91.3 84.1

NN 92.9 95.3 74.8 91.1 82.9

SVM 93.2 94.3 68.3 89.2 78.7

3DC 94.1 96.2 76.6 92.6 84.6

C OOC 87.4 88.8 74.9 79.8 77.3

MLC 90.4 91.5 80.3 84.4 82.3

NN 88.9 89.7 78.6 81.3 80.0

SVM 91.5 91.7 84.0 84.7 84.4

3DC 88.1 90.2 73.7 82.1 77.9

the 3DC showed the distribution of deforested areas at a higher
spatial resolution. For regions A and C, the 3DC and GFC maps
were highly consistent in the overall spatial pattern, with differences
some areas. For example, the differences occur mainly in some
newly deforested areas, as shown by the red circles in Figure 9.

Figure 10 shows the multi-year dynamics of deforestation
in Paraguay identified using the 3DC. It is not difficult to
see that the identification results of deforestation areas using
the 3DC closely match the extent of deforestation areas in
the GFC maps (Figure 10). As shown in Figure 10, both
maps yield consistent deforestation area extents, but there are
differences in the years of deforestation. This is because the 3DC
results were derived using single-period image for August, and

the deforestation events may occur after August (i.e., between
September and December). In conclusion, the comparison with the
GFC maps demonstrated the accuracy and robustness of the 3DC
in identifying deforestation areas.

4.5. Applying the 3DC to detect
deforestation events in Paraguay

Through the above study, we found that the 3DC can accurately
and efficiently detect deforestation events in the tropics. We applied
the 3DC to the dynamic mapping of deforestation in Paraguay
in 2021 (Figure 11). We found that the deforestation events in
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FIGURE 6

Deforestation detection results in Paraguay. (A) Planet satellite imagery for October 2019. (B) OOC, (C) MLC, (D) NN, (E) SVM, and (F) 3DC. The left
column shows the VV and VH images of the Sentinel-1 data. Note that green represents the deforested areas, and black represents the background.
The scale bar in the lower left corner applies to the entire area thumbnail, not to the case window.

Paraguay occurred mainly in the latter part of the year (June
to January of the following year), which further explains why
some deforested areas were missed by the 3DC (Figures 10, 11).
Compared to the GFC maps, the 3DC not only accurately identified
deforestation events, but also monitored deforestation events at a
higher temporal frequency. Specifically, for deforestation events in
Paraguay, the reporting time for GFC products is often delayed,
by about 6 months or even a year. According to the study (Bárta
et al., 2021), the effective management time after forest destruction
is 6 weeks. This may need to be a shorter emergency event for
deforestation events, which are more damaging and impactful.
The 3DC provides a simple and efficient solution for monitoring

frequent deforestation events in the tropics, which can better serve
emergency response and post-event management.

5. Discussion

5.1. Reveals sensitive remote sensing
parameters of forest change

We explored the separability of forest and deforestation areas in
several features of the radar data to inform the selection of feature
parameters for radar image-based deforestation identification. In
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FIGURE 7

Deforestation detection results in Brazil. (A) Planet satellite imagery for September 2021. (B) OOC, (C) MLC, (D) NN, (E) SVM, and (F) 3DC. The left
column shows the VV and VH images of the Sentinel-1 data. Note that green represents the deforested areas, and black represents the background.
The scale bar in the lower left corner applies to the entire area thumbnail, not to the case window.

previous studies, BIs (VV and VH) have been widely used to
identify deforestation areas (Ballère et al., 2021; Ygorra et al., 2021;
Bullock et al., 2022; Tang et al., 2023). In this study, we found
that forests returned higher backscatter values in VH and VV,
while deforested areas had lower backscatter values (Figure 5).
In addition, the VIs are important indicators in forest research
(Joshi et al., 2015; Shimabukuro et al., 2019; Stahl et al., 2023). Our
experimental results showed that deforested areas and forests can
be well separated based on the PRVI and IDPDD, while there is
confusion between the two based on the RVI and RFDI (Figure 5).

Moreover, PFs are sensitive to the structural information and
dielectric behavior of the target (Sugimoto et al., 2022), with surface
scattering dominating in deforested areas and double scattering
and volume scattering in forested areas. Our experiment confirmed
the effectiveness of PFs (C11 and C22) in separating forest and
deforested areas (Figure 5), which is consistent with the study by
Sun et al. (2022). Furthermore, we also investigated the effectiveness
of the radar feature combination strategy in identifying deforested
area (Table 3). The results showed that the combination of
BI, VI, and PF achieved the best identification precision for
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FIGURE 8

Deforestation detection results in Mexico. (A) Planet satellite imagery for September 2022. (B) OOC, (C) MLC, (D) NN, (E) SVM, and (F) 3DC. The left
column shows the VV and VH images of the Sentinel-1 data. Note that green represents the deforested areas, and black represents the background.
The scale bar in the lower left corner applies to the entire area thumbnail, not to the case window.

deforested areas, but more features were not necessarily better
(Supplementary Figures 3–5).

