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Introduction and aim: Ensuring the protection and restoration of forest ecosystems 
is vital to maintaining and restoring ecological balance in deforested or degraded 
landscapes. However, sustainable development faces challenges from high human 
impacts on natural forest ecosystems, insufficient advanced conservation measures, 
and limited engagement of local communities in developing nations. The aim of 
this study was to explore the utility of spatial remote sensing datasets in examining 
the landscape pattern changes within the transboundary Nyungwe-Kibira Forest 
from 2000 to 2019. This aimed to emphasize the necessity of understanding the 
intricate dynamics of this ecosystem and its susceptibility to human activities in order 
to bolster diverse restoration initiatives throughout the region.

Methods: The landscape pattern change in the Nyungwe-Kibira between 2000 and 
2019 was analysed using high-resolution Landsat data. This analysis encompassed an 
evaluation of the dynamics of changes in built-up, cropland, and forest areas within 
the region. Especially, primary data derived from the Landsat dataset and secondary 
data from reports such as the Outlook Report were employed to elucidate the 
ongoing landscape transformation within and surrounding the transboundary forest.

Results and discussion: The analysis revealed a net change of +62.3% and +18.07% 
in built-up and cropland areas, resulting in a gross change of 14,133 ha and 6,322 
ha in built-up and cropland areas, respectively. Furthermore, the forest experienced 
an overall gain of 9.11%, corresponding to a net loss of 6.92% due to deforestation, 
estimated at -14,764 ha. The analysis also indicated that built-up areas accounted 
for approximately 33.02% of the net forest loss, primarily affecting the northern 
edge of the Rwanda region, while cropland expansion contributed to a net loss 
of forest (-9.48%), predominantly impacting the southeast portion of the forest in 
Burundi. Additionally, the forest is predicted to decrease by 0.74% by 2030, with 
current findings showing aggregated forest and cropland at 66% and 7%, dissected 
rangeland at 24%, and created built-up areas at 3%. The findings indicate that the 
Nyungwe-Kibira Forest is undergoing notable transformations, highlighting the 
necessity of land-based projects and mitigation plans to facilitate the restoration 
of the forest from its historical changes. Without proactive measures, an ongoing 
decrease in forest area by 2030 is anticipated.

KEYWORDS

Nyungwe-Kibira Forest, remote sensing, landscape pattern, land use land cover, 
transboundary forest

OPEN ACCESS

EDITED BY

Shalom D. Addo-Danso,  
Forest Research Institute of Ghana, Ghana

REVIEWED BY

Kwadwo Kyenkyehene Kusi,  
Forest Research Institute of Ghana, Ghana
Jean Baptiste Nsengiyumva,  
Institute of Policy Analysis and Research 
(IPAR-Rwanda), Rwanda

*CORRESPONDENCE

Yang Zhaoping  
 yangzp@ms.xjb.ac.cn

RECEIVED 11 September 2023
ACCEPTED 22 December 2023
PUBLISHED 22 January 2024

CITATION

Udahogora M, Zhaoping Y, Fang H, 
Kayumba PM and Mind’je R (2024) Exploring 
the landscape pattern change analysis for the 
transboundary Nyungwe-Kibira Forest 
(2000–2019): a spatially explicit assessment.
Front. For. Glob. Change 6:1292364.
doi: 10.3389/ffgc.2023.1292364

COPYRIGHT

© 2024 Udahogora, Zhaoping, Fang, 
Kayumba and Mind’je. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 22 January 2024
DOI 10.3389/ffgc.2023.1292364

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2023.1292364﻿&domain=pdf&date_stamp=2024-01-22
https://www.frontiersin.org/articles/10.3389/ffgc.2023.1292364/full
https://www.frontiersin.org/articles/10.3389/ffgc.2023.1292364/full
https://www.frontiersin.org/articles/10.3389/ffgc.2023.1292364/full
https://www.frontiersin.org/articles/10.3389/ffgc.2023.1292364/full
https://www.frontiersin.org/articles/10.3389/ffgc.2023.1292364/full
mailto:yangzp@ms.xjb.ac.cn
https://doi.org/10.3389/ffgc.2023.1292364
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2023.1292364


Udahogora et al. 10.3389/ffgc.2023.1292364

Frontiers in Forests and Global Change 02 frontiersin.org

1 Introduction

As one of the most prevalent natural resources worldwide, forests 
cover almost 4 × 107 km2, equivalent to 31% of the worldwide terrestrial 
surface (Danjon et al., 2013; Zhao et al., 2022). Forest ecosystems 
provide society with important functions from ecological, social, and 
economic perspectives (Çakir et  al., 2008). More crucially, these 
ecosystems play an irreplaceable role in maintaining the balance of the 
Earth’s living systems and environment. Unfortunately, one of the 
earliest and still ongoing anthropogenic impacts on the biosphere is 
the clearing out of the original forest vegetation coverage and its 
substitution by other different human-induced structures or activities 
(Bogaert et al., 2008, 2011). The latter directly affects the ecosystem 
structure and function of the regions and is taken as the most 
prevalent influence on ecosystem degradation (Cui et  al., 2022). 
Several observations highlight that forest ecosystems have been 
significantly degraded or endangered in many places around the 
world. The ecologically most substantial impact of this sort is 
deforestation, and this has been an ongoing, persistent forest loss in 
the world. For instance, all over the tropical and subtropical areas of 
the world, the mangroves were subjected to highly remarkable levels 
of deforestation of up to 3.6% per annum (Bryan-Brown et al., 2020). 
The majority of present mangrove forest loss takes place in southeast 
Asia, where about half of the remaining mangrove forest is situated, 
with countries such as Myanmar, Indonesia, and Malaysia showing 
losses of 0.70%, 0.26%, and 0.41% annually, respectively (Hamilton 
and Casey, 2016).

