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Kalimantan, the Indonesian portion of the Island of Borneo, has an estimated
45,000 km? of tropical peatland and represents one of the largest stocks
of tropical peat carbon. However, over the last three decades, the peatlands
of Indonesia, and Kalimantan in particular, have been heavily degraded or
destroyed by drainage of peatland swamps, deforestation, land cover change for
agriculture, and intentional burning. Many studies have examined degradation
of peat forests and the associated frequency of fires, often focusing on
specific regions of Kalimantan over limited periods. Here, we present our
results of a spatially comprehensive, long-term analysis of peatland fires in
Kalimantan over more than two decades from early 2001 to the end of 2021.
We examined the effects of changing climate conditions, land cover change,
and the regulatory framework on the total burned area and frequency and
severity of peatland fires over a 21-year period by combining extensive datasets
of medium-resolution and high-resolution satellite imagery. Moreover, surface
fire intensity was modeled for four dominant land use/land cover types to
determine how land use change alters fire behavior. Our results confirm a
consistent and strong spatiotemporal correlation between hydro-climatological
drivers associated with El Nifio conditions on peatland fire frequencies and
burned peatland area. Changes in the number of fires and burn severity are
visible over time and are caused by a combination of large-scale meteorological
patterns and changing regulations. A significant relative increase of the "high”
and “very high” severity across all peatland fires in Kalimantan was found
for the latest period from 2015 through 2021 by 12.1 and 13.4%, compared
to the two previous 7-year periods from 2001 to 2007 period and from
2008 to 2014, respectively, whereas the total peatland area burned decreased
in 2015 to 2021 by 28.7% on average compared to the previous periods.
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The results underline the importance of a comprehensive approach considering
physical aspects of overarching climate conditions while improving political
and regulatory frameworks to mitigate the negative effects of burning tropical

peatlands.
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1 Introduction

Indonesia is home to about 23% of the worlds tropical
peatlands with a large portion of the country’s peatland areas
(32%, an area of roughly 45,000 km?) located in Kalimantan, the
Indonesian portion of the Island of Borneo (Osaki et al., 20165
Xu etal, 2018; Anda et al, 2021). Indonesia’s peatland ecosystems
represent one of the largest stocks of tropical forest carbon, storing
an estimated 57 Gt of carbon (Page et al., 2011; Kiely et al., 2021).
However, over the last three decades, the peat forests of Indonesia,
and Kalimantan in particular, have been heavily degraded or
destroyed by land cover change including the drainage of peatland
swamps, deforestation, and human-ignited fires primarily for land
clearing.

Analyses from remote sensing imagery indicate that more than
half of tropical peatland areas in Malaysia, Sumatra, and Borneo
have been converted (Miettinen et al., 2016). Based on the land
cover change datasets of the Indonesian Ministry of Environment
and Forestry (MoEF), Indonesia has lost about 21% of peat swamp
forests mainly due to oil palm and plantation forest development
from 2009—2019 (Indonesia Ministry of Environment and Forestry
[MoEF], 2020). This anthropogenically induced land use/land
cover (LULC) change transformed large portions of the natural
peat swamp to agricultural land primarily for oil palm plantations,
industrial timber plantation, the cultivation of rice, and the
production of rubber (e.g., Ramdani and Hino, 2013; Tacconi and
Muttaqin, 2019). The occurrence of peatland fires in Indonesia is
driven by a complex combination of overarching meteorological
conditions, the political framework, and socio-economic aspects
within agricultural communities in peatland areas (Edwards
et al., 20205 Silvianingsih et al., 2020). The province of Central
Kalimantan in Indonesia, where an estimated 10,000 km? of
tropical peat swamp forest was cleared during the Mega Rice project
(Law et al.,, 2015) exhibits the highest density of peatland fires in
Southeast Asia (Miettinen et al., 2017).