5.2. Expands the methods for detecting
tropical deforestation events

We developed a new method (3DC) based on Sentinel-1
data and tested its accuracy in different regions to extend the

forest identification method. First, most previous studies used
supervised classification algorithms to map deforestation areas
(Magdon et al., 2014; Lee et al., 2020; Ortega Adarme et al.,
2022; Slagter et al., 2023). Sample collection requires a lot of
manpower and material resources (de Oliveira et al., 2011; Xun
et al., 2021; Zhang et al., 2022). Many remote areas are difficult
for field investigators to reach, especially in tropical rainforests
(de Oliveira et al., 2011). Moreover, existing methods have some
lag and delay effect for identifying deforestation area due to
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FIGURE 9

Comparison between the 3DC and GFC maps in three regions.

limitations of the algorithms or models. The 3DC avoids sample
selection work and is suitable for large-scale dynamic monitoring
of forests in tropical regions. Second, the GFC maps were updated
annually. In contrast, the use of the 3DC method has the potential
to achieve higher frequency monitoring of tropical deforestation
events. The proposed method achieved accurate identification
of deforestation areas on a monthly scale (Figure 11). Finally,
the OA, F1, and mIoU in three different test areas were 88.1–
98.3%, 90.2–98.5%, and 77.9–96.5%, respectively (Table 4). In
conclusion, the 3DC is a simple, efficient, and robust deforestation

detection method that can better serve forest management and
restoration programs.

5.3. Factors affecting the accuracy of the
3DC

Despite the excellent results obtained by the method for the
identification of deforested area, there are still some technical
details or limitations that can affect the accuracy of the method.
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FIGURE 10

Comparison between the 3DC and GFC maps on a multi-year scale.

First, we used a mask file (VV > −20 dB) to eliminate the effect
of water, which is easily confused with deforestation. However,
when applying the method to other areas, fine-tuning of the water
threshold may be needed. Because water thresholds vary in different
regions, a simple threshold may lead to omission or commission
information of deforestation area. In addition, other more accurate
methods can be used to determine the extent of water bodies,
including water identification using radar texture features (Ygorra
et al., 2021) or spectral indices (e.g., MNDWI) (Zou et al., 2018;
Huang et al., 2023). Second, we found that the accuracy of 3DC
varied across the three test areas (Table 3). It has been suggested
that differences in geographic conditions, such as terrain slope,
may affect the performance of the method (Altarez et al., 2023).
The slope of the terrain affects the incidence angle of the radar
beam, and the shadows produced by the slope also affect the radar
signal. We analyzed the separability of forest and deforested areas
at different slopes in regions B and C. As shown in Supplementary
Figure 6, at slopes less than 5, the deforested areas and forest
are the most separable at all three eigenvalues. When the slope
is greater than 5, all three eigenvalues of the deforested area and
forest increase, but the increase in the forest is smaller than that
of deforested area; therefore, the separability of the deforested area
and forest decreases. In the next study, a more accurate terrain

correction model should be considered to reduce the effect of
terrain on the proposed method. In addition, the application of
3DC to identify deforested areas in areas with large terrain slopes
should be carefully considered.

5.4. Potential policy implications and
future research

According to the Global Forest Resources Assessment (FRA)
data report, an estimated 420 million hectares of forests have been
lost to deforestation worldwide between 1990 and 2020 (Arévalo
et al., 2020; Smith et al., 2023). Of these, over 90% occurred in
the tropics, with an average annual deforestation of 9.28 million
hectares in 2015–2020 (Smith et al., 2023). Forest cover and forest
loss rates are high in the tropics, but advanced methods for
monitoring deforestation events are still lacking. The development
of effective forest monitoring methods is the basis for maintaining
the stability of tropical forest ecosystems.

The proposal of the Reducing Emissions from Deforestation
and Forest Degradation (REDD+) framework has prompted
researchers to pay more attention to deforestation events in the
tropics (Muthee et al., 2022; Sugimoto et al., 2022; Tang et al., 2023).

Frontiers in Forests and Global Change 14 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1257806
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1257806 August 29, 2023 Time: 14:14 # 15

Zhao et al. 10.3389/ffgc.2023.1257806

FIGURE 11

Deforestation dynamics for Paraguay in 2021.

One of the main challenges in monitoring deforestation events is
the use of monitoring methods that are often cumbersome and
lack timeliness. One possible way to overcome this challenge is to
develop a simple and rapid method for monitoring deforestation
events that is easier for farmers and government managers to use.

The 3DC method developed by using Sentinel-1 radar data
proved to be an effective method for monitoring deforestation
events. That is, 3DC can provide reliable information on forest
dynamics for policymakers and planners in the forestry sector.
The method is less susceptible to weather conditions and can
detect deforestation events in a timely manner, helping to curb
illegal logging activities. In future studies, the 3DC approach could
be used to monitor forest hotspots, including South America,

Africa, Europe, Australia and Canada. In addition, for areas where
deforestation has already occurred, a rational ecological restoration
plan can be developed based on field conditions. This is essential for
the terrestrial carbon cycle and contributes to regional and global
sustainable development.

6. Conclusion

In this paper, we develop an automated method (called 3DC)
to identify deforested areas using multidimensional features of
Sentinel-1 radar data. The performance of the 3DC method
was validated at three selected case areas in Brazil, Paraguay
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and Mexico. We found that VH, PRVI and C11 were the
best performing radar features for deforestation extraction. The
experiments showed that the proposed method had satisfactory
accuracy, with overall accuracy (OA) and F1 scores greater
than 88%. Compared with traditional classification methods,
3DC achieved higher accuracy and avoided complicated sample
collection. In the absence of samples, 3DC has a greater advantage.
In addition, 3DC and GFC maps were highly spatially matched, but
3DC had higher spatial-temporal resolution. In conclusion, 3DC
is a low-cost method that can be used by farmers, policymakers
and government administrators. In the future, we will apply
the 3DC approach to monitor forest hotspots, including South
America, Africa, Europe, Australia, and Canada. We will continue
to explore other features (e.g., texture features) that are useful
for deforestation extraction and develop effective methods for
complex scenarios. Considering the impact of water pixels and
terrain slope on the performance of the 3DC methods, we will
explore more accurate water body extraction methods and terrain
correction methods.
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