In Africa, especially in its central-eastern part, deforestation has 
been reported to increase in several forests, such as in the Democratic 
Republic of the Congo (DRC), where several hectares of forest have 
been stripped for mining activities, agricultural activities, and charcoal 
production (Tegegne et al., 2016). In Uganda, the Kibale National Park 
and the park located around Bwindi in the southwest of the country 
experienced great forest loss in the last half century, and this was 
attributed to the production of charcoal and agricultural expansion 
(Sassen and Sheil, 2013; Sassen et al., 2015). Moreover, Rwanda and 
Burundi faced a decline in forest size, mostly owed to anthropogenic 
disturbances, most especially agricultural extension (Gebauer and 
Doevenspeck, 2015). The above-mentioned situation is currently 
blamed for being responsible for carbon emissions, the shrinkage of 
ecosystem services, and the loss of biodiversity, among others 
(Montibeller et  al., 2020). These environmental havocs have also 
increased due to forest fragmentation (Chaplin-Kramer et al., 2015) 
as a result of either natural or anthropogenic disturbances such as the 
construction of roads, logging, conversion to agriculture, wildfire, 
pollution of air, water, and soil, and losses of productive lands and 
biodiversity degradation. All these are responsible for the landscape 
pattern changes that are increasingly threatening ecosystem 
productivity and health on a local, regional, and global scale. However, 
forest fragmentation is among the main drivers of landscape pattern 
change. The human origin of this problem is currently at an elevated 
risk of further fragmentation than forests fragmented by natural 
sources. The associated changes in landscape patterns are closely 
related to disturbances and ecological processes at different scales 
within ecosystems. Thus, assessing the level of landscape pattern 
change caused by these sources might be an essential tool for policy 
and decision makers permitting for improved risk assessments and 
excellent targeting of zones for protection and regeneration (Bogaert 

et  al., 2008). The forest landscape decrease is the major factor 
explaining and describing forest fragmentation. Owing to the above, 
landscape pattern change has been a source of considerable scientific 
debate since the early application of biogeography theory (Ewers et al., 
2011) and the design of nature reserves (Diamond, 1975; Simberloff 
and Abele, 1976). These debates have led to different visionary 
experiments that have probably had the greatest impact on the general 
understanding of the ecological impact of forest fragmentation, 
depending on the patterns or spatial configuration imposed on a 
landscape and how it varies both temporally and spatially (Laurance 
et  al., 2002; Gardner et  al., 2009). Therefore, the level of forest 
fragmentation status could be assessed to provide critical information 
for future planning of forest management and conservation.

Understanding landscape patterns and their changes over time 
involves the use of statistical measures, also called metrics or indices, 
that describe the landscape composition and configuration (Reddy 
et al., 2013). The quantification and comparison of landscape indices 
have been recognized as the most effective way to assess landscape 
pattern change by various researchers (Abdullah and Nakagoshi, 2007; 
Long et al., 2010; Reddy et al., 2013; Uezu and Metzger, 2016; Sharma 
et al., 2017; Wickham and Riitters, 2019; Da Ponte et al., 2021; Devi 
and Shimrah, 2021; Pyngrope et  al., 2021). The assessment of 
landscape pattern change has been completed for many countries 
using the previously mentioned techniques. For instance, Rudel and 
Roper (1997) conducted a cross-national analysis for the assessment 
of forest fragmentation and reported that West Africa and Central 
America are the most fragmented in the world. At the global level, 
India showed a moderate level of forest fragmentation. The review of 
Rudel and Roper (1997) also emphasized the temporal evaluation of 
forest change by assessing the level of fragmentation. The process of 
forest fragmentation results in an increase in the number of patches, 
a decrease in patch sizes, and increased patch isolation, which together 
address the quantitative measures of fragmentation. The study 
conducted by Wulder et  al. (2008) on fragmentation analysis in 
Canada’s forest revealed an increasing trend of fragmentation.

On the other hand, remote sensing-based tools have proven their 
ability and appropriateness in quantifying the level of forest cover 
changes, as they can cover large-scale areas and transcend country 
borders when the study is carried out on a transboundary scale. 
Furthermore, it provides an unprecedented perspective on changing 
forest cover, allowing continuous maps to be constructed and spatio-
temporal patterns of fragmentation to be analyzed (Taubert et al., 
2018). To this end, previous studies have highlighted the importance 
of integrating the spatio-temporal distribution pattern (Martensen 
et al., 2017) and historical land use change (Vellend et al., 2007; Krauss 
et  al., 2010) into studies of forest fragmentation. The increased 
availability of maps showing changes in land use and land cover 
(LULC) over time, particularly those generated from earth observation 
satellites (Hansen et  al., 2013) and light detection and ranging 
technology (LiDAR) (Nunes et  al., 2022), is making it easier to 
integrate fragmentation-trend maps into biodiversity studies.

Transboundary regions are geographical areas near or crossing 
national borders that often coincide with biodiversity hotspots (Cui 
et al., 2022). These areas face challenges when conservation policies 
clash with political boundaries. Globalization contributes to 
transforming border areas into urban centers with dense populations 
and heightened trade, causing detrimental effects on ecosystems. 
Additionally, weak governance in remote border regions exacerbates 
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habitat changes, species invasions, pollution, and illegal resource use 
(Gurung et al., 2019). Therefore, space–time changes of landscape 
pattern changes in transboundary areas and their assessment 
considering different models with their detailed methodological 
approach are urgently required. Although effectual programs to 
conserve forest biodiversity in fragmented areas necessitate a clear 
knowledge of the evolution and spatial distribution of the forest 
fragments’ size over time (Carranza et al., 2015), these issues remain 
nearly unknown for the Southern Albertine Rift landscape, especially 
in the transboundary Nyungwe-Kibira Forest (wealthy in biodiversity). 
The forest has been reported to be constrained by illegal and legal 
timber collection, an inappropriate system of land tenure, and the 
conversion into agricultural extension (Rutebuka et al., 2017). This set 
up high preeminence on the agenda of the local government in 
drawing up scientifically driven forest protection and restoration 
policies and land use planning. Previous broader-scale assessments of 
deforestation trends in the Albertine Rift (Hartter et  al., 2011; 
Twongyirwe et al., 2015; Akinyemi, 2017; Ryan et al., 2017) provide 
useful regional context but do not examine forest fragmentation 
processes at the local level. Moreover, while previous assessments have 
analyzed Nyungwe and Kibira as separate protected areas, the 
transboundary nature of this interconnected forest landscape has been 
rarely considered in fragmentation studies. For instance, the Nyungwe 
national park has only previously been considered to evaluate the 
relationship between national park management and local 
communities perceptions based on Survey (Nyirarwasa et al., 2020), 
study climatology and potential climate change impacts (Seimon, 
2012), assess the privatization of the park buffer zone and its 
implications for adjacent communities (Gross-Camp et al., 2015), 
analyze the contribution of community conservation and ecotourism 
projects on improving livelihoods and sustainable biodiversity 
conservation in and around the Park (Imanishimwe et  al., 2018), 
examine the quality and performance nexus of the community-based 
ecotourism enterprises (Munanura et  al., 2018), assess forest 
dependency and its implications for protected areas management 
(Masozera and Alavalapati, 2004), and evaluate the conservation 
efforts of multi-projects using remote sensing and Light Use Efficiency 
Model (Rutebuka et al., 2017).