Degraded peatlands are more prone to recurrent fires
(Miettinen et al., 2012). For example, Vetrita and Cochrane
(2020) analyzed fire frequencies in Indonesia’s two largest peatland
regions, Kalimantan and Sumatra during 2001—2018 and found
degraded shrublands have the highest rate of annual burning (329
and 236 km? per year, respectively), impeding forest regeneration.
LULC change and the conversion to more flammable vegetation
increases the risk of intentionally ignited peatland fires spreading
beyond their intended extent (Goldstein et al., 2020). Peatland fires
have been attributed to negative consequences across all sectors.

Frontiers in Forests and Global Change

In addition to the devastating effects on public health by smoke
and haze during intense drought-induced peatland fire seasons in
Indonesia (Marlier et al., 2015; Uda et al.,, 2019) and substantial
economic losses (Kicly et al., 2021), the peatland fires also have
a strong impact on climate change as massive amounts of carbon
stored in aboveground vegetation, roots, and soils are released
into the atmosphere (Turetsky et al., 2015; Heymann et al,, 2017;
Wiggins et al., 2018; Lasslop et al., 2019; Novita et al., 2021; Ribeiro
etal, 20215 Volkova et al,, 2021), intensified by contributions from
long-lasting peat smoldering below the surface (Yokelson et al,
2022).

Hence, a comprehensive assessment of the effects of climate
and meteorological conditions on the number and behavior
of peatland fires is needed to reveal short-term and long-
term patterns in fire frequency and burn severity and to
understand how changing LULC alters landscape flammability
within Kalimantan’s threatened peatland areas and consequently
inform land management and regulatory strategies.

In recent years, peatland fire frequency has been in the focus of
the scientific community to characterize fire regimes in peatlands
and link fire occurrences to climate conditions and anthropogenic
actions. This is supported with an ever-growing number of studies
using remote sensing data and satellite imagery in combination
with process models, machine learning, and refined remote sensing
methods on various spatial scales to address the fire frequency and
fire-induced land cover changes, focusing on specific regions or
distinct periods, respectively, (e.g., Sabani et al., 2019; Gaveau et al.,
2021).

Burn severity is another key factor in characterizing fire
occurrences and is needed to estimate emissions from the fire and to
quantify the recovery potential of vegetation (Turetsky et al., 2015).
In addition, the properties of the post-fire vegetation are important
factors that define the burning conditions for following fire events
(Hoscilo et al., 2013). Many studies have linked spatiotemporal
patterns of fire frequency and burn severity and their relationship
to land cover changes to address drivers of tropical peatland fire in
distinct periods (Vetrita and Cochrane, 2020).

Yet, to the knowledge of the authors, studies emphasizing long-
term patterns of fire in response to climate-drivers in tropical
peatlands are scarce for Indonesia, especially in Kalimantan, a
region with vast peatland coverage and continuous threats of fires
within peatland ecosystems.

The Indonesian government has initiated various programs and
policies to address peatland fires in Kalimantan. These include
efforts to restore degraded peatlands, improve fire prevention
and control measures, and promote sustainable land-use practices.
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While organized efforts are needed, informed decisions require
the knowledge of causes and effects of peatland fire frequency
and severity, especially when long-term changes of climate that
affect important large-scale meteorological patterns are added
to economically driven LULC change. In this study we aim to
(1) assess the effect of climate and meteorological conditions
on the number and behavior of fires in tropical peatland (2)
analyze spatiotemporal patterns in fire frequency and burn
severity across all peatland areas of Kalimantan over more
than two decades (January 2001 through December 2021) using
medium-resolution and high-resolution satellite imagery, (3)
model potential surface fire intensity for four dominant land cover
types in Kalimantan to better understand how changing LULC
alters landscape flammability.

2 Data and methods

2.1 Study area and climate data

Our peatland study region covers an integrated area of
45,000 km? in Kalimantan (Figure 1) and was chosen according
to the delineation of the PEATMAP landcover dataset (Xu et al.,
2018).

