
Frontiers in Forests and Global Change 01 frontiersin.org

Evaluation of regression methods 
and competition indices in 
characterizing height-diameter 
relationships for temperate and 
pantropical tree species
Sakar Jha 1*, Sheng-I Yang 1, Thomas J. Brandeis 2, Olaf Kuegler 3 
and Humfredo Marcano-Vega 4

1 School of Natural Resources, University of Tennessee, Knoxville, TN, United States, 2 United States 
Department of Agriculture Forest Service, Southern Research Station, Knoxville, TN, United States, 
3 United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Portland, 
OR, United States, 4 United States Department of Agriculture Forest Service, Southern Research Station, 
San Juan, PR, United States

Height-diameter relationship models, denoted as H-D models, have important 
applications in sustainable forest management which include studying the vertical 
structure of a forest stand, understanding the habitat heterogeneity for wildlife 
niches, analyzing the growth rate pattern for making decisions regarding silvicultural 
treatments. Compared to monocultures, characterizing allometric relationships for 
uneven-aged, mixed-species forests, especially tropical forests, is more challenging 
and has historically received less attention. Modeling how the competitive interactions 
between trees of varying sizes and multiple species affects these relationships adds a 
high degree of complexity. In this study, five regression methods and five distance-
independent competition indices were evaluated for temperate and pantropical 
tree species in different physiographic regions. A total of 163,922 individual tree 
measurements from the US Department of Agriculture, Forest Inventory and Analysis 
(FIA) database were used in analyses, which cover Appalachian plateau (AP) and Ridge 
and Valley (VR) in the southeastern US, as well as Caribbean (CAR) and Pacific (PAC) 
islands. Results indicated that the generalized additive model (GAM) and the Pearl 
and Reed model provided more accurate predictions than other regression methods 
examined. Models with competition indices had a varying level of predictability, while 
diameter ratio, cumulative distribution function and partitioned stand density index 
(PSDI) were found to improve the prediction accuracy for AP, VR and CAR. The results 
of this work provide additional insights on modeling H-D relationships for a variety of 
species in temperate and pantropical forests.
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1 Introduction

As vital components of the global carbon cycle, forest ecosystems play an important role in 
sustainable forest management. Temperate forests in the eastern US and tropical forests in the 
Caribbean and Pacific regions conserve critical, unique and vulnerable forest ecosystems. 
Accurately assessing current forest resources is required for the development of effective 
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silvicultural and forest management practices for wood products, 
wildlife habitat and ecosystem services (Burkhart and Tomé, 2012). 
Total tree height (H) and diameter at breast height (DBH) are 
important components in estimating tree carbon, predicting tree 
growth and understanding stand vertical structure. However, 
measuring tree height in a forest is often more time consuming and 
labor intensive than DBH. When faced with resource constraints, a 
subsampling strategy is commonly combined with height-diameter 
(H-D) relationship models to provide an efficient approach to 
obtaining these data in forest inventories (Yang and Burkhart, 2020). 
In addition, H-D relationship models can also be applied to predict 
the intact length of top-broken trees, thereby improving the estimation 
of tree volume loss from wind disturbance such as hurricanes (Yang 
et al., 2022).

Due to important applications of H-D relationship models in 
natural resources, several models have been extensively explored and 
proposed according to forest types and regions (e.g., Curtis, 1967; 
Huang et al., 2000; Soares and Tomé, 2002). Temesgen et al. (2014) 
used nonlinear mixed-effects models to quantify the H-D relationships 
for 23 tree species in northeastern China. Mehtätalo et  al., 2015 
examined the performance of 16 nonlinear functions using 126,000 
trees collected from different parts of the world. It was found that the 
model performance varied among tree species and regions (Mehtätalo 
et  al., 2015). With increased computing power in recent decades, 
alternative modeling methods (e.g., semi-parametric and 
nonparametric approaches) have been applied to model H-D 
relationships. Semi-parametric models like generalized additive 
model (GAM) have shown to have comparable and sometimes better 
performance than parametric models in forestry research (Robinson 
et al., 2011; Adamec and Drápela, 2015; Zang et al., 2016; Yang et al., 
2023). Adamec and Drápela (2015) found that GAM models are 
suitable for modeling the H-D relationship for Norway spruce. 
Similarly, Zang et al. (2016) found that GAM models had comparable 
performance to parametric mixed models. Furthermore, Özçelik et al. 
(2013) applied back-propagation artificial neural networks (ANN) 
models to predict total tree height of Crimean pines in southwestern 
Turkey. The prediction accuracy of the back-propagation artificial 
neural network models was comparable to the parametric methods 
(Özçelik et al., 2013). Chen et al. (2020) built H-D relationship models 
with 31 stand, environmental and climatic variables using ANN 
models for six boreal species in Ontario, Canada. Their models can 
explain more than 90% of the height variation (Chen et al., 2020). 
Ogana and Ercanli (2022) compared deep learning algorithms to 
model H-D relationships for tropical rain forest species and found that 
they performed better than nonlinear models. Decision tree-based 
algorithms such as random forests have also been found to perform 
well for diverse-species forests in the insular Caribbean (Yang et al., 
2022). Extreme gradient boosting (XGBoost) is another tree-based 
algorithm which gained popularity after winning several data-mining 
competitions hosted by Kaggle in 2015 (Chen and Guestrin, 2016) and 
has been a go-to machine learning algorithm among data scientists 
since then. XGBoost is based on the ensemble learning method where 
multiple weak decision trees are combined into a strong decision tree. 
At each iteration, a new decision tree is trained on the residual errors 
of the previous tree. These decision trees are generated based on the 
objective function. Different from traditional gradient boosting 
algorithm, the objective function in XGBoost is penalized with 
regularization techniques to prevent overfitting (Chen and Guestrin, 

2016). XGBoost has been applied in several areas of forestry, especially 
in using remote sensing for forestry research (e.g., Wang et al., 2022; 
Xu et al., 2022; Zhang et al., 2022). However, to our understanding, 
applying XGBoost in modeling H-D relationships for a variety of 
species has not been explicitly examined in the literature.

In addition to DBH and H, distance-independent competition 
index is another important variable in individual tree growth and 
allometric models. The distance-independent indices are used to 
quantify the influence of competition by the local neighbors of the 
subject tree, which do not require individual tree coordinates 
(Burkhart and Tomé, 2012). Sun et al. (2019) evaluated six different 
distance-independent competition indices for loblolly pine (Pinus 
taeda L.) in predicting tree growth and mortality. Diameter ratio 
ranked highest to predict tree survival while relative position indices 
performed the best for predicting diameter growth (Sun et al., 2019). 
For quantifying H-D relationships, Temesgen et al. (2014) indicated 
that the inclusion of the relative position or rank of a tree based on the 
size of the trees in the stand (sum of basal area of trees greater than 
the subject tree) in the models improved the prediction precision 
compared to the original models. Yang et al. (2022) pointed out that 
the ratio of the subject tree DBH to the sampling-unit-level quadratic 
mean diameter (QMD) is one of the key predictors in H-D models for 
multi-species subtropical forests.

In this region, significant efforts were dedicated to modeling H-D 
relationships for single-species, even-aged forests. Compared to 
monocultures, characterizing allometric relationships for uneven-
aged, mixed-species forests, especially tropical forests, is more 
challenging and has historically received less attention. Modeling how 
the competitive interactions between trees of varying sizes and 
multiple species affects these relationships adds a high degree of 
complexity. Further, generic models and default values developed for 
temperate species are currently applied in the Caribbean and Pacific 
regions, which may not provide the accurate quantitative information 
for assessing the impact of natural disturbances and forest health.

Therefore, the objective of this study was to evaluate different 
regression methods and competition indices in characterizing H-D 
relationships. This was accomplished by comparing the prediction 
accuracy of two commonly used parametric models, one semi-
parametric model and two machine learning algorithms. The effect of 
five different competition indices in predicting tree height was 
evaluated. Tree data queried from the US national forest inventory 
were used in analyses, which cover a wide range of ecosystems. Models 
were built for key species in the temperate forests of the eastern US 
and the pantropical forests on Caribbean and Pacific islands. The 
variations of H-D relationships among different species and regions 
were quantified and compared. The results of this work provide 
additional insights on modeling H-D relationships for a variety 
of species.

