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Introduction: Climate is crucial factor influencing species distribution, and with 
global climate change, the potential geographic distribution of species will also 
alter. In this study, three subtropical tree species (Cunninghamia lanceolata, Pinus 
taiwanensis, and Quercus glauca) of great ecological values were selected as 
research objects.

Methods: We  applied a maximum entropy (MaxEnt) to predict their potential 
distributions under different climate scenarios in both present and future conditions 
based on 37 environmental factors. Jackknife test was used in key factors affecting 
species distribution. In addition, we explored the key environmental variables that 
affect their distributions and revealed the evolutionary patterns and migration 
trends of these tree species under future climate.

Results: The main findings are as follows: (1) Winter temperature, winter 
precipitation, and annual temperature range are identified as the key environmental 
variables affecting the potential geographic distribution of the three tree species; 
moreover, precipitation-related factors have a greater impact than temperature-
related factors; (2) Currently suitable habitats for these three tree species are 
primarily located in subtropical China with decreasing suitability from south to 
north; (3) Under future climate conditions, the area of potentially suitable habitat 
for C. lanceolata continues to expand, while P. taiwanensis and Q. glauca tend to 
experience a reduction due to increasing greenhouse gas emissions over time; 
and (4) The centroid of suitable habitat for C. lanceolata shifts northward under 
future climate change, while the centroid of P. taiwanensis and Q. glauca move 
southward along with shrinking suitable habitat area.

Discussion: Our predictions highlight a high risk of habitat loss of Q. glauca under 
climate change, recommending management and conservation references for 
these three commonly used afforestation species under current and future 
climate change scenarios in China.
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1 Introduction

Human activities have resulted in a surge in greenhouse gas emissions, leading to a 
substantial escalation in global average temperature. As industrialization progresses, there 
will be continued global warming, with projections indicating that the average increase is 
expected to surpass 1.5°C in the next two decades (Li et  al., 2017) and extreme events 
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becoming more frequent (IPCC, 2018). Regional variations exist in 
terms of warming levels, with China’s landmass anticipated to 
experience a higher temperature rise compared to the global 
average, with projected increases ranging from 1.3 to 5.0°C by 
century-end (Wang et  al., 2017). Numerous studies have 
demonstrated that climate profoundly impacts species distribution 
and adaptive capacity, potentially resulting in reduced suitable 
habitats and biodiversity loss while also to develop new 
physiological traits for climate adaptation (Bowling et al., 2020; 
Wang et al., 2020; He et al., 2021). Consequently, predicting the 
potential geographic distribution of species under climate change 
has emerged as a prominent research topic within biogeography, 
ecology, and global change studies (Zhao et al., 2021). By employing 
models to assess potential species distribution under diverse climate 
scenarios, it becomes possible not only to comprehend their 
ecological requirements but also unveil dynamic changes occurring 
within their potential ranges. This holds significant implications for 
biogeographic and plant ecology concerning understanding species 
distribution evolution and responding effectively to climate change 
challenges (He, 2015).

Climate change, like extreme drought, high temperature, etc., 
has increasingly effects on typical subtropical plant (Zu et al., 2021; 
Ni et al., 2023; WMO, 2023). Cunninghamia lanceolata (Lamb.) 
Hook., Pinus taiwanensis Hayata and Quercus glauca Thunb as 
common native tree species in subtropical regions of China are 
widely applied because of their high economic, ecological and 
ornamental values (Du et al., 2019). C. lanceolata is renowned for 
its rapid growth, high productivity, and lightweight yet durable 
wood. Additionally, it possesses aromatic properties and exhibits 
resistance to insect and decay, making it a vital commercial timber 
species in China and a significant contributor to the country’s 
timber industry (Wang, 2013). P. taiwanensis thrives in cool and 
moist environments, primarily found in the mid-mountain areas 
of Zhejiang, Taiwan, Fujian and other subtropical regions (Xu 
et al., 2022). The wood of P. taiwanensis is straight-gained and of 
superior quality, displaying reduced susceptibility to pests and 
diseases while exhibiting high strength and hardness. It is well-
suited for producing large-diameter timber and serves as an 
important species for both timber production and afforestation 
purposes (Song et  al., 2008). Q. glauca has a wide distribution 
range spanning from northern regions such as Henan and Gansu 
to southern areas including Hainan Island; thus, dominating 
evergreen broad-leaved forests with China’s subtropical regions. 
With its exceptional economic values as an excellent timber tree 
species, Q. glauca also fulfills crucial ecological functions by 
serving as an important pioneer species for vegetation restoration 
(Wang et  al., 2015). These common tree species in China’s 
subtropical region not only serve as significant wood resources but 
also play pivotal roles in both economic development and 
ecological conservation endeavors. However, global climate change 
has been impacting plant survival, reproduction, and ecological 
habits, resulting in alterations to the geographic distribution of tree 
species. This phenomenon may have profound implications on 
their future productivity (Doxford and Freckleton, 2012; Matías 
et al., 2017). In this context, predicting the potential distribution 
of these tree species under different current and future climate 
scenarios, and exploring the major environmental factors 
influencing their distribution will provide theoretical references for 

the conservation and sustainable management of common tree 
species in subtropical China under climate change.