To spatiotemporally assess the governing climate conditions
that drive fire regime conditions and occurrences over more than
two decades (January 2001—December 2021), we used gridded
climate data with a spatial resolution 0.1 x 0.1 (ca. 11 km x 11 km
in our study region) of the ERA5 - Land Reanalysis data (Mufoz-
Sabater et al., 2021) over Kalimantan provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF).

We used monthly values of synoptic means of air temperature
at 2 m a.g.l. and total precipitation accessible through the ECMWF
data repository (Murnoz-Sabater, 2019) to calculate anomalies of
air temperature and precipitation with respect to the 21-year study
period.

2.2 Moderate resolution thermal
anomalies

Moderate Resolution Imaging Spectroradiometer (MODIS,
Aqua & Terra) Thermal Anomalies / hotspot data (Ver. 6.1),
provided through U.S. Geological Survey (USGS) and the National
Aeronautics and Space Administration (NASA), was applied to
identify peatland fires in Kalimantan from January 2001 through
December 2021. While the corresponding Visible Infrared Imaging
Radiometer Suite (VIIRS) captures more small fires, the satellite
only launched in October 2011 making the dataset unsuitable for
our long-term assessment. Hence, to avoid inconsistencies, only
MODIS hotspot data was utilized to identify fires.

We combined the daily MODIS MCD14DL (Collection 6.1)
active fire product and the corresponding historic fire product
MCD14ML to track fire events detected in peatlands of Kalimantan
from 2001 through 2021. The MODIS hotspot dataset provides
daily 1 km x 1 km resolution center coordinates of fire events
and fire radiative power (FRP) values for high-intensity fire
pixels (Giglio et al, 2016). The MODIS hotspot dataset has
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been proven suitable to assess fire frequency and burned area in
our study region (e.g., Tansey et al, 2008; Albar et al., 2018).
The dataset also contains values reflecting the certainty of each
thermal anomaly detection. Only data points with a certainty
value of >85% were considered actual peatland fire events and
used for further analyses. Using locations and dates of fire events
detected through the MODIS MCD14DL thermal anomaly/hotspot
dataset as reference, temporally corresponding and collocated high-
resolution (10 m x 10 m to 30 m x 30 m) satellite surface
reflectance data was identified and analyzed for long-term pattern
recognition in burn severity of peatland fires. The monthly long-
term USGS/NASA MCD64A1 Burned Area data product (Version
6.1) was used to trace the amount burned peatland area over time.

The MCD64A1 dataset MODIS active fire
observations with MODIS surface reflectance imagery providing

combines

a global grid with 500 m x 500 m spatial resolution. The dataset
contains a classification indicating whether a pixel is a burned area,
accompanied by additional information such as burn date and
quality assessment values of the uncertainty in days for the date
of burn for each data pixel (Giglio et al., 2018). Globally, the data
product exhibits a 40.2% commission error and 72.6% omission
error after a comparison with corresponding Landsat 8 burned
area values based on 558 pre- and post-fire scenes (Boschetti et al.,
2019).

Nevertheless, using aggregated Landsat 8 raster data with
decreased spatial resolution, the coefficient of determination (R?)
for the MCD64A1 and Landsat 8 burned area data was found to be
>0.7 for the linear regression. Hence, while limited by resolution,
the global MCD64A1 dataset offers the longest standing reference
for burned area assessments.

2.3 High resolution satellite surface
reflectance imagery

To cover the 21-year study period as continuously as possible,
we combined high resolution imagery from Landsat missions
provided through the NASA/USGS Collection 2 / Level 2 data
repository (Micijevic et al., 2020) and data from the European
Space Agency (ESA) Sentinel-2 A/B satellite mission (Gascon
et al., 2014). This comprises Landsat-5 Thematic Mapper (TM),
Landsat-7 Enhanced Thematic Mapper Plus (ETM+), Landsat-
8 Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS) multispectral data (e.g., Reuter et al., 2011, 2015; Wulder
etal, 2019) as well as data from the Copernicus Sentinel-2 mission
(Claverie et al., 2018) for the analyses of burn severity (Figure 2).
The USGS Landsat 2 / Level-2 collection datafiles are quality filtered
and flagged including cloud masking and atmospheric corrections
have been applied such as corrections for solar angle and sensor
viewing angles (Micijevic et al., 2020; Pinto et al., 2020).

