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Assessing the e�ectiveness and measuring the performance of fuel treatments

and other wildfire risk mitigation e�orts are challenging endeavors. Perhaps the

most complicated is quantifying avoided impacts. In this study, we show how

probabilistic counterfactual analysis can help with performance evaluation. We

borrow insights from the disaster risk mitigation and climate event attribution

literature to illustrate a counterfactual framework and provide examples using

ensemble wildfire simulations. Specifically, we reanalyze previously published

fire simulation data from fire-prone landscapes in New Mexico, USA, and show

applications for post-event analysis as well as pre-event evaluation of fuel

treatment scenarios. This approach found that treated landscapes likely would

have reduced fire risk compared to the untreated scenarios. To conclude, we o�er

ideas for future expansions in theory and methods.
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1. Introduction

In the Western United States and elsewhere, the growing damages from wildfires lead to

calls for increased investment in hazardous fuel reduction to protect the wildland–urban

interface (WUI), among other objectives. Limited resources and operational constraints,

among other factors, limit the areas where treatments can be implemented. Therefore, there

is a clear need for strategic prioritization based on information about what fire and fuel

management scenarios are most likely to be effective.

However, the informational basis regarding fuel treatment effectiveness is mixed.

Empirical analyses have found that treatments can be effective at reducing fire intensity

and severity within treated areas, but evidence of their effectiveness at landscape scales is

limited (Fernandes, 2015; Kalies and Kent, 2016; McKinney et al., 2022; Ott et al., 2023;

Urza et al., 2023). This gap is critical as many existing or proposed treatments are not

directly located in the WUI but rather in proximal wildlands, based on the premise that

treatments will interrupt fire spread and reduce WUI exposure. Simulation modeling is

widely used to fill that gap, showing how treatments can affect metrics such as landscape

burn probability (Ott et al., 2023). However, in almost all cases, simulation modeling is used

to evaluate hypothetical future treatments (e.g., Benali et al., 2021; Alcasena et al., 2022),

with few examples that analyze how prior treatment interactions with wildfires may have

altered landscape outcomes (e.g., Cheney, 2010; Cochrane et al., 2012). As a result, it can

be difficult to highlight successful risk reduction interventions and quantify the historical

return on investment.

In this study, motivated by research in disaster risk reduction and climate science,

we outline a potential pathway for estimating avoided wildfire impacts that blends
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counterfactual probabilistic modeling with extreme event

attribution. Counterfactual reasoning allows events that were not

realized to be examined. Large wildfires have numerous risk factors

due to both climate change and on-the-ground fuel conditions.

Understanding whether a wildfire would or would not have

exceeded thresholds for extremes based on these antecedents can

help examine the influence of key variables on wildfire outcomes.

Counterfactual analyses take into consideration the probability of

an event (i.e., a fire of a particular size) occurring in an observed

world and an imaginary world where causes are present or absent,

unlike the real one (Lott and Stott, 2016).

One central idea is that modeling unrealized events in the

absence of mitigation interventions can shed light on the often

hidden benefits of risk reduction programs (Lin et al., 2020;

Rabonza et al., 2022); that is, successful interventions can be

made invisible by their very success, which could reduce awareness

or continued investment. Importantly, this shifts the baseline

for evaluation from realized outcomes to averted outcomes and

characterizes management efficacy in risk-based terms.

Another central idea is that event attribution logic can

provide a common language and framework for probabilistic

analysis of counterfactual events. Typical applications examine the

influence of climate change in extreme weather events, where the

counterfactual scenarios experience less severe events due to the

absence of climate forcing (Hannart et al., 2016; Otto, 2017; Naveau

et al., 2020). Several studies have used these methods to attribute

growing wildfire hazards to climate change (Kirchmeier-Young

et al., 2017, 2019; Tan et al., 2018; Van Oldenborgh et al., 2021). In

this study, we modify the event attribution framework to consider

counterfactual scenarios without risk reduction interventions

where the unrealized wildfire outcomes could have been more

severe, as well as hypothetical scenarios where the current

landscape conditions exhibit exacerbated hazards due to a legacy

of fire exclusion and forest management practices and could

experience more severe outcomes relative to treated conditions.