Species Distribution Models (SDMs) are effective tools for 
predicting the potential geographic distribution of species under 
climate change, playing a crucial role in studying species’ ecological 
evolution and conservation planning (Kozak et al., 2008; Lu et al., 
2021). Although various SDMs such as generalizations linear 
models (GLMs), Bioclimatic models, random forest (RF), and 
MaxEnt have been employed for species distribution predictions, 
the latter consistently outperforms other models in terms of 
tolerance and predictive accuracy (Phillips et al., 2006; Elith and 
Leathwick, 2009; Elith et al., 2011). This method is straightforward, 
requiring only known species distribution data and environmental 
variables for predictions (Zhao et al., 2021). Furthermore, it has 
lower sample size requirements compared to other models, 
enabling accurate predictions even with limited distribution data 
available (Pearson et  al., 2007). As a result of its superior 
performance and flexibility in handing limited data availability 
issues, which has gained widespread popularity in research focused 
on predicting suitable geographic distributions of species with 
promising outcomes (Yang et  al., 2013; Li et  al., 2016; Kim 
et al., 2020).

In this study conducted within China, we utilized the MaxEnt 
along with ArcGIS software to investigate three common tree species, 
i.e., C. lanceolata, P. taiwanensis, and Q. glauca. Based on their realistic 
distributions and related environmental variables we predicted the 
potential suitable habitats as well as centroid shifts of these tree species 
under different current and future climate scenarios. The main 
objectives encompassed: (1) predicting the potential geographic 
distributions of the three tree species under current climate scenarios; 
(2) identifying major environmental factors affecting the potential 
distributions of the three species; and (3) predicting the potential 
geographic distributions of these three tree species under different 
climate scenarios in the future and exploring changes in their potential 
distributions, to facilitate the management and conservation of 
different tree species under climate change.

2 Materials and methods

2.1 Collecting and processing species 
occurrence data

The tree species occurrence records used in this study were 
obtained from the Global Biodiversity Information Facility (GBIF)1 
and the National Plant Specimen Resource Center (CVH).2 Only 
records within China were retained for integration. To ensure accurate 
prediction results and avoid over-aggregation of distribution points, 
one distribution record was selected in each 2.5′ × 2.5′ grid after 
eliminating invalid and duplicate records. Ultimately, we collated and 
obtained 349 distribution points for C. lanceolata, 196 distribution 
points for P. taiwanensis, and 685 distribution points for Q. glauca to 
construct the model (Figure 1).

1 http://www.gbif.org

2 http://www.cvh.ac.cn/
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2.2 Collecting and processing 
environmental variables

A total of 37 environmental factors were selected for the study 
(Table 1), including: (1) topographic factors derived from elevation, 
slope, and aspect data from the Geospatial Data Cloud3; (2) soil factors 
comprising 15 basic soil indicators sourced from the Harmonized 
World Soil Database4; and (3) climate factors encompassing 19 
bioclimatic variables obtained from the Worldclim database5, which 
included current (1970–2000) and future (2050s, 2090s) climate 
scenarios. For future scenarios, bioclimatic data for the 2050s 
represented the average from 2041 to 2060, and the data for the 2090s 
represented the average from 2,081 to 2,100. The future climate data 
(2050s, 2090s) was based on simulations using the BCC-CSM2-MR 
climate system model known for its robust performance in 
reproducing anomalous precipitation patterns in eastern China and 
exhibiting high spatial correlation to realistically simulate precipitation 
anomalies in this region (Xin et al., 2020). The emission pathways 
considered were SSP1-2.6 and SSP5-8.5 climate scenarios representing 
low greenhouse gas emission level sustainability scenario and a 
scenario with higher levels of greenhouse gas emissions, respectively 
(Eyring et  al., 2016). All three types of environmental data were 

3 http://www.gscloud.cn

4 http://www.fao.org/

5 http://www.worldclim.org/

uniformly adjusted to a resolution of 2.5′ × 2.5′ using ArcGIS software, 
followed by conversion to ASC format for identification by 
the MaxEnt.

Multicollinearity among environmental factors can lead to 
overfitting and uncertainty in the prediction results (Graham, 2003). 
To optimize model performance, careful selection of environmental 
variables is essential. Firstly, we used 37 environmental variables to 
construct the model and eliminated those with a contribution rate 
below 1%. Subsequently, the remaining environmental variables 
underwent Pearson correlation analysis; only those with correlation 
coefficients less than 0.8 were retained, however, if 2 or more 
environmental variables had correlation coefficients ≥0.80, preference 
was given to those with higher contribution rates (Zhao et al., 2020). 
Finally, the selected environmental variables were incorporated in to 
the MaxEnt for final modeling.

2.3 Parameterization and accuracy 
verification

We imported geographic distribution data (in CSV format) and 
environmental data (in ASC format) of different tree species into 
the MaxEnt for modeling and repeated 10 times. 75% of the 
distribution data were used as training data and the remaining 25% 
were used as test data (Phillips, 2008). The replicated run type was 
set to “Cross-validate” with a maximum iterations limit of 500. In 
addition, the output format was set to “Logistic” and saved it in 

FIGURE 1

The realistic distribution of different tree species.
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“asc” file type. To explore the main environmental variables 
affecting tree species distribution, we  employed the Jackknife 
method to assess their importance and analyzed their impact on 
tree species distribution by creating response curves (Narouei-
Khandan et al., 2016).

The evaluation of the model prediction results is an essential part 
of the model simulation process. In this study, we used the area under 
the receiver operating characteristic curve (ROC), commonly referred 
as AUC value (area under curve), as a metric for assessing the 
predictive performance of the model (Qin et al., 2017). The AUC 
values were confined within the range of [0.5, 1], with higher values 
indicating stronger model accuracy. It is generally considered that 
0.5 < AUC ≤ 0.7 indicate poor model performance and low confidence, 
0.7 < AUC ≤ 0.9 signify moderate model performance, and 
0.9 < AUC ≤ 1 denote excellent model performance and high 
confidence levels (Peterson et al., 2011).