2 Materials and methods

2.1 Study area and species

A total of 163,922 observations used in analyses were collected 
from temperate forests in the eastern US and pantropical forests in 
Caribbean and Pacific islands. Spatial distribution of the study area is 
shown in Figure 1. Description of all forests is given below.
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2.1.1 Temperate forests
The oak-hickory forests located in Appalachian Plateau (AP), 

and Ridge and Valley (VR) were selected, which provide critical 
forest ecosystems and important wildlife habitats in the eastern 
US. The boundaries of both physiographic zones (AP and VR) were 
delineated with the classification made by Fenneman and Johnson 
(1946) and the map of the FIA survey units listed in Burrill et al. 
(2021). The study area starts from northern Alabama and extends 
northeast toward New York covering parts of several eastern states, 
including Georgia, South Carolina, North Carolina, Tennessee, 
Kentucky, Virginia, West Virginia, Ohio, Maryland, and 
Pennsylvania. In this study, six ecologically and economically 
important species were selected in model building, which include 
eastern white pine (Pinus strobus L.), red maple (Acer rubrum L.), 
sweetgum (Liquidambar styraciflua L.), white oak (Quercus alba L.), 
yellow poplar (Liriodendron tulipifera L.) and hickory spp. (Carya 
spp.). The models were constructed at the genus level for hickories 
due to the limited number of trees for each individual species in 
the database.

2.1.2 Pantropical forests
The Caribbean islands of Puerto Rico and US Virgin Islands and 

the Pacific islands of Guam, Hawaiʻi, Federated States of Micronesia, 
and Northern Mariana Islands were selected. The Caribbean and 
Pacific islands have unique climatic conditions which allow for diverse 
forests to grow (Whiffin, 1992). Four common species groups in 
Puerto Rico and US Virgin Islands were selected, including pink 
trumpet tree (Tabebuia heterophylla DC.), muskwood (Guarea 

guidonia L.), African tulip tree (Spathodea campanulata P.Beauv) and 
Acacia (Acacia spp.). For the Pacific Island forests, common species 
groups: African tulip tree (Spathodea campanulata P.Beauv), ʻŌhiʻa 
lehua (Metrosideros polymorpha Gaudich.) and Acacia (Acacia spp.), 
were selected. Similar to hickories in temperate forests, models were 
constructed at the genus level for Acacia.

2.2 Tree data

Tree data were obtained from the US national forest inventory 
established and maintained by the Forest Inventory and Analysis 
(FIA) program under the US Department of Agriculture (USDA) 
Forest Service. The permanent sample plots were installed throughout 
the country with 10 to 20% of the sample plots being measured 
annually depending on the region (Burrill et  al., 2018). The FIA 
program has regularly monitored forest resources in the US 
commonwealth of Puerto Rico since 1980, with US Virgin Islands, 
associated Pacific Islands and the state of Hawaiʻi being incorporated 
into the inventory network more recently. Each FIA permanent plot 
consisted of four fixed-radius subplots, each measuring 7.3-m (24 ft) 
in radius, and four fixed-radius microplots nested within each subplot, 
each measuring 2.1-m (6.8 ft) in radius. On each subplot, DBH and H 
were measured for all trees with DBH ≥ 12.7 cm (5 in.). On each 
nested microplot, tree with 2.5 cm (1 in.) ≤ DBH < 12.7 cm (5 in.) were 
measured. The permanent plots were classified based on site condition 
including land use, forest type, stand origin, regeneration status, 
ownership group and disturbance history. An FIA permanent plot can 

FIGURE 1

Map of the temperate physiographic regions (Appalachian Plateau and Ridge and Valley; A) and pantropical islands (Puerto Rico and US Virgin Islands in 
the Caribbean; B) and Hawaiʻi, Federated States of Micronesia, Guam and Northern Mariana Islands in the Pacific (C–E).
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have multiple condition classes based on distinct differences between 
forested growing conditions. Throughout this study, a distinct forested 
condition class within a plot was considered as the fundamental 
sampling unit (i.e., an individual sample of trees). Stand characteristics 
(e.g., QMD, stand density index) used in computing competition 
indices were computed from all live trees on a “condition class” rather 
than a whole “plot.” Irregular observations (e.g., broken-top 
individuals, seriously-damaged stems) were removed from analysis. 
More details of the FIA sampling design and measurement procedures 
are available in (Bechtold and Patterson, 2005). A summary of tree 
characteristics for all species in temperate and pantropical forests is 
given in Table 1.

2.3 Regression methods

Five regression methods: two parametric functions (Pearl and 
Reed, 1920; Wykoff et  al., 1982), one semi-parametric algorithm 
(GAM) and two nonparametric machine learning algorithms 
(XGBoost and ANN), were used to quantify H-D relationships. The 
regression methods were applied to each combination of species and 
region. For a given regression method, two types of H-D models were 
built. The first type included only DBH, denoted as base model, while 
the other type was composed of DBH and a competition index. In this 
study, five different competition indices were evaluated, resulting in a 
total of five H-D models in the second type. Detailed descriptions of 
the methods and competition indices are given below.

2.3.1 Parametric model 1
The Pearl and Reed (1920) model, denoted as PR model, was first 

introduced for predicting population growth in the US. It has been 
adopted in forestry to predict tree height for different species, such as 
oaks (Misik et al., 2016) and subtropical trees (Yang et al., 2022). 
Similar to Yang et al. (2022), the competition index was added in the 
exponent with DBH in the model. That is,

 
h

e DBH CI
=

+ +( )
β

β β β
0

11
2 3

 
(1)

where h is total tree height in m, DBH is diameter at breast height 
in cm, CI is competition index, β0 , β1 , β2  and β3  are model 
coefficients. To construct the base model, β3CI  in Equation (1) was 
removed and other variables remained the same.

2.3.2 Parametric model 2
Wykoff et al. (1982) developed a statistical model to estimate the 

missing heights of trees, which is another commonly used H-D model 
in forestry. In our preliminary analysis, the original form of the 
Wykoff et al. (1982) model, denoted as WK model, did not fit well for 
our data. Thus, a modified version of the WK model was used in the 
formal analysis, which can be written as:

 h e DBH CI=
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TABLE 1 Summary of tree data among temperate (Appalachian Plateau, AP, and Valley and Ridge, VR) and pantropical forests (Caribbean islands, CAR, 
and Pacific islands, PAC).

Species Species DBH (cm) Total height (m)

Forest Reg. Common name Scientific name Nobs. Avg Std. Min Max Avg Std Min Max

Temperate AP Eastern white pine Pinus strobus 1719 22.9 12.0 2.5 79.7 14.4 6.1 2.7 36.9

Hickory spp. Carya spp. 9,037 23.9 10.3 2.5 90.7 19.4 6.4 1.8 41.1

Red maple Acer rubrum 27,184 20.1 9.4 2.5 96.8 17.1 5.2 1.5 36.9

Sweetgum Liquidambar styraciflua 1,030 19.4 10.5 2.5 68.3 17.3 7.1 2.4 38.1

White oak Quercus alba 10,884 28.3 12.3 2.5 113.0 20.0 5.8 1.5 41.4

Yellow poplar Liriodendron tulipifera 10,190 27.1 13.7 2.5 111.8 21.7 7.5 2.4 45.7

VR Eastern white pine Pinus strobus 3,948 20.2 12.8 2.5 108.4 13.6 6.7 1.8 44.8

Hickory spp. Carya spp. 12,264 21.3 11.0 2.5 88.9 17.8 6.8 1.5 41.8

Red maple Acer rubrum 27,205 18.9 10.2 2.5 88.9 16.0 5.8 1.5 38.4

Sweetgum Liquidambar styraciflua 8,023 17.9 10.5 2.5 77.2 16.0 7.3 1.5 42.7

White oak Quercus alba 13,282 26.0 13.0 2.5 102.6 19.1 6.4 2.7 53.0

Yellow poplar Liriodendron tulipifera 19,869 25.8 14.9 2.5 129.5 21.6 8.2 1.5 50.6

Pantropical CAR Acacia Acacia spp. 716 9.8 6.9 2.5 43.7 7.0 3.5 0.9 18.3

Muskwood Guarea guidonia 3,151 18.4 15.1 2.5 140.2 10.5 4.9 0.3 31.1

Pink trumpet tree Tabebuia heterophylla 1998 13.2 8.7 2.5 58.4 9.1 4.6 0.6 23.5

African tulip tree Spathodea campanulata 2,987 21.1 13.7 2.5 130.3 12.3 5.4 0.3 34.1

PAC Acacia Acacia spp. 1899 24.9 18.1 2.5 161.3 13.2 5.3 2.4 36.0

African tulip tree Spathodea campanulata 285 20.1 12.2 2.5 70.9 12.2 5.3 2.7 27.7

ʻŌhiʻa lehua Metrosideros polymorpha 8,251 19.1 13.8 2.5 157.7 11.7 5.5 1.5 39.9

Number of observations (Nobs.) is given for each species. Average (Avg), standard deviation (Std), minimum (Min) and maximum (Max) of DBH (cm) and total tree height (m) were calculated.
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where all variables and symbols have been defined as above. 
Similar to the PR model, the base model was built using Equation 2 
without β2CI  in the model.

The ‘nlsLM’ function from the R package ‘minpack.lm’ (Elzhov 
et al., 2022) was used to estimate the model coefficients. Initial values 
of the model coefficients were selected based on previous studies (e.g., 
Misik et al., 2016; Yang et al., 2022).