We extracted data sub-grids from the Landsat and Sentinel-
2 satellite scenes for each channel for each fire event with a
2 km buffer from the centers of the MODIS hotspot data points.
The spatial buffer size was chosen empirically to safely capture
the complete extent of all burns while accounting for the spatial
accuracy of the MODIS hotspot coordinates. To maximize the
availability of high-resolution imagery data from the various
Landsat and Sentinel-2 campaigns while accounting for generally
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FIGURE 1

Overview of the study region showing the delineated peatland areas (dark
the study period from January 2001 to December 2021.

faster regrowth in humid and tropic regions compared to temperate
ecosystems, we allowed a window-width of 90 days before and after
a fire event for the satellite scenes to be used to capture the pre-fire
and post-fire surface reflectance spectra around a specific peatland
fire event. The rasters used for the reflectance analyses of burn
severity have a spatial resolution of 30 m x 30 m for the Landsat
imagery and 20 m x 20 m for the Sentinel-2 data.

With the study area located in the tropics, cloudiness mostly
affects the quality and usability of the Landsat and Sentinel satellite
surface reflectance imagery in our study area (e.g., Sudmanns et al.,
2019). Hence, to allow for reliable comparison of pre-fire and
post-fire reflectance data, hotspot-specific Landsat, and Sentinel-2
sub-grids with more than 2% of the pixels classified as cloud cover
(clouds and cloud shadows) in the reflectance data sub-grids were
not used for further analyses.

2.4 Burn severity analyses and
classification

The differenced Normalized Burn Ratio (dINBR) was used to
assess aboveground damage to vegetated areas after fires (Brewer
et al, 2005). Unharmed vegetation exhibits high reflectance values
in the near-infrared (NIR), and low reflectance in the shortwave-
infrared (SWIR) band spectrum whereas burnt vegetation shows
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green) based on PEATMAP data and the average annual precipitation for

low reflectance in the NIR and high reflectance in the SWIR
band. Hence, high NBR (Eq. 1) values indicate healthy unburned
vegetation while low NBR values indicate bare ground, charred
vegetation, and recently burnt areas. By comparing pre-fire
reflectance with post-fire reflectance through the dNBR (Eq. 2),
damage to the surface vegetation (i.e., burn severity) can be assessed
and classified (e.g., Miller and Yool, 2002; Cocke et al., 2005)
following Eqs 1, 2:

(NIR — SWIR)
NBR = ———— (1)
(NIR + SWIR)
dNBR = NBRpre—ﬁre - NBRpost—ﬁre (2)

The NIR and SWIR channel assignments vary slightly with
respect to the wavelengths captured based on the satellites’
Details the quality,
comparability, as well as the classification of channels and

instrumentations. regarding spectral
respective wavelengths for the various LANDSAT missions used
and the Sentinel-2 mission can be found in Chander and Markham
(2003), Irons et al. (2012), and Lamquin et al. (2019), for instance.

If more than one pre-fire or post-fire NBR raster sub-grids
were available after quality filtering, we used averages of the
corresponding NBR datasets. This dampens effects of remaining

erroneous pixel values and leads to an overall improved accuracy

frontiersin.org


https://doi.org/10.3389/ffgc.2024.1221797
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/

Schmidt et al.

10.3389/ffgc.2024.1221797

ERAS climate data &
Southern Oscillation

MODIS MCD14DL
Thermal anomalies/hotspots

Index time series 4 i
" s f .:_, _l \
5 A 3

.