2.4 Classification of suitable habitats

The predictions of the model are expressed as the probability of 
species occurrence in the predicted area (P), representing habitat 
suitability on a scale from 0 to 1. We categorized the model’s suitability 
into four classes: unsuitable habitat (p < 0.1), poorly suitable habitat 
(0.1 ≤ p < 0.3), moderately suitable habitat (0.3 ≤ p < 0.5), and highly 
suitable habitat (0.5 ≤ p < 1) (Zhao et al., 2021). These categories are 
visually represented using distinct colors.

We used the SDM Toolbox in ArcGIS to visualize changes in tree 
species habitat under different climate scenarios and compare them 
with current distributions (Brown, 2014; Hu et al., 2017). The results 
were subsequently classified into three categories: decreased area, 
increased area, and invariant area (Liu et  al., 2022). In addition, 
we calculated the centroids of suitable habitats under both present and 
future climate scenarios, and derived their migration distance.

TABLE 1 Environmental variables used for the initial construction of the Maxent model.

Data type Environmental variables Description Unit

Bioclimatic 

variables

Bio1

Bio2

Bio3

Bio4

Bio5

Bio6

Bio7

Bio8

Bio9

Bio10

Bio11

Bio12

Bio13

Bio14

Bio15

Bio16

Bio17

Bio18

Bio19

Annual Mean Temperature

Mean Diurnal Range

Isothermality

Temperature Seasonality

Max Temperature of Warmest Month

Min Temperature of Coldest Month

Temperature Annual Range

Mean Temperature of Wettest Quarter

Mean Temperature of Driest Quarter

Mean Temperature of Warmest Quarter

Mean Temperature of Coldest Quarter

Annual Precipitation

Precipitation of Wettest Month

Precipitation of Driest Month

Precipitation Seasonality

Precipitation of Wettest Quarterr

Precipitation of Driest Quarter

Precipitation of Warmest Quarter

Precipitation of Coldest Quarter

°C

°C

–

–

°C

°C

°C

°C

°C

°C

°C

mm

mm

mm

–

mm

mm

mm

mm

Soil variables T_GRAVEL

T_SAND

T_SILT

T_CLAY

T_USDA_TEX

T_REF_BULK

T_OC

T_pH_H2O

T_CEC_CLAY

T_CEC_SOIL

T_BS

T_TEB

T_CACO3

T_ESP

T_ECE

Topsoil Gravel Content

Topsoil Sand Fraction

Topsoil Silt Fraction

Topsoil Clay Fraction

Topsoil USDA Texture Classification

Topsoil Reference Bulk Density

Topsoil Organic Carbon

Topsoil pH (H2O)

Topsoil CEC (clay)

Topsoil CEC (soil)

Topsoil Base Saturation

Topsoil TEB

Topsoil Calcium Carbonate

Topsoil Sodicity (ESP)

Topsoil Salinity (Elco)

%vol.

% wt.

% wt.

% wt.

name

kg/dm3% weight

-log(H+)

cmol/kg

cmol/kg

%

cmol/kg

% weight

%

dS/m

Topography 

variables

Altitude

Slope

Aspect

Altitude

Slope

Aspect

m

–

–
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3 Results

3.1 Model accuracy and key environmental 
variables

The AUC values for the three tree species were generated to 
evaluate model performance (Figure  2). The AUC values for 
C. lanceolata, P. taiwanensis, and Q. glauca were 0.904, 0.979, and 
0.924 respectively, indicating excellent performance of the model with 
high confidence in predicting their potential geographic distribution.

The jackknife test conducted to assess the importance of 
environmental variables revealed certain variables had significant 
contributions to each species’ distribution models: (1) For 
C. lanceolata, the minimum temperature of the coldest month 
(Bio6) accounted for 26.2% variation; precipitation of the driest 
month (Bio14) contributed 60.1% variation; temperature 

seasonality (Bio4) explained 6.8% variation; and precipitation 
seasonality (Bio15) accounted for 0.7% variation. These variables 
collectively contributed up to an impressive cumulative 
contribution of 93.8% (Table  2 and Figure  2A). (2) For 
P. taiwanensis, precipitation of the coldest quarter (Bio19) was 
responsible for a substantial portion at around 66.8% variation; 
annual temperature range (Bio7) explained 29.6% of variation; 
isothermality (Bio3) contributed to only a minor portion at around 
2.1%; and mean temperature of the wettest quarter (Bio8) 
accounted for only a small proportion at around 0.5%. These 
variables combined resulted in a cumulative contribution as high 
as 99.0% (Table 2 and Figure 2B). (3) For Q. glauca, precipitation 
of the driest month (Bio14) had the major influence with 64.8% 
variation; annual temperature range (Bio7) was found to explain 
21.7% variation; minimum temperature of the coldest month 
(Bio6) contributed to 8.0% variation; and topsoil base saturation 
(T_BS), although having a low impact, still played a role by 
contributing 1.2% variation. These four variables have cumulative 
contributions of 95.7% (Table 2 and Figure 2C).