2.3.3 Semi-parametric model 1 – general additive 
model

GAM is the blended product of generalized linear models and 
additive models that uses smoothing functions of the predictor 
variables to capture any non-linear relationship between the response 
and the predictor variables. The relationship between the response 
variable (tree height) and the predictor variables (DBH and 
competition index) is modeled as a sum of smooth functions of the 
predictor variables which can be represented as:

 h f x f x f xk k= + + +…+β0 1 1 2 2  (3)

where h is the total tree height (m), β0  is the model intercept and 
f1 to fk are the smooth functions for predictors x1 to xk. The smooth 
functions f1 to fk are used to find the signal in predictor variables to 
make predictions for the tree height without being constrained by 
predefined assumptions about the distribution of the data. The ‘gam’ 
function from the R package ‘mgcv’ (Wood, 2017) was used to fit 
the model.

2.3.4 Nonparametric model 1 – extreme gradient 
boosting

The working mechanism of XGBoost involves minimizing the loss 
function using gradient descent optimization, while incorporating 
regularization techniques to prevent overfitting and improve 
generalization performance (Chen and Guestrin, 2016). The input 
data is a matrix X of dimension n × p where n is the number of 
observations and p is the number of predictor variables (DBH and CI 
in this case). X can be represented as X = [x1, x2, …, xp] where xi is a 
column vector of size n containing the values of the ith predictor 
variable for all n observations. The predicted height ( h )  can 
be represented as:

 
h w w d X w d X w d Xk k
 = + ( ) + ( ) +… ( )0 1 1 2 2  (4)

where h  is the predicted tree height w0, w1, …, wk are the weights 
assigned to each decision tree, di(X) is the output of the ith decision 
tree for input X, and k is the number of decision trees in the model. 
The optimal weights and decision trees are computed using the 
objective function. The objective function of XGBoost is composed of 
a loss function and regularization parameters, given by,

 
Obj L h h d Xk= + ( )( )( ),

 Ω
 

(5)

where L h,h l h ,hi i( ) ( )


= ∑  is the sum of differentiable loss 
function for the ith observation that measures the difference between 
the predicted tree height ( hi )  and observed tree height (hi ),   
represents the regularization parameters that penalizes the complex 

model and d Xk ( ) is the kth decision tree in the ensemble model. The 
loss function is minimized using the gradient descent optimization 
technique where the gradient of the loss function with respect to the 
predicted values for each observation is represented as:

 

g d l h h

d h
i

i i

i

=
( ( )),





 

(6)

The gradient descent algorithm then updates the predicted height 
( hk +1 ) by adding a shrinkage parameter (λ) multiplied by the output 
of the ith decision tree (di(X)) with the predicted height from previous 
decision ( hk ) tree given as:

 
h h d Xk k i
 

+ = + ( )1 λ
 (7)

The XGBoost model has seven hyperparameters that need to 
be  tuned for optimal model performance. They are: nrounds, eta, 
max_depth, colsample_bytree, subsample, gamma and min_child_
weight for every given species in a region. These hyperparameters 
were tuned using 5-fold cross-validation method using the ‘caret’ 
package in R (Kuhn, 2008). The results of parameter tuning for the 
XGBoost model for a given species in a region are shown in 
Supplementary Table 1.

2.3.5 Nonparametric model 2 – artificial neural 
networks

Artificial neural network (ANN) is a powerful machine learning 
algorithm that has been used to solve highly complex prediction 
problems (Abiodun et al., 2018). ANNs are based on a simplified 
model of biological neural systems where the output from a layer of 
nodes serves as input for the next layer of nodes (Walczak and Cerpa, 
2003). ANNs can have multiple layers of nodes which includes the 
input and output layers that have same number of nodes as the 
number of input and output variables, respectively, (Walczak and 
Cerpa, 2003). The layers between the input and output layers are 
called hidden layers. The hidden layers are generally composed of 
mutiple dense layers and dropout layers specified by the researcher. 
Dense layers have specified number of nodes for training the model 
and dropout layers are used to drop some of the nodes from the 
previous layer based on a specified dropout rate to prevent overfitting. 
The output of a particular node is given by a activation function with 
the sum of the weighted inputs and biases from the previous dense 
layer. ANN uses back propagation training algorithm that allows the 
ANN to iteratively adjust the weight and biases of the nodes by 
propagating the error from the output layer back through 
the network.

We employed an ANN model with four hidden layers between the 
input and output layers. The input layer was passed through a dense 
layer followed by a dropout layer, followed by another dense layer and 
a dropout layer and finally an output layer (see Supplementary Figure 1). 
The rectified linear unit (ReLU) activation function was used for the 
dense layers. For each of the ANN models, the number of nodes in 
dense layers, the dropout rate of the dropout layers and the batch size 
was tuned for optimal model performance using the ‘tfruns’ package 
in R (Kalinowski et al., 2022). The result of parameter tuning for ANN 
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model for a given species in a region are shown in 
Supplementary Table 2.

2.4 Competition index

Competition between neighboring trees is a primary determinant 
of resource availability for tree establishment and growth (Stage, 1973; 
Huang and Titus, 1995). Several distance-dependent and distance-
independent competition indices have been developed to 
mathematically represent the level of competition for a target tree 
(Burkhart and Tomé, 1989). In this study, we selected five commonly 
used distance-independent competition indices (CI’s).

2.4.1 Diameter ratio
Diameter ratio (Rdia) is the ratio of DBH of subject tree to the 

average DBH on a sampling unit. The quadratic mean diameter 
(QMD) was used as the average DBH instead of arithmetic mean 
diameter because QMD tends to better represent the average diameter 
in a stand with a wide range of diameters (Curtis and Marshall, 2000).

 
R DBH

QMDdia =
 

(8)

where all variables have been defined as above.

2.4.2 Basal area ratio
Similar to Rdia , basal area ratio (RBA)  is the ratio of individual 

tree basal area (BA) to the mean tree BA (BA) calculated from all 
sample trees on a sampling unit, which can be expressed as:

 
R BA

BA
BA =

 
(9)

where BA  is the basal area of tree and BA  is the mean basal area 
in the condition class.

2.4.3 Partitioned stand density index
Stand density index (SDI) proposed by Reineke (1933) was a 

standardized measure of stand density. Stage (1968) showed that 
Reineke’s SDI can be  partitioned into additive components at 
individual tree and group level. Partitioned SDI (PSDI) divides the 
stand density index at the individual tree level and was used as an 
individual tree competition index by Sun et  al. (2019), which is 
expressed as:

 
PSDI EF a bd= ( )+

2

 
(10)

where EF is the expansion factor which is constant for FIA 
subplots = 6.018046 (Burrill et al., 2021), d is the diameter at breast 
height of subject tree, a is the weight of the presence of subject tree, b 
is the weight of size of subject tree (Lu et al., 2017). They are given as:

 
a c
= 25 1

c

2
QMD

− −







 
(11)

 
b c QMDc c
= 25

2

2− −







 
(12)

where c is the self-thinning constant = 1.605 (Reineke, 1933).

2.4.4 Cumulative distribution function
The cumulative distribution function provides the observed 

cumulative probability of the individual tree in a sampling unit 
(Poudel and Cao, 2013). It was used as competition index by Sun et al. 
(2019) to illustrate the relative position of a loblolly pine tree in a 
population, which can be written as:

 
CDF r 0.5

n
=

−

 
(13)

where r is the rank of tree in terms of DBH (from largest to 
smallest) and n is the number of trees in the condition class.

2.4.5 Basal area of larger trees
Proposed by Wykoff et al. (1982), basal area in larger trees (BAL) 

was calculated by summing up the BA of all trees larger than the 
subject tree based on DBH. BAL can be used to quantify the relative 
dominance of the subject tree in the population. A greater BAL 
implies that the subject tree has a smaller diameter than other trees.

2.5 Model building and evaluation

For a given species in a region, all sampling units were randomly 
divided into fit and test datasets with an 80/20 split. Specifically, fit 
dataset includes 80% of the sampling units to construct the models, 
and the test dataset was composed of the remaining 20% of the data 
for model evaluation. To account for the correlation among sample 
trees within the same sampling unit, the cluster bootstrap technique 
was used to estimate the confidence intervals of the model parameters 
and evaluation statistics. The cluster bootstrap was applied at the 
sampling unit (condition class) level, rather than at the individual tree 
level. Sampling units in the fit and test data were sampled with 
replacement, respectively, and all trees within the selected sampling 
units were included in model building and evaluation. A total of 500 
bootstrapped samples were drawn for a given combination of species 
and region. The 50% quantile of the 500 bootstrapped samples served 
as the point estimate of the model parameters and evaluation statistics. 
The 97.5 and 2.5% quantiles of the 500 bootstrapped samples were 
used as the upper and lower limits of the 95% confidence intervals for 
the model parameters and evaluation statistics.