On the other hand, previous studies considered Kibira National 
Park to assess local community views on its ecosystem services 
(Ndayizeye et al., 2020), evaluate its structure and floristic composition 
(Hakizimana et al., 2016), and analyze the morphometry of the park 
using geospatial techniques (Sibomana et al., 2018). Unfortunately, 
very limited studies have considered these parks as transboundary 
forests between Rwanda and Burundi, also known as the 
transboundary Nyungwe-Kibira (NY-K) forest. Considering the two 
parks, Kayiranga et al. (2016) monitored the forest cover change and 
fragmentation using remote sensing and landscape metrics in 
Nyungwe-Kibira Park confined to outdated periods (1986–2015), 
whereas Ochanda (2012) analyzed the potential impacts of climate 
change on birds in the Albertine Rift as a baseline study of Nyungwe 
and Kibira forests. Based on the above-provided background, it is clear 
that the spatio-temporal dynamics of forest loss and fragmentation, 
specifically in the interconnecting corridors between the parks, 
remain understudied and poorly characterized. Similarly, the 
aforementioned studies have been conducted with less attention and 
emphasis on communicating the most current level of forest cover 
change within the Nyungwe-Kibira parks. Doing so in this study 

presents the worthiness and originality of this research, serving as a 
complementary work, providing a contribution to the existing few 
studies within the same scope, and contributing a new insight to 
improve the understanding of transboundary forest dynamics.

Given the numerous significant ecological changes affecting this 
particular transcend forest, we suggest exploring the change in levels 
within the forest and its surrounding landscape as a means to monitor 
the deterioration of this ecosystem. Notwithstanding the urbanization 
explosion that amplifies the land use dynamics, informing and 
discussing where land-based projects will fundamentally cut down the 
magnitude of disturbance drivers may be  significant in land use 
mitigation plans to allow restoration from forest historical changes. In 
line with the above, the study hypothesized that land use changes 
driven by expanding human activities are significantly contributing to 
deforestation and fragmentation within the Nyungwe-Kibira 
transboundary forest ecosystem over time. Therefore, it is urgently 
required to have well-considered, relevant policies to mitigate the 
effects of change or adapt to the consequences. The current study seeks 
to: (1) address the forest landscape cover dynamics under temporal 
land use change events (current and future); (2) assess the spatio-
temporal forest cover transformations/fragmentation; and (3) discuss 
the driving forces influencing the forest changes in the region.

2 Materials and methods

2.1 Description of the Nyungwe-Kibira 
transboundary forest

The Belgian colonial authority gazetted the first forest reserve, 
Nyungwe-Kibira Forest, in 1933, uniting Nyungwe woodland and 
Kibira forest. It is located within the border in the southwest of 
Rwanda and stretches to the Kibira National Park in the northwest of 
Burundi, and it is one of the East-African tropical mountain 
rainforests (Figure 1).

The Nyungwe-Kibira Forest, designated as the intersection of the 
Nile and Congo River Basins between 1962 and 1988, holds great 
significance as the primary source of water for Rwanda and 
northwestern Burundi. Nyungwe and Kibira were subsequently 
designated as national parks in 2005 and 1996, respectively. The forest, 
spanning approximately 1,600 km2, experiences a tropical climate with 
distinct dry and rainy seasons, characterized by daily temperatures 
ranging from 14.4°C to 19.9°C and a mean annual rainfall of 1744 mm. 
As outlined by the United Nations Food and Agriculture Organization 
(UNFAO), the Nyungwe-Kibira Forest is a biodiversity hotspot, 
boasting over 200 species of trees and 644 plant species, along with 98 
animal species, 43 bird groups, and 98 different bird species. The study 
site is positioned within an elevation range of 1,012–2,944 m above sea 
level, adding to the diverse ecological makeup of the area.

2.2 Dataset preparation and processing

With remote sensing, the current study makes use of geospatial 
and statistical data to address the NK park landscape dynamics. To 
extract data on the NK landscape from 2000 to 2019, 30-m resolution 
Landsat images were downloaded from the USGS EROS data center. 
Landsat’s 30-m spatial resolution captures subtle forest cover changes 
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like deforestation, reforestation, and structural alterations within 
forests and at edges and patches. Its 16-day revisit time also enables 
regular monitoring of land cover dynamics. This level of spatial and 
temporal detail suits our study area extent, enabling precise analyzes 
and reliable interpretation of land cover changes both inside and 
outside forests over time. These images were terrain-corrected for 
radio-geometric accuracy using ArcGIS and TerrSet, after which the 
area of interest was extracted for land use classification. The land cover 
types of the research area were classified using a hybrid maximum 
likelihood classification (MLC) technique (unsupervised and 
supervised classification). This technique, which is regarded as one of 
the most effective classification algorithms in remote sensing, involves 
assigning a raster pixel to the class with the highest posterior 
probability. The theory and formulation of the hybrid MLC algorithm 
have been well developed and extensively documented (Ahmad and 
Quegan, 2012).
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to overall classes. Using a random sampling of 160 ground truth sites 
from Google Earth time-lapse imageries, which give historical and 
current high-resolution photos (15-m pan-sharpened). Therefore, 
kappa statistics were used to determine the classification accuracy 
over time of the main land cover categories, including forest, 
rangeland, built-ups, and cropland (2000, 2010, and 2019). Referring 
to Google Earth images, the overall accuracies of the classified images 
returned 87.5%, 82.5%, and 83.1%, respectively. The confusion error 
matrices are shown in Table 1. In addition, we explored the utility of 
version 1.5 of the Hansen 30-m resolution Global Forest Change 
dataset for tree cover and forest loss to analyze the patterns of forest 
loss and fragmentation in the national park. For each 30 m × 30 m cell, 
the tree cover data represent the percentage (0–100%) of tree cover in 
2000 (Hansen et al., 2013). The forest loss data show areas where there 
was major disruption (like fire or logging) or complete removal of tree 
cover in 30-m2 sections of land each year from 2000 to 2019. 
We  defined “forest loss” this way in our research, so it includes 
deforestation plus other changes like degradation that can have 
various causes.