The above environmental variables were identified as the 
primary factors affecting the potential distribution of the three tree 
species, and their response curves were derived by modeling. By 
utilizing the response curves, we obtained a suitable range for the 
main environmental variables (p > 0.5). For C. lanceolata, Bio6 
ranged from 3.21 to 13.57°C, Bio14 ranged from 18.83 to 
194.70 mm, Bio4 ranged from 314.14 to 587.71, and Bio15 ranged 
from 42.40 to 72.51. For P. taiwanensis, Bio19 ranged from 232.92 
to 698.50 mm, Bio7 ranged from 8.21 to 18.57°C, Bio3 ranged from 
32.67 to 40.14, and Bio8 ranged from 10.87 to 19.07°C. For 
Q. glauca, Bio7 ranged from 6.33 to 20.15°C, Bio6 ranged from 6.29 
to 23.45°C, Bio14 from 38.95 to 222.2 mm, and T_BS ranged from 
18.99 to 45.90% (Figure 3).

3.2 Potential distribution under current 
climate conditions

According to the model simulations, the total area of suitable 
habitat for C. lanceolata under current climate conditions was 
226.36 × 104 km2, accounting for 23.58% of the whole study area. The 
highly suitable habitat was mainly concentrated in Guangdong, 
Guangxi, Taiwan, and western Chongqing, with an area of 
38.29 × 104 km2. The moderately suitable habitat was mainly 
concentrated in Guizhou, Hunan, Jiangxi, Zhejiang, Fujian, eastern 
Sichuan, central and southern Hubei, Anhui, and southern Jiangsu, 
with an area of 138.41 × 104 km2 (Figure 4A). The total suitable habitat 
for P. taiwanensis was 69.92 × 104 km2, accounting for 7.28% of the 
whole study area. The highly suitable habitat was mainly concentrated 
in most areas of Taiwan, with an area of 2.02 × 104 km2. The moderately 
suitable habitat was smaller, mainly concentrated in northeastern 
Jiangxi, and central Taiwan, with an area of 0.87 × 104 km2 (Figure 4B). 
The total suitable habitat of Q. glauca was 223.78 × 104 km2, accounting 
for 23.31% of the whole study area. The area of highly suitable habitat 
was mainly concentrated in Taiwan and southern Hainan, with an area 
of 4.34 × 104 km2. The moderately suitable habitat was mainly 
concentrated in Guangdong, Guangxi, Hunan, Jiangxi, Zhejiang, 
Fujian, southern Hainan, and southern Anhui, with a coverage area of 
91.97 × 104 km2 (Figure 4C).

FIGURE 2

Jackknife test of each environmental variable on the potential 
distribution of C. lanceolata (A), P. taiwanensis (B), and Q. glauca (C). 
(“T_REF_BULK” is topsoil reference bulk density; “T_BS” is topsoil 
base saturation; “T_USDA_TEX” is topsoil USDA texture classification; 
“Bio8” is mean temperature of wettest quarter; “Bio7” is annual 
temperature range; “Bio6” is minimum temperature of the coldest 
month; “Bio4” is temperature seasonality; “Bio3” is isothermality; 
“Bio14” is precipitation of the driest month; “Bio15” is precipitation 
seasonality; “Bio10” is mean temperature of the warmest quarter; 
“Bio19” is precipitation of coldest quarter).
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3.3 Potential distribution under future 
climate conditions

We the potential suitable habitats for the three different tree 
species have been identified in the 2050s and 2090s under the climate 
scenarios of SSP1-2.6 and SSP5-8.5, respectively (Figure 5). Under the 
SSP1-2.6 climate scenario, C. lanceolata exhibited a total suitable 
habitat area of 239.32 × 104 km2 in the 2050s, accounting for 
approximately 24.93% of the study area extent. The highly suitable 
habitat covered an area of 26.78 × 104 km2 while moderately suitable 
habitat spanned across an area of 150.46 × 104 km2 during this period. 
By the end of the century (2090s), C. lanceolata’s total suitable habitat 
expanded to cover an area measuring at around 253.05 × 104 km2, 
accounting for 26.36% of the study area. The areas of highly suitable 
habitat and moderately suitable habitat were 48.04 × 104 km2 and 
145.10 × 104 km2, respectively. Under the SSP5-8.5 climate scenario, 
the total suitable habitat area of C. lanceolata in the 2050s was 
259.19 × 104 km2, accounting for 27.0% of the study area. The areas of 
highly suitable habitat and moderately suitable habitat were 
35.71 × 104 km2 and 154.85 × 104 km2, respectively. By the 2090s, the 
total suitable habitat area was 261.49 × 104 km2, accounting for 27.24% 
of the study area. The areas of highly suitable habitat and moderately 
suitable habitat were 10.56 × 104 km2 and 151.16 × 104 km2, respectively.

Under the SSP1-2.6 climate scenario, the total suitable habitat area 
for P. taiwanensis in the 2050s was 66.82 × 104 km2, accounting for 
6.96% of the study area. The areas of highly suitable habitat and 
moderately suitable habitat were 1.68 × 104 km2 and 0.45 × 104 km2, 
respectively. By the 2090s, the total suitable habitat area was 
80.59 × 104 km2, accounting for 8.39% of the study area. The areas of 
highly suitable habitat and moderately suitable habitat were 
1.97 × 104 km2 and 0.48 × 104 km2, respectively. Under the SSP5-8.5 
climate scenario, the total suitable habitat area of P. taiwanensis in the 
2050s was 68.18 × 104 km2, accounting for 7.10% of the study area. The 

areas of highly suitable habitat and moderately suitable habitat were 
1.87 × 104 km2 and 0.41 × 104 km2, respectively. By the 2090s, the total 
suitable habitat area was 60.99 × 104 km2, accounting for 6.35% of the 
study area. The areas of highly suitable habitat and moderately suitable 
habitat were 1.66 × 104 km2 and 0.40 × 104 km2, respectively.