Evaluation statistics were computed using the test data, including 
coefficient of determination (R2) which represents the amount of 
variance explained, mean bias (MB) represents precision and root-
mean-square error (RMSE) represents accuracy of the model. They 
were computed as:

 

R Res

h h
2

2

2
1= −

∑

∑ −( )
 

(14)
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MB Res

n
=
∑

 
(15)

 
RMSE Res

n
=

∑











2

1

2

 
(16)

where n  is total number of observations for a given species in a 
region, and Res  is prediction residual, which was defined as:

 Res h h= − 

where h  is the observed total tree height and h  is the predicted 
total tree height of the individual tree.

The relative rank proposed by Poudel and Cao (2013) was used to 
rank the models. The evaluation statistics computed for every 
combination of regression method and competition index was used 
to rank the models for a given species in a region. The relative rank for 
absolute MB and RMSE is given as:

 
Rank

m ES ES
ES Ei

i= +
−( ) −( )

−
1

1 min

max min  
(17)

 
Rank m

m ES ES
ES Ei

i= −
−( ) −( )

−
1 min

max min  
(18)

where Ranki is the rank of ith combination of regression method 
and competition index for a given species in a region, m is the number 
of models evaluated. ESi is the evaluation statistics of the ith 
combination of regression method and competition index, ESmin and 
ESmax are the minimum and maximum values of evaluation statistics 
for a given species in a region. Similarly, the relative rank for R2 is 
given as Equation (18) where the symbols are same as defined above. 
The ranks among the three evaluation statistics were averaged to 
compute the final rank of the model. The base models were ranked 
separately to identify the best regression methods, and all models were 
ranked together to identify the best combination of regression method 
and competition index.

3 Results

3.1 Predictability of the base models on 
temperate trees

In general, the GAM model was found to have the highest rank 
for all the species across the regions (Figure 2A). The PR model was 
found to have the highest rank for the temperate species in AP and 
XGBoost and GAM were found to have the highest rank for species in 
VR (Figure 2B). The GAM model provided the least biased predictions 
for two species in AP and three species in VR and the lowest RMSE 
for two species in AP and three species in VR (see Tables 2, 3). The 
evaluation statistics for GAM, XGBoost and PR models are similar in 
VR (see Table 3). The PR model produced the least biased predictions 
for two species in AP and two species in VR. The WK model provided 

the least biased predictions for only one species and did not provide 
the highest R2 or least RMSE for any of the species. However, it did 
provide a higher R2 for three species and a lower RMSE for two species 
in AP compared to either XGBoost or ANN models. The predictive 
performance of XGBoost and ANN models had more variation 
compared to other regression methods in the temperate region. 
Although XGBoost and ANN produced the highest average rank for 
two species in AP and two species in VR respectively, they also 
produced lowest overall rank for other species in the temperate region 
(Figures 3A,B).

3.2 Predictability of base models on 
pantropical trees

The XGBoost model performed the best for species in CAR and 
GAM performed the best for species in PAC (Figure 2B). XGBoost 
produced the least biased prediction for one species and most accurate 
(lowest RMSE) predictions for two species in CAR. It also had the 
lowest overall rank for all the species in PAC (Figure  3D). GAM 
produced most precise predictions for one species in PAC and most 
accurate predictions for two species in CAR and two species in 
PAC. The ANN model produced the most precise predictions for one 
species in CAR and most accurate predictions for one species in PAC, 
respectively. The WK model had comparatively closer to zero MB 
values for species in PAC than other regions but also had the highest 
RMSE values for two of the species in PAC (see Table 4).

3.3 Predictability of models with and 
without competition index

The inclusion of competition index improved the predictive 
abilities of most of the models for the temperate and pantropical 
species. On average, Rdia was found to have the highest rank for PR and 
GAM models (Figures 4A,C). PSDI was found to have the highest 
rank for WK models (Figure 4B). Similarly, CDF was found to have 
the highest rank for XGBoost and ANN models (Figures 4D,E). The 
R2 values for every species increased by an average of 4.8% and 
absolute MB and RMSE decreased by an average of 79.3 and 48.8%, 
respectively, in the temperate region. Similarly, the R2 value increased 
by an average of 4.0% and absolute MB and RMSE decreased by an 
average of 43.3 and 10.3%, respectively, in the pantropical region (see 
Table 5). However, the magnitude of improvement varied by species. 
The inclusion of competition index increased the R2 value by a 
minimum of 1.3% for hickory spp. in AP and 0.0% for eastern white 
pine in VR to a maximum of 21.6% for eastern white pine in AP and 
2.7% for white oak in VR (see Table  5). Among the pantropical 
species, R2 values did not increase for muskwood in CAR and acacia 
in PAC (see Table 5).

3.4 Best combination of regression method 
and competition index for different regions

The combination of regression method and competition index 
that had the highest rank was different for the four physiographic 
regions. The combination of ANN and CDF ranked the highest for AP 
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(see Figure 5A). Specifically, the ANN model with CDF as competition 
index provided the least biased predictions for four species and most 
accurate predictions for all the species in AP (see Table 2). For the 
temperate species in VR, GAM with Rdia as competition index 
performed the best (see Figure 5B). This combination of regression 
method and competition index provided the highest coefficient of 
determination for three species and lowest RMSE for two species (see 
Table 3). For the pantropical species in CAR, PR with Rdia was found 
to perform the best (see Figure 5C). This combination provided the 
least biased prediction for two of the CAR species. Similarly, GAM 
with CDF performed the best for species in PAC region (see 
Figure 5D). The height-diameter curves of the highest and lowest 
ranked model for the four physiographic regions are given in Figure 6. 
For some of the species, more than one combination of regression 
method and competition index provided the highest rank for one of 
the three evaluation statistics. For example, PR with RBA and PSDI 
provided the least biased predictions for red maple in AP (see Table 2). 
Further, some base models had the same evaluation statistics as 
models with competition index which was best for the species. For 
example, base XGB, XGB with Rdia and XGB with CDF had the highest 
amount for variation explained for muskwood in CAR.

4 Discussion

4.1 Comparison among regression 
methods

Among the five regression methods examined in this study, all of 
them were found to have adequate performance for predicting 
individual tree height from diameter at breast height. However, a 

universally superior H-D model was not found for all 19 species in the 
four physiographic regions, which is consistent with the findings from 
Mehtätalo et al. (2015). Although none of the models stood out with 
the best performance, GAM was found to perform relatively better 
than the rest of the models. On average, GAM ranks the highest 
among the parametric and nonparametric models examined based on 
R2, MB and RMSE (see Figure 2A). The base GAM provided the most 
precise predictions for seven of the 19 species (see Tables 2–4). 
We confirmed the findings of Adamec and Drápela (2015) that GAM 
can be  used to provide precise predictions of H using DBH as a 
predictor. The flexibility of the model was able to characterize variable 
shapes of H-D relationships for different species in different regions 
(see Figure  6). However, it should be  noted that GAM may not 
be optimal model for a given species or region. As shown in Figure 4, 
GAM model ranks lower than PR for eastern white pine, hickory spp. 
and red maple in AP and VR. Specifically, GAM yielded the least 
precise predictions for red maple and sweetgum in AP and Acacia spp. 
in CAR (see Tables 2, 4).

The ANN models rank the highest for four of the 19 species while 
ranking the lowest for three of the 19 species (see Figure 3). Özçelik 
et al. (2013) and Castaño-Santamaría et al. (2013) found that the ANN 
models without considering diameter variation for each sampling unit 
performed worse than those accounting for it. This is only partially 
supported by our results because five of the base ANN models in this 
study performed the best compared to other regression methods, 
albeit the diameter variation of each condition class was not taken into 
consideration. This may be because the network architecture used in 
this study was more complex compared to Özçelik et al. (2013) and 
Castaño-Santamaría et  al. (2013). More hidden layers (two dense 
layers and two dropout layers) and more nodes per dense layer were 
incorporated in this study.

FIGURE 2

Overall ranking (Lowest rank is the best) of five base regression methods (Pearl and Reed (1920), PR; Wykoff et al., 1982, WK; Generalized additive 
model, GAM; Extreme gradient boost, XGB; Artificial neural network, ANN) across all the species and physiographic region in (A) and across all species 
in four physiographic regions (Apalachian plateau, AP; Ridge and Valley, VR; Caribbean islands, CAR; Pacific islands, PAC) in (B).
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TABLE 2 Median of the evaluation statistics.