Climate
‘Anomalies
& El Nifio
conditions

Date and

fire pixels

Landsat 7
ETM

Landsat 7 ETM
Landsat 5 TM

Landsat 8
OLI/TIRS

Jan 2001~
Jun 2003
Mar 2013
Jun 2015-*

Calculate burn severity from
high resolution satellite data

numbers of fires over time

Calculate climate anomalies and relate to

Number of Fires

Unchanged / unburned

AT, K
R

“a

AP [mm)

I ;
|,

100 ]
2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021

11

2001200

Dec 2021~

g s
Low severty

Burn severity trend analyses

Climate effects on peat fire
occurrence & frequency

FIGURE 2
Schematic overview of processing steps and data used for the analyses.

MODIS MCD64A1:
Burned Area

Determine fuel composition: l)'y t
measurements:. -

Burned
area pixels
and date
of burn

Calculate burned area over time from
medium resolution satellite data

}

FCCS custom [
fuel beds ™ "

[ ]

10

4000

g
-4

Surface Fuel Load
H
H

Burned Area [km?]

1000

1 2 6
Year Post Treatment
-

o
SEEIEIESSIIISI

Model surface
fire intensity and
canopy spread

Scale long-term and large-scale MODIS
data by linear regression with

potential validated high-resolution satellite data
FHLL ] [T
g, .50 NN
R LEE B I1F°

-0 ;é$ ?ﬁé [LE'; ;ﬁ

Initiation

qgéé

Year

ey

Year

S D e
S SO

Transmissivity

Fire intensity analyses Long-term trend in burned area

compared to corresponding dNBR values based on only one pre-fire
and one post-fire raster pair (Parks et al., 2018).

For some peatland fire events after 2015, a combination of
Sentinel-2 and Landsat-8 data were blended after rescaling the
higher resolution rasters to 30 m x 30 m resolution, leading
to acceptable deviations compared to using post- and pre-fire
spectral data from one set of spectral data. However, using imagery
from various satellites/instruments increases the overall accuracy if
surface reflectance data closer to an actual fire date can be captured
(Quintano et al., 2018).

2.5 Fire intensity modeling

Fire behavior models are important in supporting fire
characteristics assessment and fire management (Scott and Burgan,
2005). Those models are built around mathematical equations that
predict fire spread (Rothermel, 1972; Prichard et al., 2013) based
on the amount, type, and arrangement of burnable material (fuels)
and weather conditions. Fire behavior is commonly predicted using
models that are parameterized with fuel structure and composition
data (i.e., cover, height, biomass) that are collected in situ or with
existing standard fuel models (Scott and Burgan, 2005; Heinsch
and Andrews, 2010). The Fuel Characteristic Classification System
(FCCS) in the Fuel and Fire Tool (FFT) (Prichard et al, 2013)
allows users to input site-specific fuel and weather data to estimate
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potential fire behavior (e.g., rate of spread, flame length), as well
as to inform prescribed fire planning and fuel hazard assessments.
This model improved upon earlier systems (i.e., BehavePlus,
Heinsch and Andrews, 2010) by incorporating a modified version
of Rothermel (1972) equations that allowed for greater flexibility
in user inputs to fuel loads, ultimately allowing the user to set
fuel input parameters to represent a heterogeneous and layered
fuel structure (i.e., canopy, sub-canopy, understory, surface fuel,
and ground fuel) that more accurately represents field conditions
(Sandberg et al., 2008). Modeled fire behavior studies have provided
valuable information, in particular, for risk assessments (e.g., Ager
etal, 2011; Schmidt et al., 2022) and for comparisons among LULC
types or management alternatives (Brose and Wade, 2002; Evans
etal., 2015; Parsons et al., 2018; Johnston et al., 2021; Williams et al.,
2023).