To demonstrate the key concepts, we reanalyze previously

published results from two simulation studies that modeled large

fire growth on landscapes in New Mexico, USA (Thompson et al.,

2016, 2022). These studies address salient fire and fuel management

challenges in fire-prone forests, simulate fire on counterfactual

untreated and hypothetically treated landscapes, and reanalyze

modeling results in a stylizedmanner for illustrative purposes. Note

that all relevant fire size data are either provided in this study or

are available in online data archives (Vogler et al., 2022). We first

review the basic framework, then present applications of landscape

scenario evaluation for post-event counterfactual analysis and pre-

event hypothetical analysis, and finally, discuss ideas for future

expansions in theory and methods.

2. Materials and methods

2.1. Basic framework

In this study, we provide a simplified overview of event

attribution (Hannart et al., 2016) and pattern our analysis after a

related example attributing extreme fire risk in Canada to climate

change (Kirchmeier-Young et al., 2017). The first step is to define

the characteristics and magnitude of the extreme event of interest,

which here is a final fire size exceeding a specified threshold. More

refined analyses in future could identify a richer set of assessment

endpoints, for example, population that is exposed or area of critical

habitat burned.

Two key event attribution metrics are the fraction of

attributable risk (FAR) and relative risk (RR). Both are derived here

by calculating fire size exceedance probabilities (i.e., probability of

exceeding specified fire size thresholds) on the actual landscape (p0)

and the counterfactual landscape (p1). FAR (Eq. 1) is the fractional

likelihood of an event that can be attributed to external forces.

RR (Eq. 2) is a measure of how many times more likely the event

occurrence is on the counterfactual landscape.

FAR = 1−
p0

p1
(1)

RR =
p1

p0
(2)

The FAR value interprets the potential influence of the

antecedent to the event of interest by its closeness to 1. A FAR of

1 indicates that the event of interest is extremely unlikely to occur

without the occurrence of the antecedent (Funk et al., 2019), though

other antecedents can still cause the event to occur (Herring et al.,

2018). A FAR of 0.5 indicates a doubling of the probability of the

event occurring, while a FAR of 0 indicates no relationship (Burger

et al., 2020). The RR provides a “signal-to-noise-ratio” metric of the

risk factor that differs between the counterfactual and factual realms

(Knutson et al., 2014). An RR of 1 indicates identical probabilities

between the two groups and no differentiation. An RR > or <1

indicates increased or decreased risk, respectively.

2.2. Counterfactual analysis of past
treatment and disturbance

In the first example, we rely on simulation data from

Thompson et al. (2016), who modeled how the 2011 Las Conchas

TABLE 1 Simulation results for the final fire size of the 2011 Las Conchas

Fire on actual and counterfactual landscapes, sorted from smallest to

largest.

Final fire sizes (ha)
(Actual landscape)

Final fire sizes (ha)
(Counterfactual landscape)

74,034 93,697

76,379 97,847

78,883 99,808

79,492 100,588

82,179 103,237

82,263 105,645

82,428 105,974

83,019 108,534

83,339 111,411

86,471 112,049
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FIGURE 1

Density plots for the final fire size (ha) of the Las Conchas Fire, for the actual landscape in blue and the counterfactual landscape in orange. The blue

curve corresponds to a probability distribution for the potential final fire size for the Las Conchas Fire (considering stochasticity in factors such as

spotting) on the actual landscape burned by the Las Conchas Fire. The orange curve corresponds to a probability distribution for the potential final

fire size of the same fire igniting on the same date and burning under the same weather conditions, but on a counterfactual landscape without the

influence of previously treated and burned areas. Plots derived from simulation data in Table 1 using a Gaussian kernel density estimator.

Fire, New Mexico, USA, could have grown on a counterfactual

landscape without previously treated or burned areas (Table 1).

Using the FARSITE modeling system (Finney, 2004), 10 instances

of the Las Conchas Fire were simulated on both actual and

counterfactual landscapes to account for stochasticity induced by

the varying numbers, locations, and ignition probability of spot

fires. At the time, only performing 10 simulations was deemed

an acceptable tradeoff considering computing demands; more

recent applications, as shown in Section 2.3, simulate many more

fire events.

Following the example of Kirchmeier-Young et al. (2017),

we used simulation results to derive density plots using kernel

density estimators (Figure 1) and empirically integrated the density

curves to generate exceedance probabilities p0 and p1. In this

study, p0 is the probability of exceeding a fire size threshold

on the actual landscape burned by the Las Conchas Fire, and

p1 corresponds to the counterfactual landscape without prior

treatment or disturbance. For illustration, we defined an event

threshold of 86,000 ha, which corresponds to a 90th percentile event

on the actual landscape, or an exceedance probability of 0.10.