R2 MB RMSE

Sp. Model Base Rdia RBA CDF BAL PSDI Base Rdia RBA CDF BAL PSDI Base Rdia RBA CDF BAL PSDI

EWP PR 0.69 0.71 0.70 0.65 0.65 0.65 0.36 0.35 0.32 0.33 0.34 0.34 3.44 3.28 3.40 3.43 3.44 3.39

WK 0.65 0.66 0.64 0.50 0.60 0.65 0.50 0.53 0.44 0.46 0.47 0.38 3.55 3.47 3.56 3.55 3.55 3.50

GAM 0.68 0.69 0.63 0.73 0.72 0.72 0.46 0.57 0.68 −0.14 −0.13 −0.12 3.44 3.38 3.91 3.22 3.24 3.24

XGB 0.60 0.67 0.71 0.71 0.73 0.71 0.21 −0.05 0.18 0.18 −0.06 0.17 3.76 3.15 3.63 3.64 3.52 3.62

ANN 0.68 0.69 0.68 0.60 0.67 0.69 0.09 −0.02 0.07 −0.01 0.07 0.18 3.24 3.19 3.26 0.18 3.29 3.21

HICK PR 0.72 0.73 0.72 0.71 0.71 0.71 −0.02 −0.01 −0.02 −0.02 −0.03 −0.02 3.66 3.63 3.65 3.66 3.66 3.65

WK 0.70 0.70 0.70 0.70 0.68 0.69 0.13 0.15 0.11 0.12 0.13 0.05 3.74 3.72 3.73 3.73 3.74 3.69

GAM 0.70 0.71 0.64 0.70 0.70 0.70 0.28 0.23 −1.12 0.28 0.27 0.27 3.57 3.49 3.91 3.57 3.56 3.57

XGB 0.70 0.70 0.70 0.70 0.71 0.70 0.31 0.32 0.31 0.31 0.28 0.33 3.55 3.56 3.55 3.55 3.51 3.58

ANN 0.69 0.70 0.69 0.55 0.69 0.69 0.28 0.29 0.27 −0.01 0.30 0.38 3.65 3.59 3.66 0.19 3.64 3.63

RM PR 0.61 0.62 0.61 0.61 0.61 0.61 0.01 0.03 0.00 0.01 0.01 0.00 3.26 3.23 3.26 3.26 3.26 3.26

WK 0.58 0.59 0.60 0.59 0.59 0.61 0.13 0.15 0.08 0.10 0.12 0.04 3.38 3.36 3.32 3.36 3.38 3.29

GAM 0.61 0.63 0.62 0.62 0.63 0.62 −0.17 −0.16 −0.19 −0.02 −0.02 −0.01 3.19 3.12 3.28 3.25 3.24 3.25

XGB 0.62 0.67 0.63 0.63 0.63 0.62 0.12 0.08 0.08 0.10 0.10 0.08 3.21 3.09 3.18 3.19 3.15 3.18

ANN 0.59 0.61 0.60 0.63 0.60 0.60 −0.03 0.01 0.05 0.00 0.04 0.13 3.31 3.25 3.31 0.17 3.30 3.30

SWG PR 0.81 0.83 0.82 0.71 0.73 0.81 −0.30 −0.27 −0.32 −0.32 −0.25 −0.33 3.32 3.27 3.24 3.32 3.30 3.29

WK 0.78 0.78 0.79 0.72 0.73 0.78 0.13 0.18 0.03 0.00 0.16 −0.03 3.54 3.55 3.43 3.43 3.57 3.32

GAM 0.83 0.85 0.72 0.74 0.76 0.75 −0.33 −0.23 −0.26 −0.95 −0.86 −0.93 3.23 3.02 3.69 3.51 3.35 3.46

XGB 0.74 0.75 0.74 0.74 0.69 0.74 −0.24 0.09 −0.33 −0.31 −0.38 −0.34 3.46 3.78 3.44 3.44 3.74 3.45

ANN 0.70 0.71 0.70 0.41 0.71 0.68 0.14 −0.09 0.12 0.06 0.22 0.17 4.23 4.19 4.26 0.22 4.13 4.34

WO PR 0.65 0.66 0.65 0.65 0.65 0.65 0.22 0.19 0.21 0.22 0.21 0.22 3.48 3.38 3.48 3.48 3.48 3.48

WK 0.64 0.65 0.65 0.65 0.65 0.64 0.27 0.25 0.26 0.26 0.25 0.25 3.51 3.44 3.50 3.51 3.51 3.49

GAM 0.64 0.67 0.56 0.66 0.66 0.66 0.02 0.05 1.74 0.22 0.22 0.22 3.42 3.30 3.84 3.40 3.41 3.40

XGB 0.64 0.70 0.66 0.65 0.66 0.66 −0.04 0.17 −0.02 −0.04 −0.03 −0.03 3.48 3.22 3.40 3.43 3.39 3.40

ANN 0.68 0.70 0.68 0.56 0.68 0.68 0.16 0.16 0.18 0.01 0.14 0.31 3.33 3.24 3.33 0.19 3.34 3.31

YP PR 0.72 0.73 0.72 0.73 0.73 0.71 −0.13 −0.13 −0.14 −0.14 −0.13 −0.14 3.83 3.76 3.81 3.84 3.83 3.82

WK 0.70 0.70 0.70 0.71 0.71 0.69 0.13 0.17 0.09 0.09 0.08 0.00 4.02 4.01 4.01 3.99 4.01 3.93

GAM 0.73 0.75 0.69 0.74 0.74 0.74 0.01 0.00 −1.12 −0.02 −0.02 −0.01 3.93 3.83 4.07 3.70 3.56 3.70

XGB 0.71 0.77 0.72 0.72 0.72 0.72 −0.02 −0.10 −0.08 −0.03 −0.07 −0.08 4.01 3.60 3.93 3.93 3.93 3.93

ANN 0.74 0.75 0.74 0.55 0.74 0.74 0.24 0.23 0.24 0.02 0.24 0.35 3.89 3.81 3.89 0.19 3.89 3.88

Coefficients of determination, R2; mean bias, MB; root mean squared error, RMSE for the base models (i.e., no competition index included in the model) and five competition indices (diameter ratio, Rdia; basal area ratio, RBA; partitioned stand density index, PSDI; 
cumulative distribution function, CDF; basal area of larger trees, BAL) using five regression models [Pearl and Reed (1920), PR; Wykoff et al. (1982), WK; Generalized additive model, GAM; Extreme Gradient Boosting, XGBoost; Artificial Neural Network, ANN] for 
the six temperate trees species (eastern white pine, EWP; hickory species, HICK; red maple, RM; sweetgum, SWG; white oak, WO; yellow poplar, YP) in Appalachian plateau (AP). Note: Bold evaluation statistics indicate the combination (model + competition index) 
with the greatest R2 value, the closest to zero MB or the lowest RMSE for a given species.
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TABLE 3 Median of the evaluation statistics.

R2 MB RMSE

Sp. Model Base Rdia RBA CDF BAL PSDI Base Rdia RBA CDF BAL PSDI Base Rdia RBA CDF BAL PSDI