To estimate the impact that different LULC types (forest,
plantation, oil palm, early successional grass and shrubland -
hereafter, grassland) have on potential fire intensity, we used the
FCCS to build custom fuel models based on field observations and
characterized surface fire intensity and canopy fire transmission
in FFT. Fuels data were derived from published and government
literature and local expert opinion for each LULC type (Novita,
20165 Basuki, 2017). The FFT estimates surface fire intensity using
ecosystem-specific fuel data and environmental scenarios (i.e.,
moisture content through the typical fire season).
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TABLE 1 Applied burn severity classification.

dNBR range Severity class

<0.053 Unchanged/unburned
0.053—0.212 Low

0.213—0.419 Moderate
0.420—0.660 High

>0.660 Very high

For each ecosystem type, fuel beds were customized to
represent the quantity and arrangement of fuel. Details about the
customized fuel beds are provided in the Supplementary material.

Environmental scenarios in the FFT model were calculated by
inclusion of a moisture dampening coeflicient, which has a linear
relationship with model outputs, such that moist fuels generate
reduced fire behavior metrics, and drier fuels result in more
intense modeled fire behavior (Prichard et al., 2013). “Moderate”
and “extreme” environmental scenarios were chosen to represent
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fuel moisture expected as vegetation phenology progresses from
burnable, but moderate fire risk (2/3 cured scenarios; D2L2 in
FFT), to highest fire risk, when fuels are dry and highly flammable
(fully cured scenario; D2L1). Windspeed assumptions used were
6 kph (mild wind conditions) and 32 kph (moderately high wind).
Independent model runs were done for each fuel model (forest,
plantation, oil palm, grassland) at each wind and fuel moisture
scenario. While not all combinations of influencing parameters that
occur in reality can be covered, the applied model conditions cover
a variety of meteorological and fuel conditions. Model outputs
chosen to characterize surface fire intensity included rate of spread
(ROS; m min~!), flame length (FL; m), and reaction intensity (R
the rate of heat release per unit area of the flaming front; kW m?
min~!) (Byram, 1959; Keeley, 2009).

3 Results and discussion

The results for study’s objectives are consecutively presented
in the following sections assessing the effect of climate and
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meteorological conditions on the number and behavior of fires in
tropical peatland (section “3.1 Dependence of fire frequencies on
meteorological conditions”), analyzing long-term spatiotemporal
patterns of burn severity and peatland area burned across
Kalimantan (sections “3.2 Regional trends in peatland fire burn
severity” and “3.3 Assessment of burned peatland area over time”),
and model potential surface fire intensity for four dominant land
cover types in Kalimantan to better understand how changing
LULC alters landscape flammability (section “3.4 Modeled fire
intensity”). Furthermore, a short overview of the regulatory
framework over the two-decade study period is presented in section
“3.5 Timeline of the regulatory framework for peatland fires,
including observed effects on the number of peatland fires.

3.1 Dependence of fire frequencies on
meteorological conditions

Using monthly ECMWF ERA5 Land Reanalysis climate
data, we calculated annual averages for air temperature and
precipitation anomalies spatially integrated over the peatland areas
of Kalimantan. The annual deviations from the 21-year average
of air temperature in 2 m a.gl. and precipitation are shown in

, respectively. Increased numbers of fires ( )
occur during years when the precipitation is lower than the average

Frontiers in

and the maxima of air temperature at 2 m a.g.l. exceeds the 21-
year average value. Accordingly, years with the lower numbers
of fires (i.e., 2007, 2008, 2010, 2016, 2017, 2020, and 2021)
coincide with the years that exhibit total precipitation amounts
above average and air temperature below average, respectively,
( ). The interannual variation of rainfall in Indonesia
is strongly influenced by the Southern Oscillation index (SOI)
and the associated ocean surface temperature variations, with the
El Nino-Southern Oscillation (ENSO) affecting the amounts of
precipitation during fire season and annual groundwater levels
in the tropical peatlands of Kalimantan ( ;

). The warmer conditions and reduced
water vapor during El-Nino years decreases precipitation resulting
in lower peatland groundwater level further increasing the fire
susceptibility of degraded and drained peatlands (

). An increase in the frequency of the El-Nifio conditions of
the overarching circulation system leads to more frequent, intensely
dry fire seasons in Southeast Asia (e.g., ;

). These meteorological conditions that define the fire regime
on a regional scale are reflected in the correlations with El Nifio
conditions and the corresponding number of fire events observed
in our study region (e.g., ; ).

