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The rapid development of the social economy and the continuous change in land

use have greatly altered the ecological risk of the regional landscape. This study

focused on the Yangtze River Basin in China and aimed to examine the temporal

and spatial variation characteristics of landscape ecological risk (LER) over a

period of 34 years (1982–2015), after determining the optimal sub-watershed

scale. Based on the conditional probability framework, the non-linear response

of NPP to LER was revealed. Finally, the primary driving factors of LER were

explored, and additional potential causes for changes in NPP were discussed.

The study findings indicated that the mean annual LER of the Yangtze River

Basin exhibited a spatial distribution characterized by high values observed in the

western regions and low values in the eastern regions at the optimal sub-basin

scale. Specifically, 30.56 and 22.22% of the sub-basins demonstrated a significant

upward and downward trend in annual LER, respectively (P < 0.05). The spatial

distribution pattern of the mean annual NPP demonstrated high values in the

middle region and low values in the western area, with annual NPP significantly

increasing in 94.44% of the sub-basins (P < 0.05). The relationship between

annual NPP and annual LER was found to be non-linear, indicating that higher

annual LER results in a higher probability of median and high values of annual

NPP from the perspective of watershed average. Furthermore, climate factors

emerged as the main influencing factor of the NPP. Based on these discoveries,

upcoming endeavors should concentrate on optimizing landscape formations

and executing a judicious distribution of plant species.

KEYWORDS

landscape ecological risk, NPP, temporal and spatial variation, non-linear response,

Yangtze River Basin

1 Introduction

The rapid acceleration of human civilization fosters urbanization, causing alterations in
the underlying surface, like land use practices. Concurrently, the population is undergoing
rapid expansion, exacerbating the conflict between humans and the land. Consequently,
ecological risk progressively inhibits the sustainable development of the social economy
(Landis andWiegers, 2007; Paukert et al., 2011; Xie et al., 2020; Lal et al., 2021; Ren andCao,
2022). Ecological risk assessment serves as an effective tool for ecological risk management,
defined as the probability of ecosystem degradation in response to external disturbances
(Gong et al., 2015; Lin et al., 2019). Given that landscapes consist of a heterogeneousmosaic
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of human activities and ecological processes, the assessment of
LER can effectively capture the spatial and temporal heterogeneity
as well as the scale effect of ecosystem structure and ecological
processes (Li and Zhou, 2015; Cao et al., 2018; Lin et al., 2019; Li
et al., 2023). Consequently, LER assessment represents the forefront
of ecological risk assessment research. Evaluating LER not only
enables us to understand changes in landscape structure but also
reflects alterations in ecological processes.

LER assessment is heavily dependent on the principles of
landscape ecology theory and employs different landscape pattern
indices for the creation of LER indices, which are used for its
evaluation purposes (Wang et al., 2021a,b; Zhang et al., 2021;
Ran et al., 2022; Zhao et al., 2022; Li et al., 2023). In this
particular domain, a multitude of scholars have made noteworthy
contributions throughout the past few decades. For instance,
Ren and Cao (2022) analyzed the LER within Liaoning Province
in China, revealing a relatively elevated LER for the Liaoning
River, and the ecological environment should be protected while
developing the economy. The study conducted by Li et al.
(2020) in Beijing exhibited that extra-high LER were primarily
concentrated in the northeastern and southeastern regions of
the city center. Additionally, the presence of traffic roads and
other infrastructure projects played a significant role in generating
disturbances within the landscape, subsequently augmenting LER
(Lin et al., 2019). In a similar study, Wang et al. (2020a)
documented that in the central Himalayas’ Koshi River Basin, the
area of ecological deterioration progressively expanded with an
increase in slope inclination. Furthermore, in multiple areas across
China, such as the Gansu Province’s Baishuijiang National Nature
Reserve, the Fujian Delta region, the Yangtze River Economic
Belt, and the Xi’an Metropolitan Area, extensive examinations
and investigations have taken place regarding alterations in LER
(Wang et al., 2021a,b; Ran et al., 2022; Zhang et al., 2022a,c).
Experts have not only investigated the characteristics of spatial and
temporal variations in LER but also have analyzed the factors that
drive its transformations. For instance, in Liaoning Province, the
temperature and per capita GDP were recognized as the primary
elements that impact LER (Ren and Cao, 2022). The investigation
has uncovered that intensified human actions constitute the
primary driver for the amplified LER within the Koshi River
Basin (Wang et al., 2020a). Although researchers have extensively
delved into the phenomenon of LER, insufficient scrutiny has
been devoted to investigating the correlation between such risk
and the functionalities of ecosystem services. This research gap,
specifically with a focus on continuous long-term data, needs to be
addressed promptly.