EWP PR 0.83 0.83 0.78 0.80 0.80 0.80 −0.08 −0.07 −0.13 −0.46 −0.47 −0.43 2.86 2.81 3.02 2.98 2.92 2.89

WK 0.77 0.77 0.73 0.75 0.73 0.78 0.54 0.57 0.07 −0.06 0.03 −0.27 3.29 3.28 3.40 3.29 3.36 3.08

GAM 0.82 0.83 0.79 0.82 0.82 0.82 0.08 0.06 0.68 0.08 0.10 0.08 2.81 2.79 3.04 2.82 2.81 2.82

XGB 0.80 0.77 0.80 0.79 0.80 0.80 −0.18 −0.24 −0.19 −0.16 −0.14 −0.13 2.87 3.05 2.88 2.89 2.84 2.88

ANN 0.80 0.81 0.80 0.80 0.80 0.80 0.03 0.01 0.00 −0.07 −0.07 −0.10 2.84 2.78 2.85 2.85 2.85 2.84

HICK PR 0.77 0.78 0.77 0.77 0.77 0.77 0.05 0.02 0.05 0.04 0.04 0.05 3.27 3.22 3.25 3.27 3.27 3.26

WK 0.74 0.74 0.75 0.74 0.74 0.76 0.38 0.38 0.27 0.30 0.35 0.20 3.50 3.47 3.41 3.46 3.49 3.33

GAM 0.76 0.77 0.73 0.76 0.76 0.76 −0.05 −0.07 −0.85 −0.06 −0.05 −0.06 3.40 3.28 3.62 3.40 3.40 3.40

XGB 0.77 0.76 0.77 0.77 0.77 0.79 −0.07 −0.09 −0.07 −0.06 −0.07 0.19 3.29 3.34 3.29 3.30 3.28 3.24

ANN 0.79 0.80 0.79 0.79 0.79 0.79 0.31 0.33 0.24 0.20 0.21 0.21 3.26 3.14 3.26 3.25 3.25 3.23

RM PR 0.70 0.71 0.70 0.69 0.69 0.69 −0.05 −0.04 −0.04 −0.10 −0.10 −0.09 3.16 3.13 3.16 3.14 3.14 3.14

WK 0.64 0.64 0.66 0.66 0.65 0.67 0.08 0.08 0.00 0.03 0.04 −0.02 3.39 3.40 3.29 3.32 3.37 3.24

GAM 0.69 0.70 0.69 0.69 0.69 0.69 0.05 0.07 0.11 0.05 0.04 0.05 3.20 3.12 3.22 3.20 3.19 3.19

XGB 0.71 0.70 0.71 0.71 0.71 0.71 −0.02 −0.03 −0.02 −0.02 −0.02 0.07 3.13 3.17 3.13 3.13 3.12 3.13

ANN 0.71 0.72 0.71 0.71 0.71 0.71 0.06 0.10 0.02 0.00 −0.01 0.04 3.14 3.07 3.13 3.14 3.13 3.13

SWG PR 0.81 0.83 0.70 0.82 0.83 0.82 −0.13 −0.08 −0.13 −0.06 −0.04 −0.05 3.04 2.94 3.18 3.11 3.09 3.12

WK 0.76 0.76 0.78 0.78 0.77 0.79 0.19 0.19 0.18 0.42 0.42 0.28 3.46 3.46 3.51 3.50 3.57 3.41

GAM 0.81 0.82 0.77 0.81 0.81 0.81 −0.04 −0.04 −1.11 −0.03 −0.04 −0.03 3.11 2.99 3.44 3.11 3.09 3.11

XGB 0.81 0.80 0.81 0.81 0.81 0.81 0.16 0.17 0.17 0.17 0.13 0.25 3.13 3.23 3.13 3.14 3.14 3.13

ANN 0.81 0.82 0.81 0.81 0.81 0.81 0.37 0.35 0.34 0.28 0.24 0.23 3.15 3.06 3.15 3.14 3.14 3.13

WO PR 0.73 0.75 0.74 0.72 0.72 0.72 0.19 0.15 0.17 0.13 0.13 0.13 3.25 3.18 3.33 3.40 3.40 3.39

WK 0.71 0.72 0.72 0.71 0.71 0.71 0.39 0.37 0.35 0.29 0.29 0.24 3.37 3.33 3.46 3.50 3.49 3.45

GAM 0.74 0.76 0.73 0.74 0.74 0.74 0.22 0.19 0.35 0.22 0.22 0.21 3.21 3.10 3.26 3.21 3.20 3.20

XGB 0.74 0.73 0.74 0.74 0.75 0.74 0.22 0.25 0.22 0.22 0.22 0.31 3.21 3.28 3.22 3.23 3.17 3.20

ANN 0.74 0.75 0.74 0.74 0.74 0.74 0.46 0.40 0.38 0.34 0.33 0.36 3.23 3.13 3.22 3.22 3.22 3.19

YP PR 0.79 0.80 0.81 0.81 0.81 0.82 0.05 0.01 −0.11 −0.17 −0.18 −0.17 3.68 3.59 3.53 3.60 3.60 3.58

WK 0.76 0.76 0.77 0.78 0.77 0.79 0.32 0.34 0.14 0.15 0.24 0.08 3.95 3.95 3.87 3.92 3.99 3.79

GAM 0.82 0.83 0.81 0.82 0.82 0.82 −0.02 0.02 −0.17 −0.02 −0.03 −0.01 3.58 3.44 3.62 3.58 3.58 3.58

XGB 0.81 0.80 0.81 0.81 0.82 0.82 0.11 0.12 0.13 0.12 0.12 0.26 3.62 3.74 3.62 3.63 3.60 3.57

ANN 0.81 0.83 0.81 0.81 0.81 0.82 0.34 0.35 0.28 0.21 0.22 0.24 3.64 3.46 3.64 3.63 3.62 3.55

Coefficients of determination, R2; mean bias, MB; root mean squared error, RMSE for the base models (i.e., no competition index included in the model) and five competition indices (diameter ratio, Rdia; basal area ratio, RBA; partitioned stand density index, PSDI; 
cumulative distribution function, CDF; basal area of larger trees, BAL) using five regression models [Pearl and Reed (1920), PR; Wykoff et al. (1982), WK, WK; Generalized additive model, GAM; Extreme Gradient Boosting, XGBoost; Artificial Neural Network, ANN] 
for the six temperate trees species (eastern white pine, EWP; hickory species, HICK; red maple, RM; sweetgum, SWG; white oak, WO; yellow poplar, YP) in Ridge and Valley (VR). Note: Bold evaluation statistics indicate the combination (model + competition index) 
with the greatest R2 value, the closest to zero MB or the lowest RMSE for a given species.
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Misik et al. (2016) and Cui et al. (2022) reported that the PR and 
WK model generally had lower RMSE for temperate species in Turkey 
and China, respectively. However, our results indicate that the PR 
model performs well for the 19 species, but the WK model generally 
had poor prediction accuracy. Specifically, the PR model had the 
highest rank of RMSE for two species whereas the WK model did not 
have the highest rank of RMSE for any species examined. Notably, the 
WK model tends to underpredict the height of the tallest and shortest 
trees in the stand (see Supplementary Figure 9B). Varying degrees of 
performance have been reported when employing the WK model in 
predicting tree height (e.g., Temesgen et al., 2014; Yang et al., 2022). 
Temesgen et al. (2014) found that this model provided the lowest MB 
and RMSE for most of the tree species in Northern China. However, 
Yang et al. (2022) reported that the WK model had the highest overall 
RMSE for pantropical tree species in Trinidad and Tobago. They also 
found that the WK model tends to be more inaccurate for trees in large 
DBH classes (see Table 3 of Yang et al. (2022)).

This study aimed to evaluate commonly used regression methods 
and competition indices to characterize the H-D relationships of 
temperate and pantropical tree species. The results of this study showed 
that the semiparametric model (GAM) produced more accurate 
predictions than parametric (PR and WK) and nonparametric models 
(XGBoost and ANN). The smoothing functions used by GAM for 
model fitting increases the flexibility of the curves while still retaining 
the structure of the curves like parametric models (see Figures 6A,D). 
However, GAM is a data-driven model similar to XGBoost and ANN 
which may not produce satisfactory results when there are not many 
data points available for training the model. GAM is also often 
criticized for its tendency to overfit (Robinson et al., 2011; Adamec and 
Drápela, 2015). Although such issue was not found in this study, it 
needs to be taken into consideration when building H-D models.

Lastly, the predictive performance of the H-D models was found 
to be better for the temperate species than the pantropical species. The 
range of the evaluation statistics was wider with larger extremes values 
for the pantropical species compared to the temperate species (see 
Table 6). This may be because the pantropical forests have higher tree 
species diversity which causes the trees to interact in a different manner 
compared to temperate forests. It is worth mentioning that the models 
presented in this study may not be optimal for a given species and 
region, but the models selected in comparison are commonly used in 
forest practices. Besides, in the preliminary analysis, random forest 
algorithm was tested, but the predictive performance of the models was 
poorer than ANN and XGBoost which was also reported by Li et al. 
(2020) and Raczko and Zagajewski (2017).

4.2 Inclusion of a competition index in H-D 
models

Inclusion of a competition index improved the predictive abilities 
of the models for most of the species in the AP, VR and CAR regions 
compared to the corresponding base model. Competition indices are 
generally included in individual tree models to represent the 
competition effect of neighboring trees on a subject tree (Burkhart and 
Tomé, 2012). The results of this study confirm that inclusion of 
distance-independent competition indices can improve the 
performance of height diameter models when spatially explicit 
information at the individual tree level is not available. However, for 
the PAC region, the base model on average was found to perform 
better than the models with competition indices across all the species 
and regression methods based on the evaluation statistics (see 
Supplementary Figure  6). The forested areas in PAC are severely 

FIGURE 3

Average rank (Lowest rank is the best) of five base regression methods for species in Appalachian plateau (AP) in (A) (eastern white pine, EWP; hickory 
species, HICK; red maple, RM; sweetgum, SWG; white oak, WO; yellow poplar, YP), Ridge and Valley (VR) in (B) (eastern white pine, EWP; hickory 
species, HICK; red maple, RM; sweetgum, SWG; white oak, WO; yellow poplar, YP), Caribbean islands (CAR) in (C) (pink trumpet tree, PTT; muskwood, 
MW; African tulip tree, ATT; acacia species, ACA) and Pacific islands (PAC) in (D) (African tulip tree, ATT; ʻŌhiʻa lehua, OL; acacia species, ACA).
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TABLE 4 Median of the evaluation statistics.