Under the SSP1-2.6 climate scenario, the total suitable habitat 
area for Q. glauca in the 2050s was 207.48 × 104 km2, accounting for 
21.61% of the study area. The areas of highly suitable habitat and 
moderately suitable habitat were 2.69 × 104 km2 and 49.81 × 104 km2, 
respectively. By the 2090s, the total suitable habitat area was 
234.22 × 104 km2, accounting for 24.40% of the study area. The areas 
of highly suitable habitat and moderately suitable habitat were 
3.74 × 104 km2 and 70.63 × 104 km2, respectively. Under the SSP5-8.5 
climate scenario, the total suitable habitat area of Q. glauca in the 
2050s was 231.37 × 104 km2, accounting for 24.10% of the study area. 
The areas of highly suitable habitat and moderately suitable habitat 
were 2.50 × 104 km2 and 48.23 × 104 km2, respectively. By the 2090s, 
the total suitable habitat area was 164.17 × 104 km2, accounting for 
17.10% of the study area. The areas of highly suitable habitat and 
moderately suitable habitat were 1.79 × 104 km2 and 15.18 × 104 km2, 
respectively.

3.4 Changes in potential habitat under 
future climate conditions

Under the SSP1-2.6 climate scenario, the projected increase in the 
area of C. lanceolata in the 2050s was estimated to be 16.64 × 104 km2, 
while the decrease accounted for 3.98 × 104 km2, accounting for 6.59 
and 1.58% of the total suitable area, respectively (Figure 6). By the 
2090s, the increased area and decreased area were predicted to 
be about 26.86 × 104 km2 and 0.22 × 104 km2, accounting for 10.08 and 
0.08% of the total suitable area, respectively. Under the SSP5-8.5 

TABLE 2 Contribution of each environmental variable to the potential distribution of different tree species.

Species Environmental variables Percent contribution (%)

Cunninghamia lanceolata (Lamb.) Hook. Precipitation of Driest Month (Bio14)

Min Temperature of Coldest Month (Bio6)

Temperature Seasonality (Bio4)

Isothermality (Bio3)

Topsoil Base Saturation (T_BS)

Precipitation Seasonality (Bio15)

Topsoil Reference Bulk Density (T_REF_BULK)

60.1

26.2

6.8

4.7

0.9

0.7

0.6

Pinus taiwanensis Hayata Precipitation of Coldest Quarter (Bio19)

Temperature Annual Range (Bio7)

Isothermality (Bio3)

Topsoil USDA Texture Classification (T_USDA_TEX)

Mean Temperature of Wettest Quarter (Bio8)

66.8

29.6

2.1

1.0

0.5

Quercus glauca Thunb. Precipitation of Driest Month (Bio14)

Temperature Annual Range (Bio7)

Min Temperature of Coldest Month (Bio6)

Isothermality (Bio3)

Topsoil Base Saturation (T_BS)

Topsoil Reference Bulk Density (T_REF_BULK)

Topsoil USDA Texture Classification (T_USDA_TEX)

Mean Temperature of Warmest Quarter (Bio10)

64.8

21.7

8.0

2.6

1.2

0.9

0.6

0.2
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climate scenario, the predicted increased area in the 2050s was 
33.15 × 104 km2 and the decreased area was 0.03 × 104 km2, accounting 
for 12.14 and 0.01% of the total suitable area, respectively. By the 
2090s, the increased area and decreased area were predicted to 
be about 37.52 × 104 km2 and 2.62 × 104 km2, accounting for 13.66 and 
0.95% of the total suitable area, respectively.

Under the SSP1-2.6 climate scenario, the predicted expansion of 
P. taiwanensis in the 2050s was 6.02 × 104 km2, while the decreased area 
was 9.69 × 104 km2, accounting for 8.39 and 13.51% of the total suitable 
area, respectively. By the 2090s, it is anticipated that there will be an 
increase in area by about 13.31 × 104 km2 and 1.60 × 104 km2, 
accounting for 15.28 and 1.84% of the total suitable area, respectively. 
Under the SSP5-8.5 climate scenario, the predicted increased area in 
the 2050s was 6.31 × 104 km2 and the decreased area was 8.39 × 104 km2, 
accounting for 8.60 and 11.44% of the total suitable area, respectively. 
By the 2090s, the increased area and decreased area were predicted to 

be about 4.74 × 104 km2 and 14.69 × 104 km2, accounting for 7.24 and 
22.44% of the total suitable area, respectively.

Under the SSP1-2.6 climate scenario, the projected expansion of 
Q. glauca in the 2050s was estimated to be 4.93 × 104 km2, and the 
decreased area was 22.1 × 104 km2, accounting for 2.24% and 10.03 of 
the total suitable area, respectively. By the 2090s, the increased area 
and decreased area were predicted to be about 15.06 × 104 km2 and 
4.86 × 104 km2, accounting for 6.08 and 1.96% of the total suitable area, 
respectively. Under the SSP5-8.5 climate scenario, the predicted 
increased area in the 2050s was 12.47 × 104 km2 and the decreased area 
was 5.02 × 104 km2, accounting for 5.09 and 2.05% of the total suitable 

FIGURE 4

Potential suitable habitats for C. lanceolata (A), P. taiwanensis (B), and 
Q. glauca (C) in the current period.