2.2.1 Land use change events assessment in 
Nyungwe-Kibira Forest

Based on the historically derived land cover dataset, we applied 
the multi-layer perceptron (MLP) neural network approach under the 
land change model (LCM) to retrieve the potential land use transitions 
from which land use change events were derived. Land use change 

FIGURE 1

Location of the Nyungwe-Kibira transboundary forest.
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events refer to changes from one land cover type to another, such as 
transitions from forest to cropland (Rudel et al., 2005; Long et al., 
2021). Some examples include cropland expansion, deforestation, 
urbanization, and wetland loss or gain. Explicitly, a transition from 
forest to cropland represents the land use change event of cropland 
expansion, while any type of transition to forest is referred to as 
afforestation. By modeling the transitions between all land cover 
types, the LCM allows us to identify land use change events across the 
landscape. In addition, the MLP has been extensively elaborated to 
provide an automatic mode that does not require any user intervention 
(Eastman, 2012) and can gather multiple substitutions into a single 
group while also providing valuable information on multiple 
transitions that share the same explanatory variables (Figure 2).

To retrieve the land cover transitions or land use change events 
(output layers), a supervised training algorithm (back propagation 
[BP]) was applied considering the temporal land cover fractions (VFα: 
beginning year, VFβ: land cover of the study ending year) that were 
introduced as input layers in the network. In addition, elevation, slope, 
and aspects were introduced as explanatory variables. Here, the input 
layers comprised the neurons ro, which gathered a normalized set of 
input variables of ji (i = 1, 2, 3, … r0), whereas the hidden layers 
contained the neurons r1 and received a set of variables of ki (i = 1, 2, 
3, … r1). These were connected to the explanatory variables layers that 
contain the neurons r3 and receive a set of variables of li (i = 1, 2, 3, … 

r2). To generate weights of neurons in each layer for each output of 
neurons of the input, a continuous non-linear mapping is performed 
in the ro neurons of ji variables toward the ki variables and then to the 
li variables (Taud and Mas, 2018). Overall, the MLP is fed by samples 
taken from pixels that went through the transition under modeling, 
or those from persistence. The gathered cells are further disjointed 
into two clusters, where 50% are used for training (training RMS) and 
the remaining proportion for validation (testing RMS) of the potential 
transition to generate the nexus between transition probability and 
explanatory variables. The obtained weights are significant in reducing 
accuracy-prone errors. Therefore, once the accuracy reaches the 
maximum repetition, the probability of transition maps of the 
sub-model attains the suitability of LCLU categories over the simulated 
time. Still, the MLP provides the report with the aggregate accuracy 
and skill measure scores, which are expressed as follows 
(Eastman, 2012):

 
S

M E
E

a a

a
=

−( )
− ( )(1

where Ma is the measured accuracy, and Ea is the expected 
accuracy. Considering the number of transitions in the sub-model (t) 
and several persistence classes in the sub-model (p), Ea is computed as:

TABLE 1 Accuracy from confusion error matrix of main land cover classification of Nyungwe-Kibira Forest (2000, 2010, 2019).

Land cover Forest Rangeland Cropland Built-ups

2000–reference test statistics

Google Earth imageries 

classification

Forest 38 2 0 0

Rangeland 2 29 5 1

Cropland 0 5 35 1

Built-ups 0 4 0 38

True test value 140

True sampling value 160

Overall accuracy % 87.5

2010–reference test statistics

Google Earth imageries

Forest 40 2 0 0

Rangeland 0 24 10 1

Cropland 0 5 30 6

Built-ups 0 4 0 38

True test value 132

True sampling value 160

Overall accuracy % 82.5

2019–reference test statistics

Google Earth imageries Forest 39 2 0 0

Rangeland 1 35 8 5

Cropland 0 0 24 0

Built-ups 0 3 8 35

True test value 133

True sampling value 160

Overall accuracy% 83.1
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And the most common MLP neural network (NN) approach 
training is the BP, which is defined by reducing the cost  
function as:
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where r represents the number of classes, Pi represents the 
expected output, and Qi is the response of designed NN from the i 
neuron of the total r neurons in the output layer. Finally, in this study, 
the MLP iterates 10,000 (default) training and testing with an accuracy 
of 85%, which is strongly acceptable.

2.2.2 Future land use change assessment in 
Nyungwe-Kibira Forest

To predict the forest cover change, the study employed the 
CA-Markov chain model, which combines cellular automata and the 
Markov chain model (Singh et al., 2015). This model was chosen because 
of its capacity to accurately reflect non-linear, spatial, and scholastic 
processes (Wang et al., 2012). Furthermore, both approaches take into 
account the geographical and temporal mechanisms of landscape cover 
dynamics, and both analyzes are suitable for landscape cover change 
detection and simulations (Hyandye and Martz, 2017). The CA-Markov 
model’s advantages over other models for the same purpose, such as 
GEOMOD or CLUE (Conversion of Land Use and its Effect at Small 
Regional Extent), are based on its high efficiency, ease of calibration, and 
capacity to predict multiple land cover and complicated patterns (Behera 
et al., 2012). Apart from that, CA-Markov also provides and facilitates 

more detailed simulations (Memarian et  al., 2012). The model is 
explained by the following expressions (Equations 1–3) and extensively 
documented (Eastman, 2012; Gidey et al., 2017):
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where Lhd is a likelihood, Prob Lij the transition probability of a land 
cover from type i to type j, whereas Qt is the system status during the 
period t and Q (t + 1) is the system status at the time of t + 1. The 
performance of the model was defined by kappa for no information 
(Kno), kappa for location (Klocation), and kappa for quantity (Kquantity). 
The predictive power of the model is stronger when the efficiency reaches 
≥80% of the predicted and reference images. The study efficiency was 
≥80% reasonable, high agreement, and good for making reasonable 
future projections. K statistics measured the goodness of fit between 
simulation and reality. The formulations are presented in the Model 
Validation section.