NPP is an essential ecosystem service associated with the
growth of carbon sinks in terrestrial ecosystems. It has gained
significant attention in the realm of ecosystem services research
(Erb et al., 2016; Zhao et al., 2020; Wei et al., 2022). In the Qinghai
alpine ecosystem of China, NPP held great significance in terms of
water-related ecosystem services and was widely regarded as a key
indicator of ecosystem quality (Hao et al., 2022). Past investigations
concerning NPP predominantly concentrated on exploring its
connection with various ecosystem services, primarily employing
linear correlation analysis techniques (Chen et al., 2023; Ma et al.,
2023). However, uncovering the non-linear connections between

different factors in intricate systems poses a significant difficulty.
Hence, there is a need to establish a new non-linear framework.
Given that the Yangtze River Basin is an economically significant
region in China, studying the changes in NPP, particularly in the
context of carbon neutrality, holds great importance (Yang et al.,
2021). Studying the changes in NPP held immense importance,
particularly considering the concept of carbon neutrality (Ouyang
et al., 2021). By examining the spatial and temporal variations
in LER within the Yangtze River Basin and investigating the
non-linear reaction of NPP to LER, it is possible to enhance
the preservation of the ecological environment in this region.
Moreover, these findings can aid in optimizing the landscape
pattern while promoting economic development.

Hence, the primary objectives of this study are (1) examining
the spatiotemporal patterns of LER in the Yangtze River Basin over
an extended period, (2) quantifying the non-linear relationship
between NPP and LER using conditional probability, and (3)
investigating the key drivers of LER alteration and additional
factors impacting NPP alterations.

2 Study area and data

2.1 Yangtze River Basin

The Yangtze River originates from the Tanggula Mountains
on the Qinghai Tibet Plateau and spans three major regions of
western, central, and eastern China. The river passes through
11 provinces and cities before reaching the East China Sea. The
watershed area of the Yangtze River is ∼1.8 million km2, with
elevation changes ranging from −67 to 6,486m. Geographically,
it is located between 24 ◦ N-34 ◦N and 90 ◦ E-122 ◦ E (Figure 1).
The basin is characterized by abundant precipitation and a warm
climate. It has a subtropical monsoon climate, with a mean annual
precipitation of ∼1,122mm. The distribution of precipitation is
uneven throughout the year, with 60% concentrated in the summer.
This region is of great importance for population and industrial
concentration in China, contributing significantly to the country’s
GDP. However, it also faces challenges due to its relatively fragile
ecological environment (Yang et al., 2021).

2.2 Study data

Liu et al. (2020) provided land use raster data for a
continuous period of 34 years, spanning from 1982 to 2015, at
a spatial resolution of 5,000m (https://essd.copernicus.org/). The
Digital Elevation Model (DEM) data, acquired from the Institute
of Geographical Science and Resources, Chinese Academy of
Sciences, had a spatial resolution of 250m (http://www.resdc.cn/).
Furthermore, Yu et al. (2018) compiled NPP raster data at 8-day
intervals, covering the period from 1981 to 2018, with a spatial
resolution of 5,000m (http://www.geodata.cn/). After projection
conversion and summation calculation, the annual NPP raster data
from 1982 to 2015 were obtained, which was consistent with the
projection and resolution of the land use raster data. Moreover, we
gathered raster data for GDP spanning the years 1992 to 2015 with