FIGURE 3

Response curves of the main environmental variables of C. 
lanceolata (A–D), P. taiwanensis (E–H), and Q. glauca (I–L).
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FIGURE 5

Potential suitable habitats for different tree species under future climatic scenarios.

FIGURE 6

Changes in the potential suitable habitat for different tree species under future climate scenarios.
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area, respectively. By the 2090s, the increased area and decreased area 
were predicted to be  about 13.26 × 104 km2 and 75.83 × 104 km2, 
accounting for 7.58 and 43.33% of the total suitable area, respectively.

3.5 Trends in potential habitat centroids 
under future climate conditions

The centroids and migration distances for the total suitable 
habitats of the three tree species were calculated using ArcGIS for 
different periods and different climate scenarios (Figure 7). Under the 
SSP1-2.6 climate scenario, the centroid of suitable habitat for 
C. lanceolata initially shifted 62.23 km northeast to 110.58°E, 28.22°N 
(2050s), followed by a subsequent movement of 12.5 km northwest to 
110.5°E, 28.31°N (2090s). While, under the SSP5-8.5 climate scenario, 
the centroid of suitable habitat exhibited a northward shift of 68.56 km 

to 110.35°E, 28.34°N (2050s) and then further moved northeast by an 
additional distance of 36.22 km to 110.51°E, 28.64°N (2090s).

For P. taiwanensis, the centroid of suitable habitat under the 
SSP1-2.6 climate scenario firstly moved 71.79 km northeast to 
115.21°E, 27.01°N (2050s), and then 101.63 km southwest to 114.69°E, 
26.23°N (2090s). Under the SSP5-8.5 climate scenario, the centroid of 
suitable habitat shifted 67.6 km northeast to 115.36°E, 26.85°N (2050s) 
and then 23.16 km north to 115.38°E, 27.06°N (2090s).

For Q. glauca, the centroid of suitable habitat under the SSP1-2.6 
climate scenario first moved 9.87 km northwest to 109.92°E, 27.5°N 
(2050s), and then 56.69 km northeast to 110.28°E, 27.89°N (2090s). 
Under the SSP5-8.5 climate scenario, the centroid of suitable habitat 
shifted 34.7 km northwest to 109.84°E, 27.75°N (2050s) and then 
153.8 km southwest to 108.43°E, 27.16°N (2090s).

4 Discussion

4.1 Model accuracy analysis

Although all 19 bioclimatic factors have been widely used as 
environmental variables in the MaxEnt models for predicting species 
distribution and invasive species dispersal, they cannot fully capture 
the complex processes influencing species distributions (Thuiller et al., 
2019). The selection of variables significantly influences the accuracy 
of species distribution modeling (Araújo and Guisan, 2006; Fourcade 
et al., 2017). Some studies ignore redundant information from highly 
correlated variables introduced in the modeling process, which may 
reduce the prediction accuracy (Duflot et  al., 2018). This study 
improved prediction accuracy by calculating the contribution of each 
variable to the MaxEnt and eliminate highly correlated variables using 
Pearson correlation analysis. This approach effectively removed 
environmental variables with small contributions or high correlations. 
In addition, all three studied species had AUC values above 0.9, which 
further ensured the reliability of our results.

4.2 Main environmental variables affecting 
the distribution of different tree species

Based on the results of the importance evaluation of environmental 
variables, it is evident that climatic variables have a greater influence 
on the potential geographic distribution of each tree species compared 
to soil and topographic variables. The response curves of 
environmental variables were utilized to demonstrate the impact of 
major environmental factors on the potential geographic distribution 
of each tree species. The findings revealed that higher temperature and 
adequate precipitation were pivotal environmental variables 
influencing tree species distribution, particularly temperature (Bio6) 
and precipitation (Bio14) in winter, with the annual range of 
temperature (Bio7) exhibiting a stronger influence. Research has 
indicated that the large-scale landscape distribution of species is 
closely related to the temperature extremes and variations (Renne 
et al., 2019). Low winter temperatures can result in leaf tip wilting, 
reduced bud and root activity, thereby affecting plant growth potential 
and nutrient uptake in subsequent years (Körner, 1998; Huang et al., 
2021). Additionally, soil freezing due to low temperatures reduces 
effective water availability while increasing resistance for plant roots 

FIGURE 7

Total suitable habitat centroid distribution shifts for different tree 
species under climate change [C. lanceolata (A), P. taiwanensis (B), 
and Q. glauca (C)].
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to absorb water. Moreover, thicker winter snow can delay germination 
and shorten the growing seasons due to significant heat being used for 
snow melting upon spring arrival (Fritts, 2012). Conversely, higher 
winter temperatures can prevent frost damage to foliar tissues and 
ensure normal metabolic activities of trees. They also extend the 
growing season due to earlier germination, and enhancing 
photosynthetic efficiency which benefits tree growth (Northcote and 
Hartman, 2008; Chen et  al., 2016). Furthermore, a suitable 
temperature range plays a crucial role in tree growth as increased 
temperatures during the growing season promote the soil 
microorganism’s activity along with nutrients decomposition and 
transformation processes. This leads to heightened metabolic activities 
within plants facilitating nutrient uptake while promoting cell division 
as well as earlywood annual ring growth (Cullen et al., 2001; Sergio 
et al., 2007).