2.2.2.1 CA-Markov model validation
Calibration and validation of the model for future change 

prediction is a significant step in the modeling process (Singh et al., 

FIGURE 2

MLP artificial neural network for potential changes (net change assessment).
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2015). In addition, modeling landscape changes without validating or 
testing them to see how well they work and can anticipate the specific 
changes under consideration is scientifically meaningless (Gruhl, 
1979; Aboud et al., 2009; Sargent, 2013). One of the best approaches 
for evaluating the prediction power of the CA-Markov chain model 
was utilized in the current investigation to match the model: kappa 
statistics. It is based on using K statistics, such as kappa for location 
(Klocation), kappa for quantity (Kquantity), and kappa for no 
information or no ability (Kno), to compare simulation results to 
current-day changes, and then using the model to predict future 
changes once the model is optimized with reasonable performances. 
The overall correctness of the simulation run is indicated by Kno, 
which is a version of the standard kappa index of agreement. The 
Klocation validates simulations’ ability to simulate location, whereas 
the Kquantity simulates the quantity (Carletta, 1996). When all three 
Kno, Klocation, and Kquantity indices are equal to “1,” the simulation 
is regarded as flawless; if they are all equal to “0,” the simulation is 
considered defective (Kraemer et al., 2002; Mandrekar, 2011; McHugh, 
2012). Therefore, the predictive power of the CA-Markov chain model 
is greater; when the efficiency is 80% for the initial year image (2019), 
it will be reasonably good to generate reasonable future projections. 
The kappa accuracy index was used to determine the precision of the 
simulation or classification image findings pixel-by-pixel. This metric 
assesses the goodness of fit between simulations and reality 
(Mukherjee et  al., 2009). The kappa variations and arithmetic 
languages used for the summary statistics are as follows:

 Klocation = ( ) ( ) ( ) − ( )M m N m P m N m/

 Kstandard = ( ) ( ) ( ) − ( )M m N n P p N n/

 Kquantity = ( ) ( ) ( ) − ( )M m H m K m H m/

 Kno = ( ) ( ) ( ) − ( )M m N n P p N n/ (

where N (n) denotes no information, H (m) denotes medium 
stratum-level information, M (m) denotes medium grid cell-level 
information, K (m) denotes perfect grid cell-level information given 
imperfect stratum-level information, and P denotes perfect grid cell-
level information throughout the terrain (p). Table  2 depicts the 
categorization agreement/disagreement based on the ability to define 
an accurate amount and allocation (kappa validation on the 
CA-Markov chain model) (2000–2019 to 2030). Table 2 displays better 
classification agreement from 2000 to 2019, with all kappa coefficients 
(Klocation = 88.8%, Kstandard = 83.7%, Kquantity = 88.8%, and 
Kno = 88.5%) above 80% considered acceptable and suitable for the 
model to be applied.

2.2.3 Forest landscape change pattern analysis
To analyze the temporal forest transformations and regime shifts 

among vegetation types, we employed a two-layered feed-forward 
model active in the TerrSet Geospatial Modeling Software, namely 
Land Change Modeler (LCM) for patch transition analysis and 
Habitat–Biodiversity Modeler (HBM) for landscape pattern analysis 
and change process (LCPA). A landscape change process analysis 

(LCPA) technique was adopted to measure the land cover change 
underway within the landscape classes to characterize the nature of 
vegetation transformation. The technique models the process by 
employing a decision tree algorithm (Figure 3) that compares the n 
land cover patches in each class between periods to vary in their areas 
and distributions. The input variables into the tree include patch size 
(s), length of the edge (e), and the number of patches (n) of the target 
area. These variables are the most promising elements in the landscape 
change process since they include noticeable changes in the landscape 
(Chen and Pontius, 2010). At this stage, earlier and late datasets were 
compared, and 3 of 10 landscape transformations were detected, as 
presented in the Results section. Table 3 presents their description, 
whereas Figure 3 illustrates the landscape change process and the 
assigned landscape transformation types that are being experienced.

3 Results and discussion

3.1 Forest landscape change dynamics 
under land use change events

Rwanda and Burundi’s forest cover areas have been decreasing 
over the years due to unceasing demands on land for agriculture-
induced activities, which are the main source of subsistence (van 
Soesbergen et al., 2017). With limited land area, demographics, and 
urbanization explosion, the land use pressures on forest ecosystems 
are critical (Laurance et al., 2006). As the first objective of our study 
was to explore the forest landscape change dynamics under potential 
land use change events, Figures 4–6 show the spatial land use change 
extent across the study area of interest, including gross, net change, 
and net contributions to forest change with a decade interval 
of difference.

Generally, the land cover classification revealed several changes 
inside the forest and the surrounding terrain, in which changes were 
high in the primary land cover classes (i.e., forest cover, cropland, and 
rangeland) (Figure 4). Considering both gross and net changes, the 
land use in and out of the Nyungwe Forest since the last two decades 
is in a state of flux, where some regions experienced gains and others 
experienced losses (Figures  5A,B). To put this into perspective, 

TABLE 2 Classification agreement/disagreement according to the ability 
to specify accurate quantity and allocation (kappa validation on CA-
Markov chain model).

Information of quantity

Allocation No (n) Medium 
(m)

Perfect (p)

Perfect P (n) = 0.581 P (n) = 0.967 P (n) = 1

Perfect stratum K (n) = 0.581 K (n) = 0.967 K (n) = 1

Medium grid M (n) = 0.533 M (n) = 0.908 M (n) = 0.8979

Medium 

stratum
H (n) = 0.2 H (n) = 0.436 H (n) = 0.4327

No N (n) = 0.2 N (n) = 0.436 N (n) = 0.4327

Kno 88.5%

Klocation 88.8%

Kquantity 88.8%

Kstandard 83.7%
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statistics disclosed a great gain in both built-ups and cropland areas at 
a rate of 66.2 and 61.4% of change, respectively. This tends to mean 
that the region is experiencing cropland and built-up expansion 
equivalent to a gross change of 14,133 ha and 6,322 ha, respectively, 
with a net change of +62.3% and + 18.07%, respectively. More 
specifically, the expansion of built-up areas into the buffer zone and 
edges of Nyungwe Forest Reserve is indicative of larger trends of 
deforestation driven by agricultural expansion and urbanization in 
Rwanda (Figure 7C).