Frontiers in Forests andGlobal Change 02 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1335116
https://essd.copernicus.org/
http://www.resdc.cn/
http://www.geodata.cn/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Jia et al. 10.3389/�gc.2023.1335116

FIGURE 1

Location of the study area.

a spatial resolution of 1,000m (Chen et al., 2022), NDVI raster data
covering the years 1982 to 2015 with a spatial resolution of 5,000m
(https://daac.ornl.gov/), and POP raster data for the period 2000–
2015 with a spatial resolution of 0.0083◦ (Dobson et al., 2000). The
raster data for precipitation, minimum temperature, andmaximum
temperature were obtained from the Climate Research Unit (CRU;
https://crudata.uea.ac.uk/cru/data/hrg/) at the National Center for
Atmospheric Sciences (NCAS), located in the United Kingdom. All
raster data, after calculation and projection conversion, maintained
the same projection coordinates as land use data. Additionally, the
daily sunshine hours of 178 meteorological stations located within
and around the Yangtze River Basin during the same period were
gathered from the National Meteorological Information Center’s
website (http://data.cma.cn/).

3 Methodology

3.1 Landscape ecological risk index

Based on the concept of landscape ecology, the LER index is
commonly employed to depict alterations in landscape structure
and ecological risk. Typically, it is constructed by utilizing
landscape pattern indices that serve as indicators of ecological
degradation (Wang et al., 2021a,b; Zhang et al., 2021; Ran et al.,
2022). In the present investigation, the landscape disturbance index
and landscape vulnerability index were chosen to compute the LER
index. The precise formula for calculating this index is shown in
Equations (1–5) as follows:

ERIk =

m
∑

i=1

Ak,i

Ak
(Dk,iVk,i) (1)

Dk,i = aFk,i + bSk,i + cFDk,i (2)

Fk,i =
nk,i

Ak,i
(3)

Sk,i =
Ak

2Ak,i

√

nk,i

Ak
(4)

FDk,i =
2In(Pk,i/4)

InAk, i
(5)

where ERIk stands for the LER index of the k-th watershed;
Ak denotes the area of the k-th watershed, km2; Ak,i represents
the area of the i-th landscape in the k-th watershed, km2; m
is the number of landscape types; Dk,i represents the landscape
disturbance index of the i-th landscape in the k-th watershed;
Vk,i is the landscape vulnerability index of the i-th landscape in
the k-th watershed; Fk,i represents the landscape fragmentation
index of the i-th landscape in the k-th watershed; Sk,i represents
the landscape separation index of the i-th landscape in the k-

th watershed; FDk,i denotes the landscape fractal dimension of
the i-type landscape in the k-th watershed; nk,i represents the
number of patches of the i-th landscape in the k-th watershed; Pk,i
denotes the perimeter of the i-th landscape in the k-th watershed,
km; and a, b, and c are weight coefficients of usually 0.5, 0.3,
and 0.2.

The landscape vulnerability index is capable of depicting
the landscape ecosystem’s susceptibility to external disruptions.
The ecosystem becomes increasingly unstable as its value
increases. Typically, it is determined through the analysis of
land use data. In this particular study, a value of 4 was
assigned to cultivated land and 2 to forest land. Grassland
and shrubs were given a value of 3, while other types of
land use were assigned a value of 6, to carry out the
normalization process. By doing so, the landscape vulnerability
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FIGURE 2

Technical roadmap for this study.

index Vk,i for each watershed can be derived for every
landscape type.