We calculated Spearman rank correlation coefficients Rg for
the time series of the number of peatland fires, SOI, precipitation
anomalies, and air temperature anomalies, confined to the peatland

areas of Kalimantan ( ). With a 99% confidence level,
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FIGURE 5

Histograms of average burn severities over the consecutive periods 2001-2007 (A), 2008-2014 (B), and 2015-2021 (C). To account for increased
numbers of unchanged/unburned pixels inevitably captured in satellite imagery cutouts, the histograms are plotted with breaks in the y-axes for
better visibility of the relative distribution values that refer to burned areas.

the annual number of peatland fires shows significant and strong
correlations with the anomalies of precipitation (Rs = —0.92), air
temperature (Rg = 0.88), and SOI values (Rg = —0.67), respectively.

Annual averages of the Southern Oscillation Index for our
21-year study period are shown in Figure 3C. The negative SOI
values are associated with El Nifo conditions which lead to changes
in large-scale transport of atmospheric moisture in the tropics
coupled with intensified dry seasons in our study area. This
is noticeable for the period from 2001 through 2006 and 2013
through 2016, for instance, during which also increased numbers
of peatland fires were counted across Kalimantan’s peatland areas
according to the MODIS hotspot data (Figure 3A).

This dependence of the number of peatland fires on the SOI
also persists during short-term fluctuations in 2002, 2009, and
2016 when drops in the SOI concurred with increasing numbers
of peatland fires compared to adjacent years (Figures 3A, C).

3.2 Regional trends in peatland fire burn
severity

A total of 13,307 peatland fire events with high resolution pre-
fire and post-fire surface reflectance data layers captured within
90 days before and after each analyzed fire event were available for
our burn severity analyses. We applied a burn severity classification
system developed using ground validated assessments of fire
damage to the vegetation in combination with satellite imagery
based dNBR values in Central Kalimantan to the high-resolution
surface reflectance data following Hoscilo et al. (2013). The dNBR
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classification shows high correlations with corresponding pre-fire
and post-fire ground measurements of vegetation parameters such
as total woody aboveground biomass, tree density, and numbers
of small trees in the affected areas. To increase the bin resolution
for higher burn severities, we refined the classification by further
separating the “moderate” and “high severity” classes according
to Hoscilo et al. (2013), into “moderate;,” “high,” and “very high”
severity classes using the European Forest Fire Information Service
(EFFIS) dNBR classification (e.g., Liu et al., 2022) for the higher
burn severity classes.

The classification system (Table 1) also matches the
partitioning of our overall distribution of dNBR pixels frequencies
(N) calculated across all fires captured in the 21-year period
(Figure 4).

Many of the peatland fires were ignited to clear the area for
establishment of crops such as oil palm plantations or rice fields.
Because we applied a constrained window of 90 days after (or
before) a fire, the number of dNBR pixel values potentially affected
by post-fire reflectance of already growing crops is kept small but
cannot completely be avoided in cases where an increased time
interval has to be applied to capture the same area before and after
a fire. In order to avoid misinterpretation of altered reflectance
spectra caused by anthropogenic LULC change after a fire, we did
not include an extra ‘enhanced regrowth’ class for negative dNBR
pixels as our analyses focus on the fire damage to the natural
peatland vegetation.