This is consistent with the Forest Investment Plan for Rwanda 
report (Water and Lead, 2017) stating that agriculture, which 
accounts for 95% of households’ traditional subsistence activities 

and urbanization, especially the rise of built-up land, which rose 
by more than 300% throughout the period (1990–2016), are the 
main causes of deforestation and forest degradation. In addition, 
a study by Gross-Camp et  al. (2015) also found extensive 
encroachment along the eastern boundary of Nyungwe Forest 
Reserve, fueled by population growth and agricultural land needs. 
They note that the population density around the reserve 
increased by over 150% from 2002 to 2012. Other analyzes of 
deforestation patterns in Rwanda point to road development, 
expansion of tea plantations, and illegal logging as additional 
threats to protected forest areas (Crawford, 2012; Niyonsaba and 
Ndokoye, 2023; Nkurunziza et al., 2023).

In addition, notable land use changes that warrant attention 
include substantial forest loss and cropland growth detected in the 
central and southern regions. These changes stretch from the buffer 
zone into the main forest area (Figure  7C) on the Burundi side. 
Although there was 9.11% forest regrowth, our results revealed that 
the forest cover has experienced a close loss of 6.92%, corresponding 
to −14,764 ha of deforested area (Figure 5). This forest loss is consistent 
with findings by Kayiranga et al. (2016) and Tuyisingize et al. (2023), 
who reported high engagement in illegal activities like deforestation, 
poaching, and wood collection by local populations along the border 
districts in both Rwanda and Burundi. The authors note the substantial 
contributions of these activities across the border to forest cover loss 
within the reserve. Illegal encroachment driven by communities from 
adjacent areas in Rwanda and Burundi remains a key challenge for the 
conservation of the integrity and connectivity of Nyungwe Forest. 
Additionally, while addressing conflict-sensitive conservation in 
Nyungwe National Park, Crawford (2012) outlined the primary 
challenges to maintaining Nyungwe ecosystems and protecting 
biodiversity, including pressures from artisanal and industrial mining, 

FIGURE 3

Decision tree of the Nyungwe-Kibira Forest landscape change process and assigned landscape transformation types that are being experienced.

TABLE 3 Description of landscape transformation types to be assessed.

Pattern 
change 
process

Description

Aggregation (Agg) Patches are decreasing and the area is persistent or 

decreasing

Attrition (Att) Patches and areas are decreasing

Creation (Cr) Patches and areas are increasing

Dissection (Diss) Patches are increasing and the area is decreasing

Enlargement (E) Patches are constant but the area is increasing

Fragmentation (Fr) Patches increasing and the area is strongly decreasing

Perforation (P) Patches are constant but the area is decreasing

Shift (Sh) The position of the patch is changing

Shrinkage (Shr) The area and size of patches are decreasing but the number 

of patches is constant
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high rates of poverty, high reliance on natural resources in the 
communities surrounding the park, forest fires (fires in 1997 
consumed 5–8% of the park due to traditional beekeeping), hunting 
pressures (particularly for large mammals), and deforestation for 
firewood and building materials. Notwithstanding the loss that was 

reported in this study, a considerable rate of 9.1% of forest gain was 
also revealed during this period (2000–2019), thanks to Rwanda’s 
foresight and progressive laws and regulations that embraced the 
Bonn Challenge, a global initiative to restore 150 million hectares of 
degraded and deforested land by 2020 and 350 million hectares by 

FIGURE 4

Spatial land cover dynamics across the Nyungwe-Kibira Forest (in and out) from 2000 to 2019 (decade interval).

FIGURE 5

The land cover change dynamics within and around the Nyungwe Forest between 2000 and 2019, with (A) representing the gross change and (B) the 
net change proportion of land cover dynamics.
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2030 without compromising the surrounding community’s livelihood 
(Dave et al., 2018; van Oosten et al., 2018). In this regard, the GoR 
offers all 5% of the revenue from the major national parks (Akagera, 
Volcanoes, and Nyungwe). As a result, this income is distributed to 
the surrounding people of the park to motivate and involve them in 
nature-based solutions to protect the Rwandan portion of Nyungwe 
Park (Nyungwe Forest National Park, 2022). Given the concerning 
trends of declining forest coverage revealed in our analysis, projecting 
future forest cover change in the Nyungwe-Kibira Forest becomes 
imperative. We employed a CA-Markov model to simulate future 
changes based on recent trajectories. Results predict the Nyungwe-
Kibira Forest will continue to degrade at a rate of −0.74% per time 
period, equivalent to an estimated −1,615 ha of forest loss in each 
modeled iteration (Figure  6). Finally, it is worth noting that the 
wetland areas in the study region also experienced a gain of 19.52%, 
corresponding to a net change of 18.25%, equivalent to only 66 ha, 
whereas rangeland decreased by −32.11% of gross change but −19.62 
of net change.

Nevertheless, since the coverage of forests is the key land cover of 
our study region of interest, we arrived at the realization that the 
expansion of human-made land uses like roads and farms, all of which 
are expanding quickly as a result of the region’s increasing human 
population, is the primary cause of changes in the region’s forests (Jha, 
2023; Nkurunziza et  al., 2023; Sudarmanto et  al., 2023). To 
contextualize the drivers of net forest loss, we analyzed the relative 
contributions of different land use transitions. Built-up area expansion 
accounted for the highest proportion, at approximately 33.02% of the 
total net forest cover reduction observed (Figure 6), with an impact 
greatly pronounced in the northern edge of the study region (Rwanda) 
(Figure  7C). Meanwhile, cropland expansion-induced activities 
contribute to a net forest change of (−9.48%), greatly pronounced in 
the southeast portion of the forest (in Burundi). In summary, the 
portion of the forest in Rwanda is under pressure from rapid built-up 

area expansion, while the Burundi section is experiencing significant 
cropland expansion. To emphasize, the International Institute of 
Sustainable Development (IISD; Crawford, 2012) filtered the current 
potential conflict identified for the Nyungwe-Kibira Forest, which 
includes resource access, crop raiding by wild animals, buffer zone 
management and transboundary issues, infrastructure development, 
equitable sharing of benefits, the increased population inside the park, 
and regional security. Table  4 details the conflict prioritization 
according to the human and conservation impacts as reported by 
IISD 2012.