The LER has a scale effect on the calculation unit, and the
calculation unit of different sizes will cause a change in the
landscape pattern index. In this study, LER was calculated at the
sub-watershed scale. To select the best sub-watershed scale, using
ArcGIS software, 18 different thresholds in flow accumulation
values for channelization, from 105 to 106 with an interval of
5 × 104, were set to extract sub-watersheds of different scales,
numbered from scale 1 to scale 18, and the technical roadmap of
this study is shown in Figure 2.

3.2 Conditional probability framework

The probability framework of the condition is employed
to evaluate the non-linear reaction of NPP to LER through
the utilization of the marginal distribution function and copula
function, taking into consideration the aspect of probability (Fang
et al., 2019; Guo et al., 2021). The specific formula is shown in
Equation (6):

P(Y ≤ y |X ≤ x ) =
P(Y ≤ y,X ≤ x)

P(X ≤ x)
=

C(FX(x), FY (y))

FX(x)
(6)

where x and y refer to the LER and NPP, respectively; FX(x) and
FY (y) are the optimal marginal distribution functions of LER and
NPP, respectively; in this study, there are four alternative marginal
distribution functions, namely, generalized logistic distribution
(GLO), Pearson III type distribution (PE3), Gumbel distribution
(GUM), and generalized extreme value distribution (GEV). The
marginal distribution function with theminimumRMSE is selected
as the optimal marginal distribution function for the variable;
P(Y≤y|X≤x) indicates the conditional probability, and the larger
the value, the more sensitive y is to x; C[FX(x), FY (y)] is the
joint distribution; and the copula function is used as the joint
distribution function connecting two marginal distributions; there
are three types of copula functions as candidates, namely, Frank

copula, Gumbel copula, and Clayton copula. The optimal copula
function for the two random variables is determined by selecting
the copula function with the smallest AIC through the calculation
of AIC for each copula function.

3.3 Trend, change point test, and
geographic detector

The Mann-Kendall (MK) trend test and the Pettitt test are
used in this study to identify trends and change points in
various time series variables (Mann, 1945; Kendall, 1975; Pettitt,
1979). The evaluation of the interaction among the driving
forces of LER was conducted using the geographic detector’s
interactive detector developed by Wang and Xu (2017) and
Song et al. (2020). The interaction among multiple factors is
categorized into five types, namely, bivariate enhancement, non-
linear enhancement, univariate weakening, non-linear weakening,
and independence. An increased q value in the factor detector
indicates a stronger influence of the driving factors on the LER.
The calculation formula for this specific analysis is shown in
Equation (7):

q = 1−

L
∑

h=1
Nhσ

2
h

Nσ 2 (7)

where h = 1, 2,...; L is the number of variables; Nh and
N are the number of samples of class h and the whole
region, respectively; and σ 2

h
and σ 2 are the variances

of landscape ecological risk of class h and the whole
region, respectively.

3.4 Solar radiation calculation

Ångström–Prescott model is extensively employed for
the estimation of solar radiation (Liu et al., 2012). The
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FIGURE 3

Spatial distribution of mean annual landscape ecological risk in di�erent sub-watershed scales.

formula used to compute solar radiation is provided in
Equation (8):

Rs

Ra
=

(

a+ b
n

N

)

(8)

where Rs represents solar radiation, MJ/(m2·day); Ra represents
extraterrestrial solar radiation, MJ/(m2·day); n is the sunshine
hours, h; N is the theoretical maximum sunshine hours, h; and a

and b are parameters, with values of 0.25 and 0.50, respectively.
By summing the daily solar radiation, annual solar radiation can
be obtained. Moreover, kriging interpolation can be used to obtain
solar radiation grid data with the same resolution as NPP.

4 Results and analysis

4.1 Selection of the optimal sub-watershed
scale threshold for LER

According to Figure 3, the spatial arrangement of the mean
annual LER was showcased across different sub-watershed scales
between 1982 and 2015. In the Yangtze River Basin, the mean
annual LER demonstrated a distinct pattern with elevated values
in both the western and eastern regions, with a range of 0–
0.24 across different sub-watershed scales. Moreover, the impact
of scale on ecological risk was evident, particularly at smaller
sub-watershed scales, where the disparities in spatial distribution
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FIGURE 4

Spatial average value of mean annual landscape ecological risk in di�erent sub-watershed scales.