2.3. Hypothetical analysis of future
treatment scenarios

We further illustrate the application of the FAR and RRmetrics

to the prospective evaluation of alternative treatment scenarios.

In this case, we reanalyzed fire simulation data (Thompson et al.,

2022; Vogler et al., 2022) that generated multiple hypothetical

treatment scenarios according to distinct treatment prioritization

schemes and variable treatment extents and compared performance

across strategies for an 8.5 million ha case study landscape in New

Mexico, USA. Relative to the earlier study on the Las Conchas

Fire that sought to replay a single event, here, the simulation

approach aimed to account for a broader set of stochastic elements

related to the frequency, location, and timing of ignitions along

with variability in fire weather, resulting in tens of thousands of

simulated events using the FSim system (Finney et al., 2011). In this

specific instance, over 89,000 unique fire events were simulated on

the actual landscape.

Furthermore, because this analysis is forward-looking, there

is no backward-looking counterfactual landscape to analyze, but
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rather only hypothetically treated landscapes. Therefore, that

requires that we redefine p0 to be the exceedance probability

for the hypothetically treated landscape and p1 to be the

exceedance probability for the actual (untreated) landscape. In

this case, the risk becomes an attributable or relative benefit

from treatment extent. To simplify the presentation, we compare

two hypothetical treatment scenarios against the baseline current

condition (untreated) landscape. Because of our focus here on final

fire size, we abstract away from the specifics of spatial prioritization

schemes and instead isolate differences in treatment extent by

comparing random scenarios that treat 5% (RAND5) and 25%

(RAND25) of the analysis landscape.

3. Results

3.1. Counterfactual analysis

Plots of p0, p1, and FAR for the Las Conchas Fire indicate that

for the counterfactual landscape, the final fire size was likely to be

much larger (Figure 2). Approximately 81,450 ha were burned at

the 50th percentile on the actual landscape, while approximately

104,200 ha were estimated to be burned at the 50th percentile on

the counterfactual landscape. In fact, there is little overlap on the

exceedance probability curves; a fire size of 90,000 ha corresponds

to an exceedance probability of 0.01 on the actual landscape but

0.99 on the counterfactual landscape. Because of this, the FAR

curve rises steeply and approaches 1.00 approximately the same size

threshold. The FAR also crosses 0.5 at 81,450 ha, indicating the risk

of a 50th percentile fire is double for an untreated landscape.

The RR for the Las Conchas Fire was ≥ 1.00 for all size

thresholds (Figure 3). At the selected threshold of 86,000 ha, RR

is approximately 10.00, implying that a fire of this size is 10 times

more likely in the landscape without prior fuel treatment. Beyond

that threshold, RR values rise steeply and approach 100, implying

up to 100 times greater probabilities of occurrence for the larger fire

sizes considered in the counterfactual landscape without previous

fuel treatment. This also implies two orders of magnitude difference

in probabilities of occurrence for a fire size exceeding 90,000 ha on

the counterfactual landscape.

3.2. Hypothetical analysis

The p0, p1, and FAR for thousands of simulated potential

fire events on the New Mexico landscape were calculated with

hypothetical treatment scenarios (Figure 4). Relative to the Las

FIGURE 2

Plots of p0, p1, and a fraction of attributable risk (FAR; y-axis) for the final fire size of the Las Conchas Fire on the actual, treated landscape (p0) and

the counterfactual, untreated landscape (p1). The exceedance probabilities are determined by empirically integrating the density curves shown in

Figure 1; see Kirchmeier-Young et al. (2017). The probability of exceeding any given size threshold on the counterfactual landscape is always greater

than or equal to the corresponding exceedance probability on the actual landscape. The exceedance probability curve on the actual landscape drops

to near zero approximately a size threshold of 90,000 ha. As a result, the FAR curve rises steeply and approaches a value of ∼1.0 this same size

threshold.
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FIGURE 3

Plot of relative risk (RR; y-axis) for the final fire size of the Las Conchas Fire, with a threshold of 86,000 ha identified. This threshold corresponds to a

90th-percentile event on the actual landscape or an exceedance probability of 0.10 (see Figure 2). Here, RR indicates how many times more likely the

Las Conchas Fire could grow to exceed 86,000 ha on a counterfactual landscape without previously burned and treated areas. The curve shows a fire

of this size is 10 times more likely on the counterfactual landscape, and RR increases steeply beyond this threshold.