In addition, Figure 8 exhibits the landscape change underway 
within the landscape cover categories to characterize the nature of 
landscape transformation across the massive Nyungwe-Kibira Forest. 
Among 10 possible transformations, the Nyungwe-Kibira Forest 
patches were categorized into three based on their nature of change. 
These are aggregation, dissection, and creation. These transformations 
are extensively documented (Eastman, 2003). Explicitly, the analysis 
uncovered that 73%, or 241,000 hectares, of the vast forest area, are in 
a state of aggregation. This type of landscape transformation involves 
the merging of small patches, the filling of empty spaces, and the 
creation of larger, more integrated patches. The findings were 
predominantly attributed to forest and cropland areas, with 66 and 
7%, respectively. The dominant portion of forested areas, combined 
with the expansion of cropland at the expense of forest loss, highlights 
the conflicting priorities between individual interests and the natural 
environment of the forest. This contrast is underscored by the 
changing landscape, which reflects the emergence of new patches and 
the alteration of existing ones.

Generally speaking, some farmers in the Burundi region are 
constantly attempting to expand the area of their farmed grounds, as 
already reported in several studies (Evenden and Region, 2022; 
Kanyamibwa and Vande, 2022; Rurangwa et  al., 2022). In certain 
regions, the conversion of land use can lead to the transformation of 

FIGURE 6

(A) Predicted forest change in the Nyungwe-Kibira transboundary area by 2030; and (B) its net contribution to the cover change. The upward arrow 
indicates a positive contribution, whereas the downward arrow indicates a negative contribution to forest change. The words in red represent the land 
use change event derived from specific land use transition.

https://doi.org/10.3389/ffgc.2023.1292364
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Udahogora et al. 10.3389/ffgc.2023.1292364

Frontiers in Forests and Global Change 11 frontiersin.org

natural patches within cultivated areas, eventually converting them 
into cultivated fields as a result of the aggregation process. Humans 
and agriculture are inextricably linked, and as such, human activities 
have long been associated with environmental degradation (Nienhuis 
et  al., 2020; Pinto et  al., 2021), and the existence of aggregation 
processes in agricultural patches is not a positive indicator of 
Nyungwe-Kibira Forest. In addition to the aggregate transformation 
types that were prominent in the region, 24% of the territory was in 
the dissection process (Figure 8A). This process occurs as a result of a 
patch being split, which lengthens the edges and raises edge density. 
This process frequently occurs as a consequence of the splitting of 
patches caused by linear features like roadways in the terrain. The 

findings demonstrate that one of the most common processes in the 
research area, dissection, frequently occurs in both naturally occurring 
patches, like forests and rangelands, and human-made patches, like 
agricultural lands, as a result of road building. The sectioning of 
natural habitats can result in the loss of biodiversity, the fragmentation 
of ecosystems, and the reduction of ecological services (de Lima Filho 
et al., 2021; Popescu et al., 2022). Moreover, the dissection process in 
agricultural lands can lead to soil erosion and nutrient depletion, 
which can have long-term consequences for soil health and fertility 
(Sasmal and Sasmal, 2016; Chaudhari et  al., 2020). The loss of 
vegetation cover and the increase in impervious surfaces can also 
contribute to the degradation of water quality and quantity in the 

FIGURE 7

(A,B) The Nyungwe-Kibira inside forest loss spatio-temporal trend from 2000 to 2019 (Hansen et al., 2013). (C) The spatial trend of prevailing main land 
use change events within the massive Nyungwe-Kibira Forest (in and out), with dots indicating areas of high change intensity.

https://doi.org/10.3389/ffgc.2023.1292364
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Udahogora et al. 10.3389/ffgc.2023.1292364

Frontiers in Forests and Global Change 12 frontiersin.org

surrounding ecosystems (Chithra et al., 2015; Zhang et al., 2023). 
Bogaert et al. (2004) characterized dissection as a process that reflects 
landscape fragmentation. The presence of this process results in longer 
edge lengths, smaller patch sizes, increased patch numbers, and 
increased human penetration within patches, all of which contribute 
to the degradation of the landscape.

3.2 Landscape pattern change analysis 
across the Nyungwe-Kibira Forest

The analysis of landscape pattern changes across the Nyungwe-
Kibira Forest is significant for understanding the dynamic relationship 
between human activities and the integrity of these critical ecosystems. 
By examining how land use changes over time and the landscape 
pattern changes, we  can better comprehend the impact of 

deforestation, agriculture, and infrastructure development on the 
ecological functions of this transboundary ecosystem. Figure  8 
illustrates the potential for characterizing landscape transformation 
within the transboundary Nyungwe-Kibira Forest and its 
corresponding land cover types between 2000 and 2019.

The findings indicate a significant impact on the landscape within the 
study area, particularly in terms of rangeland cover, with a considerable 
disturbance totaling 78,030.27 hectares. It is noteworthy that the creation 
type was observed at rates of 7% in farmland and 3% in built-up areas, 
leading to a substantial gross transformation of 9901.9 hectares, as shown 
in Figures 8A,B. These observations underscore a growing concern for the 
Nyungwe Forest in Rwanda, where the expansion of built-up areas poses 
a threat to the existing forest patches. Similarly, in Kibira National Park, 
Burundi, the expansion of cropland is also a cause for concern. The 
implications of these landscape transformations include potential habitat 
loss for wildlife, fragmentation of forest ecosystems, disruption of 

TABLE 4 Conflict prioritization according to the human and conservation impacts of identified conflicts across Nyungwe-Kibira National Park.