FIGURE 5

Spatial average value of annual landscape ecological risk changed with the years.

of the mean annual LER were more pronounced. As the scale
of the sub-watershed increased, the distribution pattern of LER
in the Yangtze River Basin gradually became more consistent.
The pattern of high risk in the west and low risk in the east,
and high risk in the south and low risk in the north, became
increasingly evident and stable for the mean annual LER. As
the sub-watershed scale increased, the average spatial value of
the mean annual LER initially decreased and then increased
(Figure 4). This confirmed that there was an optimal threshold
that made the LER not to increase with the change of scale,
that is, the scale 11, including 36 sub-basins in the Yangtze
River Basin.

4.2 Spatiotemporal pattern of LER

Following the establishment of the most suitable sub-watershed
size, an examination of the spatial and temporal patterns of annual
LER within the sub-watershed was conducted in the Yangtze River
Basin (Figures 5, 6). There was a slight decreasing trend in the inter-
annual changes of the spatial average value of annual LER with the
obvious fluctuation changes, and only 20.59% of the data points
were in the 95% confidence interval of the regression equation
with R2 only 0.02 (Figure 5). Of the 36 sub-watersheds, ∼30.56%
exhibited a notable rise in annual LER, while 22.22% experienced
a significant decline (P < 0.05). Specifically, the southern and
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FIGURE 6

(A, B) Spatiotemporal variation characteristics of annual landscape ecological risk.

FIGURE 7

Spatial average value of annual NPP changed with the years.

northeastern regions of the Yangtze River Basin saw a predominant
increase in the annual LER, whereas the western, eastern, and
southeastern areas observed a marked decrease (Figure 6A; P

< 0.05). The Pettitt test indicated that 47.22% of the 36 sub-
watersheds had significant change points in the annual LER in the
Yangtze River Basin, appearing from 1988 to 2001, which were
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FIGURE 8

(A–C) Spatiotemporal variation characteristics of annual NPP.

basically consistent with the spatial distribution of sub-watersheds
with significant changes in annual LER (Figure 6B; P < 0.05).

4.3 Spatiotemporal pattern of NPP

Figures 7, 8 display the variations in annual NPP over time
and space. The average spatial value of annual NPP exhibited a
noticeable upward trend as the years progressed, and 47.06% of the
data points were in the 95% confidence interval of the regression

equation, with R2 only 0.58 (Figure 7). Analyzing the sub-basins
individually, we observe a wide range in mean annual NPP, ranging
from 137.79 to 845.51 gC·m−2. This distribution pattern reveals
higher values in the eastern regions and lower values in the western
regions (Figure 8A).Moreover, a significant increase in annual NPP
was observed in 94.44% of the 36 sub-basins from 1982 to 2015,
providing strong evidence of the overall growth trend (Figure 8B;
P < 0.05). The annual NPP of 86.11% of the sub-basins had
significant change points, which mainly occurred between 1996
and 2000 (Figure 8C; P < 0.05). The northern and northeastern
parts of the Yangtze River Basin experienced the earliest mutation
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FIGURE 9

Spatial distribution of the probability of di�erent annual NPP quantiles under the probability of di�erent annual landscape ecological risk quantiles.

in annual NPP among the sub-basins. Subsequently, the southern
region encountered the mutation, while the source region of the
Yangtze River had the most delayed occurrence.