R2 MB RMSE

Reg. Sp. Model Base Rdia RBA CDF BAL PSDI Base Rdia RBA CDF BAL PSDI Base Rdia RBA CDF BAL PSDI

CAR PTT PR 0.67 0.72 0.70 0.70 0.72 0.70 0.91 0.10 0.14 0.13 0.13 0.14 2.80 2.36 2.46 2.45 2.39 2.44

WK 0.61 0.66 0.66 0.66 0.65 0.67 0.99 0.29 0.30 0.24 0.27 0.29 3.05 2.62 2.63 2.63 2.66 2.59

GAM 0.73 0.68 0.71 0.73 0.75 0.72 −0.55 −0.50 −0.50 −0.52 −0.45 −0.55 2.19 2.38 2.28 2.19 2.12 2.23

XGB 0.68 0.67 0.61 0.68 0.61 0.63 −0.52 −0.47 −0.53 −0.53 −0.58 −0.42 2.26 2.31 2.51 2.29 2.50 2.43

ANN 0.66 0.68 0.65 0.66 0.68 0.66 0.12 −0.04 0.23 0.29 0.04 0.11 2.48 2.40 2.51 2.48 2.42 2.47

MW PR 0.75 0.75 0.75 0.75 0.75 0.75 −0.07 −0.06 −0.09 −0.07 −0.08 −0.09 2.51 2.52 2.53 2.52 2.52 2.52

WK 0.67 0.67 0.69 0.69 0.67 0.45 0.10 0.11 0.13 0.08 0.08 0.88 2.89 2.90 2.82 2.88 3.15 3.72

GAM 0.72 0.72 0.71 0.72 0.72 0.72 −0.14 −0.15 −0.10 −0.14 −0.12 −0.14 2.46 2.69 2.49 2.47 2.46 2.46

XGB 0.78 0.78 0.75 0.78 0.76 0.75 0.17 0.16 0.13 0.17 0.16 0.11 2.30 2.32 2.45 2.31 2.44 2.45

ANN 0.72 0.72 0.72 0.71 0.72 0.72 0.27 0.25 0.35 0.48 0.26 0.24 2.44 2.47 2.47 2.47 2.44 2.44

ATT PR 0.68 0.72 0.69 0.68 0.69 0.68 −0.19 −0.25 −0.17 −0.19 −0.17 −0.16 3.19 2.99 3.17 3.19 3.15 3.21

WK 0.63 0.65 0.65 0.64 0.63 0.53 0.06 0.04 0.02 −0.02 0.08 0.38 3.44 3.33 3.36 3.39 3.44 3.88

GAM 0.72 0.73 0.68 0.72 0.72 0.72 0.42 0.57 0.38 0.43 0.52 0.39 2.74 2.69 2.96 2.75 2.74 2.72

XGB 0.70 0.70 0.65 0.69 0.65 0.66 0.49 0.59 0.32 0.51 0.41 0.39 2.83 2.81 3.09 2.83 3.06 3.02

ANN 0.66 0.69 0.65 0.65 0.67 0.66 0.62 0.52 0.67 0.85 0.57 0.58 3.00 2.88 3.05 3.07 2.95 3.03

ACA PR 0.40 0.58 0.50 0.50 0.47 0.50 −0.33 0.01 0.61 0.63 0.70 0.64 1.96 1.65 2.94 2.96 3.02 2.95

WK 0.46 0.58 0.53 0.49 0.48 0.49 −0.30 0.58 0.55 0.65 0.70 0.65 1.86 2.95 2.86 2.99 3.00 2.99

GAM 0.53 0.62 0.53 0.53 0.54 0.53 1.12 1.24 1.09 1.14 1.04 1.15 2.82 2.54 2.82 1.14 2.80 2.84

XGB 0.55 0.42 0.38 0.54 0.39 0.30 0.22 −0.15 0.20 0.20 0.20 −0.09 1.78 2.02 2.09 1.80 2.07 2.21

ANN 0.31 0.20 0.31 0.36 0.28 0.20 −0.93 −1.13 −0.94 −0.72 −0.93 −0.99 2.30 2.48 2.30 2.21 2.41 2.68

PAC ATT PR 0.57 0.61 0.60 0.56 0.55 0.63 −1.62 1.20 1.33 1.35 1.38 1.20 2.83 3.23 3.24 3.40 3.45 3.12

WK 0.48 0.53 0.53 0.55 0.53 0.46 −1.00 1.35 1.56 1.40 1.40 1.08 3.10 3.54 3.52 3.46 3.55 3.79

GAM 0.68 0.70 0.64 0.68 0.56 0.70 −0.93 −0.75 −0.91 −0.88 −0.86 −0.76 2.07 2.01 2.24 2.09 2.47 2.00

XGB 0.35 0.50 0.35 0.49 0.40 0.24 −1.81 −0.24 −1.83 −1.25 0.13 −1.74 3.70 3.91 3.72 3.25 4.25 5.94

ANN 0.51 0.54 0.50 0.35 0.30 0.51 −1.02 −0.61 1.64 2.97 1.97 3.05 3.07 3.12 3.55 4.68 4.44 4.73

OL PR 0.60 0.55 0.55 0.54 0.54 0.54 −0.30 −0.19 −0.22 −0.24 −0.22 −0.22 3.35 3.35 3.37 3.39 3.39 3.40

WK 0.54 0.51 0.52 0.51 0.53 0.52 −0.04 −0.07 −0.15 −0.13 −0.18 −0.13 3.57 3.50 3.46 3.49 3.42 3.45

GAM 0.66 0.69 0.66 0.66 0.67 0.66 0.22 0.19 0.20 0.24 0.22 0.24 3.29 3.13 3.30 3.29 3.25 3.29

XGB 0.57 0.58 0.57 0.57 0.55 0.55 0.27 0.78 0.28 0.28 0.90 0.24 3.42 3.63 3.42 3.42 3.74 3.48

ANN 0.63 0.64 0.63 0.63 0.64 0.64 0.18 0.26 −0.18 −0.13 −0.22 −0.13 3.25 3.24 3.15 3.13 3.13 3.11

(Continued)
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depleted due to large-scale harvesting in the 1970s and severe cyclones 
in 1990s (FAO, 2010). In addition, the PAC islands are infested with 
various insects, pathogens and invasive species which are significant 
threats to the forest health (USDAFS, 2022). Frequent anthropogenic 
and natural disturbance may cause the large variation of tree allometry 
in the region. Thus, a single competition index may not be adequate 
to predict total tree height for Pacific islands’ forests. Adding 
additional predictor variables (e.g., site or environmental variables) 
may help improve the prediction accuracy of the models, which is 
suggested as the next step of this study.

In general, Rdia, PSDI and CDF performed best for the five 
regression method across the physiographic regions and species. PR 
and GAM models with Rdia as competition index tended to have the 
highest rank. Similarly, PSDI had the highest rank for the WK models. 
CDF worked well with non-parametric regression methods (XGBoost 
and ANN). These competition indices are used to mathematically 
represent the ability of a particular tree to grow without explicit spatial 
information about the neighboring trees (Burkhart and Tomé, 1989). 
Diameter ratio and basal area ratio (size ratios) represented by the 
ratio of diameter and basal area of subject tree to the average diameter 
and basal area in the stand, respectively, provide information about 

TABLE 5 Percentage change of evaluation statistics.

Region Species R2 
change

MB change RMSE 
change

AP EWP 21.6 and 

7.3%
−111.1% −94.4%

HICK 1.3% −50.0% −94.7%

RM 8.0% −100.0% −94.8%

SWG 2.4% −100.0% −94.7%

WO 9.3 and 2.9% −93.7% −94.2%

YP 8.4% −100.0% −95.1%

VR EWP 0.0% −100.0% −2.1%

HICK 1.2% −60.0% −3.6%

RM 1.4% −100% −2.2%

SWG 2.4% −25% −3.2%

WO 2.7% −31.5% −3.4%

YP 1.2 and 2.4% −80.5% −3.9%

Average change 4.8% −79.3% −48.8%

CAR PTT 2.7% −133.3 and 66.6% −3.1%

MW 0% −14.3% 0%

ATT 1.4% −66.6 and 66.6% −1.8%

ACA 16.9% −103.0% −59.5%

PAC ATT 2.9% −107.1% −3.3%

OL 4.5% 0% −4.3%

ACA 0% −98.2% 0%

Average change 4.0% −43.2% −10.3%

Coefficients of determination, R2; mean bias, MB; root mean squared error, RMSE between 
the best performing and the corresponding base model for temperate species (eastern white 
pine, EWP; hickory species, HICK; red maple, RM; sweetgum, SWG; white oak, WO; yellow 
poplar, YP) in Appalachian plateau (AP) and Ridge and Valley (VR) and pantropical species 
in Caribbean islands (CAR; pink trumpet tree, PTT; muskwood, MW; African tulip tree, 
ATT; acacia, ACA) and Pacific islands (PAC; African tulip tree, ATT; ʻŌhiʻa lehua, OL, 
acacia, ACA).
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FIGURE 5

Best combination of regression method [Pearl and Reed (1920), PR; Wykoff et al. (1982), WK; Generalized additive model, GAM; Extreme Gradient 
Boosting, XGBoost; Artificial Neural Network, ANN] and competition index (diameter ratio, Rdia; basal area ratio, RBA; partitioned stand density index, 
PSDI; cumulative distribution function, CDF; basal area of larger trees, BAL) for all the species across four physiographic regions [Appalachian plateau, 
AP (A); Ridge and Valley, VR (B); Caribbean islands, CAR (C); Pacific islands, PAC (D)].