Human impacts

High Medium Low

High  • Crop raiding

 • Buffer zone management

 • Artisanal mining

 • Bamboo cutting

 • Forest fires

 • Hunting

 • Roads (pollution, accidents, traffic)

Conservation impacts Medium  • Unequal benefit

 • Sharing

 • Traditional medicines

 • Bamboo cutting

 • Farming encroachment (i.e., for cannabis)

 • Increasing of people in the park

 • Industrial mining

Low  • Firewood collection  • Livestock passage and grazing  • Regional insecurity

 • Impacts of military presence

IISD Report January 2012 (Crawford, 2012).

FIGURE 8

(A) The potential underway within the landscape classes to characterize the nature of landscape transformation across the expansive Nyungwe-Kibira. 
(B) The corresponding main land cover types from 2000 to 2019.
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ecological processes, and potential consequences for biodiversity 
conservation. Additionally, the encroachment of built-up areas and the 
expansion of cropland can lead to increased human–wildlife conflict and 
have long-term effects on the ecological balance of the region. The global 
environment facility (GEF) reports (GEF, 2015) corroborate our findings 
by stating that, despite the Kibira being a national park, the 1993 
Burundian civil war significantly damaged the forest, where residents 
sought refuge. More specifically, after the war, refugees and local 
populations degraded the ecosystem by heavily clear-cutting land for 
agriculture, on which they heavily depended for survival (Kanyamibwa, 
1998). According to GEF, the region continues to face threats from 
deforestation, poaching, and unsustainable farming practices, which 
supports our findings that forest coverage in the buffer is being lost due 
to agricultural activities and built-up expansion areas (Figure 6B). To this 
end, as the Kibira Forest continues to deteriorate due to various human 
activities such as deforestation, poaching, bushfires, unsustainable 
harvesting of medicinal plants, and overgrazing, the impacts of climate 
change are becoming more severe in the region, affecting food security 
and sources of income for local communities (Ndayizeye et al., 2020; 
Kabanyegeye et  al., 2023). While Kibira National Park provides 
opportunities for improving food security and reducing poverty in the 
region, effective co-governance and structuring sustainable revenue 
streams are essential for managing the park to achieve long-term, 
regenerative social and environmental impacts. And, to address these 
issues, policymakers should implement programs that economically 
strengthen community engagement-based approaches, which can help 
alleviate poverty and improve conservation outcomes.

4 Conclusion and recommendations

This study utilized spatial analysis to assess landscape pattern 
changes in the vital transboundary Nyungwe-Kibira Forest ecosystem 
spanning two countries (Rwanda and Burundi) from 2000 to 2019. The 
findings reveal that this transboundary forest is facing ongoing 
deforestation and fragmentation, driven mainly by expanding built-up 
areas, croplands, and other human-driven land uses associated with 
population growth and development pressures. Our analysis reveals a 
significant increase in both built-up and cropland areas, with a net 
change of +62.3% and + 18.07%, respectively, resulting in a gross change 
of 14,133 ha and 6,322 ha in built-up and cropland areas. This expansion 
is particularly pronounced in the region, as the built-up area has 
expanded from the buffer zone toward the Nyungwe Forest in the 
northwestern edge of Rwanda. Additionally, forest loss is most prominent 
in the central and southern regions, extending from the buffer zone 
toward the main forest in the Burundi region. Despite an overall forest 
gain of 9.11%, there is a corresponding deforested area of −14,764 ha, 
indicating a net loss of 6.92%. The rapid expansion of human-made land 
uses, particularly built-up areas, is the primary cause of these forest 
changes. Our analysis indicates that built-up areas account for the 
majority of the net forest loss, affecting approximately 33.02% of the 
forest, especially in the northern edge of the Rwanda region. On the 
other hand, cropland expansion contributes to a net loss of forest 
(−9.48%), with the most significant impact observed in the southeast 
portion of the forest in Burundi. Finally, the forest is predicted to 
decrease by 0.74% by 2030. Current analysis shows that the Nyungwe-
Kibira Forest is undergoing transformations, with an aggregation of 
forest and cropland (66 and 7%), dissection of rangeland (24%), and 

creation of built-up areas (3%). This study emphasizes the growing 
vulnerability of vital transboundary forest ecosystems, such as Nyungwe-
Kibira Forest, due to relentless agriculture development pressures and 
population growth. The analysis reveals alarming ecosystem 
fragmentation and degradation in less than two decades. However, 
addressing these challenges is feasible through commitments from 
governments and stakeholders at all levels to adopt integrated 
conservation and sustainable development planning. Based on the 
obtained findings, it is imperative to prioritize specific interventions to 
address the observed land use impacts. Given the pronounced expansion 
of built-up and cropland areas, particularly in the northwestern edge of 
Rwanda and the southeast portion of the forest in Burundi, urgent 
measures are necessary to mitigate the resulting forest loss. Specific 
actions should involve targeted protective and restoration efforts in the 
heavily impacted zones, focusing on the rejuvenation of the deforested 
areas, sustainable agricultural practices, and land use management. 
Collaborative measures between stakeholders and authorities of the two 
countries are essential to regulating and minimizing further expansion 
of human-made land uses and cropland toward the forest area. This can 
include the delineation of protective buffer zones, the integration of 
sustainable land use policies, and the promotion of alternative and 
sustainable livelihood options for local communities. These efforts will 
ensure the preservation of essential ecosystem services and biodiversity 
within the Nyungwe-Kibira Forest. More importantly, it is crucial to 
implement policy and regulatory measures that restrict unsustainable 
clearing while incentivizing conservation-friendly actions, as well as 
community capacity building, alternative livelihood programs, and 
transboundary cooperation. These efforts are essential to alleviate 
resource dependencies and strengthen conservation outcomes. Last but 
not least, a holistic, targeted strategy, considering local livelihoods and 
development needs while emphasizing protection, restoration efforts, 
and cooperative governance across borders, provides the best pathway 
for preserving the integrity of the Nyungwe-Kibira Forest ecosystem. 
This approach requires sustained commitments from stakeholders and 
authorities to achieve lasting, positive outcomes. To this end, future 
studies are recommended to consider integrating land change modeling 
to develop spatially explicit projections of deforestation, ecological risk, 
and ecosystem service degradation under climate change scenarios. If 
such coordinated commitments supported by research can come to 
fruition, some of the most precious natural heritage, like the Nyungwe-
Kibira Forest, still stands a chance despite escalating 
anthropogenic threats.
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