4.4 Non-linear response of NPP to LER

Under the conditional probability framework, the spatial
distribution of the non-linear response of the annual NPP to the
annual LER was quantified, as shown in Figure 9. Considering the
entirety of the Yangtze River Basin, the likelihood of annual NPP
occurrence was significantly high in the middle region compared
to other regions, regardless of the prevailing circumstances. In the
central region of the Yangtze River Basin, the annual NPP decreased
with the increase in annual LER. Furthermore, the annual NPP
25% quantile decreased with the increase in annual LER. When the
annual LER increased from the 25% quantile to the 75% quantile,
the watershed average probability of annual NPP decreased from
0.23 to 0.21. This indicated that the augmentation of annual LER
led to an increase in probability in both the median and high
values of annual NPP, as observed from the average value of the
basin. However, as annual LER increased, the probability of annual
NPP at the 50 and 75% quantiles increased slightly. For example,
when annual LER increased from the 25% quantile to the 75%
quantile, the watershed average probability of the 75% quantile
annual NPP increased from 0.70 to 0.77. The preceding analysis
further validated the non-linear relationship between annual NPP
and annual LER, affirming the differences in the alteration pattern
of annual NPP as a consequence of variations in annual LER.

5 Discussion

5.1 Reasons for changes in LER

Assessment of LER was contingent upon the alteration of
landscape structure and ecological degradation, which could
be influenced by various factors (Wang et al., 2021a,b; Zhang
et al., 2021; Ran et al., 2022). It was imperative to quantify the
determinants driving LER in order to comprehend its dynamic
progression. Previous studies have extensively investigated this
aspect, taking into account indices such as NDVI, GPD, and POP
(Karimian et al., 2022). This study primarily focused on the impacts
of seven factors on LER, encompassing three aspects: climate,
altitude, GDP, NDVI, precipitation, POP, slope, and temperature,
as well as natural conditions of the surface and social economy.

According to the geodetector’s factor analysis on the mean
annual scale in the Yangtze River Basin, the altitude had the
greatest impact on the LER, with the q-value reaching 0.45 (P
= 0.16), followed by slope, NDVI, precipitation, POP, GDP, and
temperature (Table 1). These findings highlighted that natural
environmental factors played a significant role in changes in LER
within the Yangtze River Basin on a mean annual scale. In addition,
studies have shown that LER in the Lake Shengjin wetland in
the lower reaches of the Yangtze River is influenced by seasonal
changes (Zhu et al., 2020). Notably, the Dongjiang River Basin
study by Karimian et al. (2022) reported that POP held the greatest
influence on LER, with altitude following closely behind. Similarly,
Ren and Cao (2022) highlighted temperature and per capita GDP
as the primary influencers on LER in Liaoning Province. Chen
et al.’s (2020) study in Shanghai, located in the Yangtze River
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TABLE 1 Results of factor detection.

Factors Altitude GDP NDVI Precipitation POP Slope Temperature

Q 0.45 0.29 0.35 0.35 0.31 0.42 0.27

P 0.16 0.53 0.28 0.40 0.16 0.20 0.50

Basin, found that land use change was the cause of LER changes.
These studies indicated that human activity factors may be an
important factor leading to changes in LER at the local regional
scale, especially in urban areas. However, at a larger watershed scale,
natural environmental factors were still the main factor that should
lead to changes in LER.

Additionally, it had also been demonstrated by the investigation
that human activities were responsible for the principal origin of
such elevated ecological risk, and in light of this, the governing
body needed to enhance their regulation of risk by substantially
diminishing human activities, such as rapid urbanization and
road expansion (Che et al., 2023). This intervention was vital for
safeguarding the ecological integrity of this crucial area situated
in the Qinghai-Tibet Plateau (Liang and Song, 2022). Zhang
et al.’s (2023) study further pointed out that implementing risk
zoning control was a necessary means in Hunan Province in the
Yangtze River Basin. The findings from the interactive analysis
indicated that the interaction impact of altitude and GDP, altitude
and temperature, GDP and slope, GDP and temperature, and
precipitation and temperature on LER weakened, whereas the
interaction effects of other factors on LER enhanced (Table 2).
These results validated the susceptibility of the Yangtze River
Basin’s LER to various interacting factors, and the impact
of different factors on LER presents a complex relationship,
emphasizing the urgent need for enhanced ecological environment
protection in the region.