Conchas example (Figures 2, 3), the use of p0 and p1 is

reversed so that p0 is the counterfactual landscape receiving

treatment and p1 is the factual landscape without treatment. The

curves for p0 and p1 for these treatment scenarios drop much

more steeply than the La Concha fire simulations (Figure 2),

reflecting that this ensemble captures more fires burning under

a broader range of conditions. FAR values increase with the fire

size, and FAR approaches 1.00 for the larger treatment extent

(RAND25). By contrast, for the RAND5 treatment scenario, FAR

reaches approximately 0.33. The interpretation here is that the

current condition of the landscape favors more extreme fire

sizes relative to the hypothetically treated landscape. Moreover,

FAR is lower on the 5% treatment landscape relative to a

landscape with a 25% treatment extent due to greater differences

in probabilities for fire sizes between the higher treatment regime

and the untreated landscapes. Like FAR, RR increases with fire

size, but grows much more steeply for the RAND25 scenario,

reaching approximately 18.00 for fires exceeding 28,000 hectares

(Figure 5). The interpretation is that a landscape treated randomly

at 5% extent is not meaningfully different from the current

condition landscape in terms of exceedance probabilities for

extreme events, but treating larger extents begins to exhibit

significant differences.

4. Discussion

The major contribution of this study is to introduce

counterfactual probabilistic analysis and event attribution metrics

for quantifying avoided outcomes and analyzing the historical

performance of fuel treatments. The absence of such frameworks

can perpetuate uncertainty about the return on investment from

risk mitigation and lead to a reliance on anecdotes over quantitative

metrics. Moreover, examination of the probabilities individually

without a FAR or RR framework can lead to cognitive errors when

interpreting the risks and benefits of fuel treatments. We illustrated

how these event attribution metrics can be complementary to other

simulation-based approaches to compare hypothetical treatment

scenarios as well. One key reason to introduce the framework

for prospective evaluation is to have a common language and

logic for analyzing post-event and pre-event modeling exercises. In

this process, attribution analysis should be conducive to localized

hazards and their use in wildfire assessments.

Useful and interpretable explanatory tools for examining

model outcomes can be derived from a counterfactual analysis

(Kenny and Keane, 2021). The FAR and RR provide metrics for

comparing the probabilities of events with or without antecedents.

This was demonstrated in the interpretation and comparison
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FIGURE 4

Plots of p0, p1, and a fraction of attributable risk (FAR; y-axis) for final fire size across thousands of simulated fire events, comparing two hypothetical

treatment scenarios that locate treatments randomly at extents of 5% (RAND5) and 25% (RAND25) of the analysis landscape. In contrast to Figure 2,

p0 corresponds to the hypothetical, treated landscapes and p1 corresponds to the actual, untreated landscape. Note that the exceedance probability

curve for the actual, untreated landscape (p1) is always greater than or equal to the exceedance probability curves for the hypothetical landscapes,

reflecting greater fire growth potential due to accumulated fuels. The di�erence in exceedance probabilities p0 and p1 is greater for the RAND25

hypothetical landscape, leading to higher values of FAR.

of real-world and simulated outcomes for the two case studies

here. Our reanalysis yielded FAR and RR values, suggesting a

significantly higher potential for extreme fire growth on both

actual and counterfactual untreated landscapes. Other case studies

have used the RR and FAR to examine the influence of climate

change variables on outcomes of interest, such as wildfires

and heat waves. For example, two case studies in China used

counterfactual RR analyses to clearly identify a more than doubling

in probability for the occurrence of a heavy precipitation event

like a record-setting one in 2017 (Sun et al., 2019) and heat

waves as intense as the maximum observed index values in

multiple regions from anthropogenic climate change influences

(Sun et al., 2017). Although both the FAR and RR provide

highly interpretable metrics in these and other studies, they

may still be supplemented with other communication approaches

that rely on more qualitative, context-relevant interpretations for

communicating risks to varied audiences (Lloyd and Oreskes,

2018). In turn, these communication approaches, such as storylines

and stakeholder co-developed modeling approaches, can assist in

iteratively building attribution studies that are well-defined and

useful in terms of potential risk factors and events.