On the other hand, trees consume a substantial amount of soil 
moisture during their growth process, and abundant winter 
precipitation can increase soil moisture content. This is beneficial for 
the accumulation of carbohydrates in trees, thereby providing more 
nutritional support for cambial activity and promoting early-season 
radial growth in the following year (Jiao et al., 2021). Simultaneously, 
we evaluated the contribution rates of major environmental variables 
and determined that factors related to precipitation have a more 
significant impact than those related to temperature. This finding 
aligns with previous researches, which suggest that precipitation exerts 
a stronger influence on the potential distribution of tree species 
compared to temperature (Zhang et  al., 2018; Jiang et  al., 2019). 
Currently, drought-induced limitations on tree growth patterns are 
widely observed. Seeds can only germinate when they absorb sufficient 
water, and both long-term and short-term water scarcity can constrain 
seed germination as well as hinder tree growth and development (Han 
and Ding, 2012). Increased precipitation facilitates the availability of 
soil water, mitigates drought-induced damage to plants, and promotes 
their growth. Therefore, precipitation should be considered a pivotal 
environmental variable affecting the potential distribution of 
tree species.

4.3 Analysis of potential suitable habitat for 
the current period

The results indicate that suitable habitats for various tree species 
are primarily concentrated in subtropical regions of China located 
south of the Qinling Mountains–Huaihe River Line; gradually 
extending toward the northern and northwestern parts with 
diminishing suitability. The Qinling Mountains–Huaihe River Line 
serves as a boundary between China’s warm temperate and subtropical 
regions while also demarcating humid from semi-humid zones with 
distinct climatic characteristics in the north versus south area. 
Predominantly characterized by subtropical monsoons or subtropical 
monsoon humid climates featuring hot summers, mild winters, and 
distinct four seasons (Xu et al., 2019). The warm and humid climate 
factors may be the primary drivers influencing the distribution of 
C. lanceolata and Q. glauca. Additionally, P. taiwanensis, a deep-rooted 
species, exhibits a preference for cool and moist alpine climate with 
high relative humidity. In this study, P. taiwanensis was predominantly 
found in the mid-mountain region of Zhejiang, Fujian, Hunan, and 
Taiwan provinces, which aligns with its affinity for cool and well-lit 

habitats (Song et al., 2008). Moreover, the model-predicted potential 
suitable habitats for different tree species demonstrated a high-level 
agreement with the actual distribution, thereby confirming the 
accuracy of model predictions.

4.4 Analysis of potential suitable habitat for 
the future period

Under future climate change scenarios, there is generally an 
observed trend toward northward migration in the geographic 
distribution of suitable habitats for various tree species along with 
varying degrees of range expansion. Studies suggest that climate 
change will not only affect the size but may also the shifts in 
distribution ranges of these species (Bertrand et al., 2011; Chen et al., 
2011). Long-term climate observations indicate alterations in regional 
temperature as well as changes in t precipitation patterns due to global 
warming (Zhao et al., 2021). In future projections, annual average 
precipitation in China is expected to increase by 0–20%, particularly 
more pronounced in northern and northwestern regions; meanwhile 
temperatures are expected to rise significantly by 2.7–2.9°C on an 
annual basis across China as a whole (Jiang and Fu, 2012). Moreover, 
under the high greenhouse gas emission scenario of SSP5-8.5, 
temperature increases are even more substantial further promoting 
northward migration of tree species (Li et al., 2019; Xie et al., 2021). 
In the future, during different periods (2050s, 2090s) under different 
climate scenarios (SSP1-2.6 and SSP5-8.5), significant additions to 
suitable habitats for C. lanceolata can be anticipated primarily located 
within the northern and northwestern regions of China. These areas 
are experiencing the impact of climate change, resulting in an overall 
expansion of suitable habitat area for tree species that shifting toward 
higher latitudes, consistent with their preference for warm and moist 
conditions. In the context of global warming, rising temperatures may 
pose a threat to suitable habitats and genetic diversity for certain heat-
sensitive tree species in northern regions. Conversely, heat-tolerant 
species like C. lanceolata are expected to significantly benefit from 
future climate change as their suitable habitats potentially expand 
further with rising temperatures (Hagen et al., 2007; Lyons et al., 2010).