5.2 Other causes of changes in NPP

After accounting for its own consumption, NPP denotes the
capacity of vegetation to sequester carbon dioxide by means of
photosynthesis (Erb et al., 2016; Zhao et al., 2020; Wei et al.,
2022). Wang et al.’s (2021a,b) research indicated that the overall
NPP in the Yangtze River Basin was increasing, with the upstream
increasing at the fastest rate, while the areas where NPP decreased
were mainly concentrated in cities and their surrounding areas.
It can be affected by many factors outside the landscape pattern,
such as solar radiation, precipitation, vegetation coverage, and so
on. In the classical CASA model, a remote sensing model for NPP
inversion, these factors were considered, and even more (Potter
et al., 1993; Zhang et al., 2022b; Mu et al., 2023). Here, we examined
the impact of solar radiation and NDVI on changes in NPP within
the Yangtze River Basin.

According to the analysis conducted by MK, it had been found
that a mere 4.81% of the region, where the annual precipitation
exhibited a noticeable increase, was primarily concentrated in the
source area of the Yangtze River, and on the other hand, a significant
rise in annual temperature was observed in 85.29% of the area

(Figures 10A, B; P< 0.05). It should be noted that only 2.65% of the
regions displayed a substantial positive correlation between annual
precipitation and annual NPP, while 8.15% exhibited a notable
negative correlation (Figure 10E; P < 0.05). Similarly, a substantial
positive correlation was observed in 35.27% of the areas between
annual temperature and annual NPP, whereas a significant negative
correlation was found in 2.08% of the regions (Figure 10F; P <

0.05). From the aforementioned analysis, it can be inferred that
climate variables, particularly precipitation and temperature, had
a significant impact on the variations in NPP. Moreover, it was
important to highlight that the effects of temperature were more
widespread throughout the Yangtze River Basin (P < 0.05).

Based on the MK trend analysis, it could be observed
that ∼6.49 and 20.01% of the total solar radiation area in
the Yangtze River Basin exhibited noteworthy increasing and
decreasing trends, respectively (Figure 10C; P < 0.05). Specifically,
the regions experiencing a significant reduction in solar radiation
were predominantly located in the source zone of the Yangtze River
(P < 0.05). Conversely, the areas displaying a significant upsurge
in solar radiation were mainly concentrated in the northern and
southwestern parts of the Yangtze River Basin (P < 0.05). It was
noteworthy to mention that there existed a substantial positive
correlation between the annual solar radiation and the annual
NPP in ∼19.96% of the analyzed area, which areas primarily
corresponded to regions where there was a noteworthy increase
in the annual solar radiation (Figure 10G; P < 0.05). Conversely,
in about 3.06% of the examined area, the annual solar radiation
exhibited a notable negative correlation with the annual NPP, which
was primarily observed in areas where the annual solar radiation
witnessed a significant decrease (P < 0.05).

Moreover, the Yangtze River Basin experienced substantial
alterations in the area covered by the annual NDVI. Specifically,
46.08% of this region displayed a notable surge, while 8.07%
witnessed a significant decline (Figure 10D; P < 0.05). Within the
areas where annual NDVI decreased, there was a predominant
concentration near the source region of the Yangtze River.
Conversely, the sections where annual NDVI increased were
primarily concentrated in the middle of the Yangtze River Basin
(P < 0.05). A significant positive correlation between annual
NDVI and annual NPP was observed in 21.45% of the areas,
whereas 2.01% of the areas exhibited a significant negative
correlation (Figure 10H; P < 0.05). The distribution of these areas
is generally aligned with the regions showing significant increases
and decreases in annual NDVI. These findings provided additional
evidence supporting the influence of changes in solar radiation
and NDVI on NPP changes in the Yangtze River Basin, which
suggested that higher solar radiation andNDVI values are favorable
for increased NPP.