The approach taken with the examination of RR and FAR across

variable percentiles of fire size also illustrates how interpretations

can be affected by how a fire size threshold is defined. Event

definition is a major influence on the assessment of attribution

(Lott and Stott, 2016). Single thresholds may provide a clear

delineation but can be misleading if assessed alone. Large changes

in the risk statistics were observed across distinct zones of fire

sizes spanning tens of thousands of hectares, and much smaller

changes were observed across much larger spans of fire sizes.

Thus, understanding the implications across the full range of fire

sizes would be useful in future applications. Hannart et al. (2016)

also note the importance of the definition of the events to the

outcome of counterfactual analyses for heat waves and climate

change attribution.

The current case study assumed random treatments for

demonstration purposes, but this may not be useful for all

applications. Counterfactual analyses can also be useful for
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FIGURE 5

Plot of relative risk (RR; y-axis) for final fire size across tens of thousands of simulated fire events, comparing two hypothetical treatment scenarios

that locate treatments randomly at extents of 5% (RAND5) and 25% (RAND25) of the analysis landscape. As fire size increases, RR values for the

RAND5 landscape approach are only 1.5, whereas RR values for the RAND25 landscape approach are 18.0.

more complex modeling contexts. Future methodological

explorations may include additional causal considerations in an

attribution framework. Structural causal models help facilitate

the identification and use of variables that can confound causal

interpretations of risk metrics. Confounders are variables that

causally influence both the impact and the treatment (Pearl and

Mackenzie, 2018). In wildfire treatment, this may include variables

related to fuel buildup that would causally influence the treatment

locations and the wildfiremagnitude. The depth of the relationships

can also be expanded to account for cascading impacts through

a multi-step attribution framework (Burger et al., 2020). The

current study explored a single-step attribution framework that

linked treatments to wildfires. However, a multi-step attribution

framework may be useful for many applications (Burger et al.,

2020). This would facilitate the evaluation of additional causal

relationships between factors such as atmospheric climate change,

fuels, and wildfires, along with resulting impacts on costs and

benefits to human health, society, and the environment. There is

often a causal web of influences that may need to be accounted

for to understand the impacts of fuel treatments on wildfire

outcomes. The development of structural causal models can

provide the conceptual and quantitative basis useful for evaluating

confounders in a multi-step attribution framework (Pearl and

Mackenzie, 2018), necessitating a deeper examination of their

potential in future research.

Future research may also examine how representing causal

relationships can improve the interpretation and evaluation of

counterfactuals. In addition to the metrics examined in this

study, counterfactual analyses permit more detailed examinations

of causality through probabilities of necessary, sufficient, and

necessary and sufficient causation. The FAR is equated with

necessary causation under certain assessment conditions (Hannart

et al., 2016). However, utilizing the necessary causation over

the FAR provides a more in-depth interpretation of the causal

relationships between variables. Sufficient causality and necessary

and sufficient causality, which were not addressed in this study,

can capture additional conditions for causality not recognized by

the FAR and RR metrics. Coupling attribution analysis calculations

with causal Bayesian networks will allow greater complexity in

metrics and compound events to be calculated (Carriger et al.,

2021). In a causal framework, the counterfactuals provide a

means for looking at how changing causal antecedents could
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have influenced or changed the observed effects and provide

actionable insights.

Beyond advances in theory on the horizon, there are practical

modeling considerations to address as well. We reanalyzed

existing published data to illustrate the key points using fire

size as our basis of comparison, but there is a clear need to

expand the framework beyond area burned to other fire impacts.

Furthermore, existing models may poorly capture the efficacy of

fire suppression operations or how they are enhanced by landscape

fuel management (Plucinski, 2019), which gets to the broader point

that all modeling exercises are subject to issues of data quality and

uncertainty. Caution is warranted when aiming to credibly recreate

past fire events, and attention to detail on data quality control is

essential. With that said, advances in remote sensing, geospatial,

and computing technology provide greater opportunities for more

refined analysis compared to what was performed for the Las

Conchas Fire. Furthermore, given that agencies such as the USDA

Forest Service prioritize investments in the order of billions of

USD based on simulation models and hypothetical treatment

scenarios, it stands to reason that the same family of models could

be used to support analysis of the benefits of those investments

in terms of outcomes from real interactions with real fires. We

hope this article catalyzes additional interest and research into

quantifying avoided wildfire impacts and revealing often unseen

mitigation effectiveness.
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