The predictive results indicate that, under future climate change 
scenarios, there is a projected increase in potential suitable habitats 
for P. taiwanensis and Q. glauca to some extent initially. However, 
over time and with escalating greenhouse gas emissions, the 
reduction in suitable habitat areas for these species will continue 
expanding even surpassing any newly added area. Fragmentation of 
suitable habitats has intensified while their centroids have shifted 
toward lower latitudes due to the suitable habitats loss, indicating 
that the adaptative mechanisms of these two tree species may not 
be sustainable under ongoing future climate warming trends (Zhang 
et al., 2020). The decline in suitability for P. taiwanensis and Q. glauca 
primarily occurs at low altitudes suggesting a tendency for their 
potential suitable habitats to shift toward higher altitudes instead. 
Similarly, consistent with our findings, Zou et al. (2018) investigated 
the impact of climate change on the distribution pattern of Malus 
baccata and observe significant reduction in its suitable habitat at 
higher altitudes. Jayasinghe and Kumar (2019) predicted that, 
compared to higher altitudes, the potential distribution of Camellia 
sinensis will further diminish in lower altitude areas in the future. It 
is worth noting that under future climate scenarios, there has been 
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a noticeable decrease in the suitable habitat area for Q. glauca in 
southern Yunnan. These regions are geographically obstructed by 
the Ailao and Wuliang Mountains, impeding the southward 
intrusion of cold air streams while being influenced by warm and 
humid oceanic airflows. Consequently, this results in less distinct 
seasons, increased precipitation levels, lower annual average 
temperatures, and smaller annual temperature fluctuations, which 
do not align with Q. glauca current preferences for heat and humidity 
conditions (Wu et al., 2022). As a result of this factors combined 
with future climate change trends, it is likely that Q. glauca’s natural 
distribution will gradually disappear from southern Yunnan. 
Furthermore, high greenhouse gas emission scenario SSP5-8.5 
projections indicate a deceleration in growth rate for suitable 
habitats of C. lanceolata along with decreased newly added area. 
Studies suggest that a moderate temperature increase can promote 
the tree growth and development; however when temperatures 
exceed their optimal range high temperatures can become limiting 
factors for plant growth (Liu et al., 2018). Additionally, the degree 
and pace of global warming remain highly uncertain (Thomas et al., 
2004; Li et  al., 2015), and different climate scenarios may yield 
varying trends regarding predictive results from the MaxEnt model 
simulations. Climate change can either promote species’ adaptation 
to non-native climatic conditions leading to an expansion of their 
distribution ranges or conversely resulting in diminished suitable 
habitats causing contraction of distribution ranges (Petitpierre et al., 
2016). Mckenney et al. (2007) predicted the response of 130 tree 
species in North America to future climate change, revealing that on 
average, the distribution of all species is predicted to decrease by 12 
and 58%, with their ranges shifting northward by approximately 
700 km and 330 km. Engler et  al. (2011) analyzed the impact of 
climate change on the distribution areas of 2,632 plant species in 
major European mountain ranges and found that between the 
mid-to-late 21st century (2,070–2,100), an estimated range loss 
exceeding 80% is expected for approximately 36–55% of alpine 
plants and 19–46%. Overall, future climate change remains highly 
uncertain, potentially resulting in habitat expansion, migration, or 
contraction among different species and significantly affecting the 
geographical distribution (Petitpierre et al., 2016).

4.5 Species conservation 
recommendations and uncertainties

Climate is an important aspect influencing global change, 
characterized by the escalating temperatures, changing precipitation 
patterns, and an increase in extreme weather events. Moreover, climate 
change profoundly impacts species growth, reproduction, phenology, 
and geographical distribution at the regional scale (Edwards, 2010). 
Although current biodiversity conservation measures are typically 
based on existing species distributions, they face mounting challenges 
as climate change intensifies. Therefore, comprehending alterations in 
species’ suitable distribution areas under future climate change and 
implementing targeted conservation measures early on are imperative 
to enhance the effectiveness of biodiversity preservation (Zhao et al., 
2021). Considering climate extremes alongside the predictions 
generated by the MaxEnt in this study provides reasonable grounds to 
suspect that the potential suitable habitats of tree species will 
be jeopardized in the near future. Therefore, it is essential to promote 

rational utilization of tree species resources in different suitable 
habitats within the context of climate change. The potential 
distribution modeled in this study serves as an vital reference for 
devising conservation strategy for tree species while effectively 
safeguarding their potential suitable habitats (Carroll et al., 2017). For 
highly suitable habitats, adopting an efficient operational approach is 
necessary to meet diverse resources to ensure ecological benefits. 
Meanwhile, strengthening protection efforts for current period’s 
suitable habitats of tree species becomes crucial to minimize further 
shrinkage caused by adverse effects of climate change (Chen 
et al., 2022).

This study mainly investigated the impact of future climate change 
on the tree species distribution, without considering other constraints 
on their migration. Previous studies have highlighted climate as 
decisive factors influencing species’ potential geographic range across 
various spatial scales (Wen et al., 2016), while other factors such as 
land use, interspecific interactions, and human activities may also 
exert some degree of impact on species distribution (Zhang et al., 
2021, 2022). However, there is currently a lack of suitable scenario 
models to quantitatively describe future changes in these influencing 
factors, making it challenging to integrate all factors into a unified 
model for simulating tree species’ potential distribution (Guan et al., 
2022). As we did not account for these factors, the predicted potential 
distributions and migration distances predicted for future periods 
might have been overestimated. Therefore, future studies should 
consider incorporating these additional factors to obtain a more 
accurate pattern of tree species’ distribution. Nonetheless, this study 
provides insights into the direction of tree species’ migration trend in 
the future period and offers valuable references for their introduction, 
cultivation practices, and development of sustainable resource 
conservation strategies.

5 Conclusion

Based on the actual distribution of C. lanceolata, P. taiwanensis, 
and Q. glauca, along with relevant environmental variables, 
we employed a species distribution model (MaxEnt) to predict their 
potential suitable habitats in China. Under the prevailing climatic 
conditions, the potential suitable habitats of the three tree species are 
mainly distributed in the subtropical region located south of the 
Qinling Mountains–Huaihe River Line. The potential distribution of 
these tree species is predominantly influenced by temperature and 
precipitation, with soil and topography variables exerting a relatively 
minor impact. Under future climatic scenarios, the potential area of 
suitable habitat for all three tree species exhibits varying degrees of 
expansion under RCP 2.6. However, over time and with increasing 
greenhouse gas emissions (RCP  8.5), there is a declining trend 
observed in the suitable habitat areas for P. taiwanensis and Q. glauca 
obviously. While the centroids of the suitable habitats for these three 
tree species are shifting northward, P. taiwanensis and Q. glauca 
demonstrate a tendency toward southward migration as the suitable 
habitat areas diminishes in 2090s. In conclusion, our study elucidates 
on the potential geographic distribution and migration tendency of 
these three commonly afforestation trees (C. lanceolata, 
P. taiwanensis, and Q. glauca), enabling an important reference for 
their future management, conservation, and choice of priority 
afforestation area.
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