To summarize, in the Yangtze River Basin, alterations in
NPP were primarily influenced by various factors, including
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TABLE 2 Results of interactive detection.

Factors Altitude GDP NDVI Precipitation POP Slope

GDP 0.43↓

NDVI 0.50↑ 0.59↑

Precipitation 0.66↑ 0.41↑ 0.43↑

POP 0.52↑ 0.41↑ 0.52↑ 0.36↑

Slope 0.71↑ 0.06↓ 0.61↑ 0.89↑↑ 0.78↑↑

Temperature 0.43↓ 0.22↓ 0.55↑ 0.28↓ 0.51↑ 0.45↑

↑↑ Indicates non-linear enhancement; ↑ Indicates bivariate enhancement; ↓ Indicates univariate weakening.

FIGURE 10

Trend of annual precipitation (A), annual temperature (B), annual solar radiation (C), annual NDVI (D), and their correlation with NPP (E–H),

respectively.

precipitation, temperature, solar radiation, and NDVI. It was
evident that climate factors played a crucial role in driving the
changes observed in NPP within this region. The findings from

Yang et al.’s (2021) study additionally supported the idea that
both land use and climate change collectively contributed to the
variations in NPP within the Yangtze River Basin, with climate
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change being the overarching determinant. Xu et al. (2023) had
shown at the vegetation ecosystem level that climate change
was the main driving force behind NPP changes. Besides solar
radiation, NDVI, precipitation, and temperature, the alteration
of topographic elements equally played a significant role in
influencing the variations in vegetation and NPP (Peng et al., 2012;
Xu et al., 2018; Wang et al., 2020b). Particularly for the arid valley
region, topographical factors exerted the most prominent influence
on NPP (Zhou et al., 2021). Hence, in the forthcoming period,
it is imperative to exploit the carbon sink potential of terrestrial
ecosystems in the Yangtze River Basin and capitalize on the
local solar resources to optimize the landscape pattern wisely and
significantly allocate vegetation types (Wu et al., 2023). In addition,
future research should also strengthen research on soil carbon
sinks (Cheng et al., 2023).

6 Conclusion

The assessment of LER and NPP plays a vital role in
understanding the regional landscape structure, ecological
processes, and carbon sink capacity of terrestrial ecosystems. In
the context of ongoing global climate change, the evaluation of
temporal and spatial variations in LER and its influence on NPP
holds significant importance. In this investigation, we utilized
the Yangtze River Basin in China as a case study to examine the
spatiotemporal changes in LER and the non-linear impact it had
on NPP. The study found that scale effects were observed in the
changes in LER in the Yangtze River Basin. The spatial distribution
of mean annual LER within the Yangtze River Basin exhibited
a characteristic pattern of being high in the western region and
low in the eastern region. Approximately 30.56% of sub-basins
showed a significant increase in annual LER, while 22.22% of
sub-basins exhibited a significant decrease trend (P < 0.05). The
spatial distribution pattern of the mean annual NPP exhibited
high values in the middle regions and low values in the western
regions. Moreover, the spatial average value of annual NPP showed
a significant increase from 1982 to 2015 (R2 = 0.58). A significant
increase in annual NPP was testified in 94.44% of the sub-basins,
with most sub-basins experiencing significant change points in
annual NPP (P < 0.05). The relationship between annual NPP and
LER exhibited a non-linear pattern; an increase in annual LER
could lead to an increase in probability in both the median and
high values of annual NPP. Climate factors played a pivotal role in
driving changes in NPP within the same region.

Although this study revealed the non-linear relationship
between LER and NPP, further research is necessary to explore the
mechanism of this non-linear relationship. Furthermore, ecological
risk management can be effectively carried out by dividing

ecological zones. It is crucial to adopt a rational allocation of plant
species, optimize landscape patterns, and maximize the utilization
of solar resources to enhance carbon sinks in terrestrial vegetation
in the future.
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