FIGURE 4

Average ranking (Lowest rank is the best) of competition indices (diameter ratio, Rdia; basal area ratio, RBA; partitioned stand density index, PSDI; 
cumulative distribution function, CDF; basal area of larger trees, BAL) for five regression models [Pearl and Reed (1920), PR (A); Wykoff et al. (1982), WK 
(B); Generalized additive model, GAM (C); Extreme Gradient Boosting, XGBoost (D); Artifical Neural Network, ANN (E)] across all species and 
physiographic regions.
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FIGURE 6

Height diameter relationship of the testing dataset (20% of the dataset) for each of the four physiographic region [Appalachian plateau, AP (A); Ridge 
and Valley, VR (B); Caribbean islands, CAR (C); Pacific islands, PAC (D)]. The curves show the predicted relationship for the highest and the lowest 
ranked models for each of the physiographic regions.

TABLE 6 Range of evaluation statistics.

Region Species R2 range MB range RMSE range

AP EWP 0.50–0.73 −0.14-0.53 0.18–3.91

HICK 0.55–0.73 −1.12-0.38 0.19–3.91

RM 0.58–0.67 −0.19-0.15 0.17–3.38

SWG 0.41–0.85 −0.95-0.22 0.22–4.34

WO 0.56–0.70 −0.04-1.74 0.19–3.84

YP 0.55–0.77 −1.12-0.35 0.19–4.07

VR EWP 0.73–0.83 −0.47-0.68 2.78–3.40

HICK 0.74–0.80 −0.85-0.38 3.14–3.50

RM 0.64–0.72 −0.10-0.11 3.07–3.40

SWG 0.76–0.83 −1.11-0.42 2.94–3.57

WO 0.71–0.76 0.13–0.46 3.10–3.50

YP 0.76–0.83 −0.18-0.35 3.44–3.99

CAR PTT 0.61–0.75 −0.58-0.99 2.12–3.05

MW 0.45–0.78 −0.15-0.48 2.30–3.72

ATT 0.53–0.73 −0.25-0.85 2.69–3.88

ACA 0.20–0.62 −1.13-1.24 1.14–3.02

PAC ATT 0.24–0.70 −1.83-3.05 2.00–5.94

OL 0.51–0.69 −0.30-0.90 3.11–3.74

ACA 0.36–0.65 −0.84-0.68 3.02–4.19

Coefficients of determination, R2; mean bias, MB; root mean squared error, RMSE between the best performing and the corresponding base model for temperate species (eastern white pine, 
EWP; hickory species, HICK; red maple, RM; sweetgum, SWG; white oak, WO; yellow poplar) in Appalachian plateau (AP) and Ridge and Valley (VR) and pantropical species in Caribbean 
islands (CAR; pink trumpet tree, PTT; muskwood, MW; African tulip tree, ATT; acacia, ACA) and Pacific islands (PAC; African tulip tree, ATT; ʻŌhiʻa lehua, OL, acacia, ACA).
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FIGURE 7

Comparison of the predicted tree height and the residual height for the highest ranking and lowest ranking combination of regression method and 
competition index for species in Appalachian plateau (AP; eastern white pine, EWP, A,B; hickory species, HICK, C,D; red maple, RM, E,F; sweetgum, 
SWG, G,H, white oak, WO, I,J; yellow poplar, YP, K,L).

the relative position of the subject tree in the stand. Basal area ratio 
emphasizes more weight on the size of the tree compared to diameter 
ratio. The size ratios assume that the competition is two-sided and 
smaller trees can also affect larger trees. Cumulative distribution 
function and basal area of larger trees also express the relative position 
of subject tree in the stand but the assumption for these indices is that 
competition is only one-sided and larger trees put the subject trees at 
a disadvantageous position while smaller trees do not affect them. The 
partitioned stand density index represents the general environment of 
competition by dividing the stand density index at the individual tree 
level. Rdia performed the best for AP, VR and CAR. Yang et al. (2022) 
reported that Rdia was consistently the second most important 
predictor (after DBH) for the RF and MERF models. It has also been 
reported to work well for other individual tree level models such as 
tree survival model (Sun et  al., 2019), diameter growth models 
(Holmes and Reed, 1991). Similarly, Temesgen et al. (2007) found that 
inclusion of relative position of trees on the stand based on size of tree 
and stand density measures to the base model performs better for 
predicting tree height. CDF was found to perform well for the species 
in AP and CAR and PSDI was found to provide the least biased 
estimates for species in VR. Sun et al. (2019) pointed out that CDF 
ignores the variation in relative competition among mixed forests and 
might not have a good performance. However, it was not supported 
by our study because all four of the physiographic regions are mixed 
forest and the CDF was calculated at the condition class level. In 
addition to this, the indices that had similar characteristics (e.g., size 
ratios) yielded different results. For most of the cases, Rdia performed 
better than RBA and CDF performed better than BAL. Sun et al. (2019) 
also reported similar results for the diameter growth and survival 
equations for even-aged loblolly pine stands.

4.3 Further discussion

Height-diameter relationship models have important 
applications in sustainable forest management which include 
studying the vertical structure of a forest stand. The models in this 
study were evaluated using data from natural temperate and 
pantropical mixed forests which incorporate multiple biomes and 
forest types. The results of this study indicate that H-D relationships 
are variable for the same species in different regions, and a 
universally applicable method is difficult to ascertain. The graphs of 
the predicted height values and the residuals are given in Figures 7–9. 
The forests in the Caribbean and Pacific regions are frequently 
affected by severe wind disturbances. These intense disturbance 
events severely affect tree growth and yield, causing widespread tree 
damage and mortality. The models developed in this study can 
be used to estimate the original length of trees in order to quantify 
the impact of wind damage in the regions. Although none of the 
models were found to perform well for all 19 species, we recommend 
the highest ranked model for each of the physiographic regions 
(Figure 6) would provide adequate results.

The competition between species in a mixed forest has complex 
relationships that can be within the same species and between different 
species. This complex relationship was demonstrated by our study as 
the highest-ranking competition indices varied according to the 
species, physiographic region and regression method. The highest 
ranked competition indices (Rdia, PSDI and CDF for AP, VR and CAR) 
for the physiographic regions show that the influence of tree growth 
varies according to the region. Although this study did not use more 
than one competition index for evaluating the H-D models, a future 
study that uses more than one competition index as predictors is 
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warranted to further understand the effect of competition in natural 
mixed forests.

Lastly, the GAM, ANN and XGBoost models can be transferred 
while the transferring approach is different from the classic 

parametric models. For parametric models, the transfer is done by 
sharing the equations with the estimated coefficients. In GAM, 
ANN and XGBoost, the transfer can be  done by sharing the 
preprocessing script (or even an R package) and data used to build 

FIGURE 9

Comparison of the predicted tree height and the residual height for the highest ranking and lowest ranking combination of regression method and 
competition index for species in Caribbean (CAR) and Pacific (PAC) islands (pink trumpet tree, PTT, A,B; muskwood, MW, C,D; African tulip tree, ATT, 
E–H; acacia species, ACA, I–L; ʻŌhiʻa lehua, OL, M,N).

FIGURE 8

Comparison of the predicted tree height and the residual height for the highest ranking and lowest ranking combination of regression method and 
competition index for species in Ridge and Valley (VR; eastern white pine, EWP, A,B; hickory species, HICK, C,D; red maple, RM, E,F; sweetgum, SWG, 
G,H, white oak, WO, I,J; yellow poplar, YP, K,L).
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the models. Then the user can re-train (i.e., calibrate) the models 
with their own dataset. Another approach is to build an app that 
runs the algorithm in the background. Users can input the values 
of DBH and competition index, and then the predicted tree 
heights can be  generated. Users can upload their own dataset, 
allowing the app to re-train the models for localized predictions 
of tree height.

5 Conclusion

This study shows that all the regression methods examined in this 
study were capable of predicting tree height from tree DBH. Among 
them, GAM can be  used as the initial model when fitting H-D 
relationships, although it may not produce optimal predictions for a 
given species and physiographic region. However, it can be used to 
provide preliminary information about total tree length, especially to 
provide a quick assessment of the wind damage on total tree height. 
The results also showed that different competition indices are suitable 
for different regression methods. Diameter ratio, partitioned stand 
density index and cumulative distribution function were found to 
improve the predictive abilities of the regression methods for species 
in AP VR and CAR. These competition indices are easy to calculate 
and hence we  recommend including competition indices when 
building H-D models.
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