To assess long-term changes in fire severity in Kalimantan’s
peatlands, we aggregated the high-resolution satellite data into
three equal periods of 7 years (2001—2007, 2008—2014, and
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FIGURE 6

Comparison of monthly and annually accumulated burned peatland area of the MODIS MCD64A1 data for the 49 districts and the corresponding
area values from high resolution satellite imagery, including the 95% prediction interval based on the regression model.

2015—2021). The selected length of the periods assures that
different meteorological conditions with above and below average
precipitation and air temperatures are captured within each period
(Figure 2). Due to an increasing number of satellite missions
and an increasing amount of available imagery over the 21-years,
the number of available satellite scenes varies over the 7-year
data periods. Therefore, period-specific relative frequencies of
burn severity values were calculated to account for changing total
numbers that are solely based on an increasing imagery data pool
for the later years of our study period.

Figure 5 shows the resulting multi-year histograms of burn-
severity, integrated over all peatland fires in Kalimantan with pre-
and post-fire high-resolution surface reflectance imagery within
each 7-year interval. The fraction of areas with low severity
fire damage remains relatively stable with an average of 23.0%
(0 = 0.32%) across all periods. The portion of pixels with
moderate burn damages fluctuates comparatively with ¢ = 3.5% and
percentage values between 11 and 17% (Figure 5).

However, a strong relative increase of the “high” and “very
high” severity class allocations is noticeable for the latest period
(January 2015 through December 2021) in the dNBR frequency
distribution (Figure 5C) compared to the two previous 7-year
intervals (Figures 5A, B).

The number of pixels with high severity burn damages across all
peatland fires in Kalimantan increased by 12.1 and 13.4% compared
to the 2001—2007 period and 2008—2014 period, respectively.

While only negligible areas were classified as “very high
severity” during the first two periods, 5.5% of burned pixels
showed very high severity damage during the 2015—2021 period.

Frontiers in Forests and Global Change

Surface reflectance spectra alone cannot explain why fires result
in more severe burn damage. Nevertheless, the highest severity
class is nearly unoccupied during the first two 7-year periods
(<1%) whereas a noticeable increase in the “highest severity” class
is observed for the later periods. The consistent and significant
changes in high severity and highest severity burns over time
indicate an overall change in the severity of fire damage to
the peat vegetation in more recent years. The latest period
(Figure 5C) also includes the two extreme years of 2015 and 2019
with large numbers of peatland fires and strongly developed El
Nifo conditions (Figure 3). Moreover, both extreme years were
characterized by persisting dry conditions starting the previous year
which led to exceptionally dry fuel beds that in turn increase fire
intensity and burn severity (e.g., Davies et al., 2016; Hantson et al.,
2017).

3.3 Assessment of burned peatland area
over time

Monthly aggregated MCD64A1 burned area grid maps (Ver
6.1, section “2.2 Moderate resolution thermal anomalies”) were
applied as long-term data suitable for tracking temporal patterns
and relative changes of burned peatland area in Kalimantan. Only
grid cell values with a quality flag indicating sufficient valid data
in the reflectance time series for the grid cell to be processed
were used for the analyses. Using the available spatial resolution
of 500 m x 500 m, we classified the corresponding pixel area as
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FIGURE 7

Corrected annual and 7-year accumulated burned area values integrated over all peatland areas of Kalimantan.

burned and integrated the areas over each year covering all peatland
areas in Kalimantan.

Like all satellite imagery, the MODIS dataset is affected by
inherent commission and omission errors and furthermore is
affected by its moderate spatial resolution which limits the ability to
accurately resolve the area of smaller fires. Hence, to capitalize on
the long-term availability and consistency of the MODIS data while
accounting for its limited resolution, we used 30 m high resolution
imagery to scale MODIS derived long-term values of burned area
(Vetrita et al., 2021).

We manually delineated burned areas using LANDSATS8 and
Sentinel-2 imagery from 2015 through 2021 capturing the total
burned area for 49 districts and cities in Kalimantan (Figure 1).
To correct the long-term data for the annual total burned area
for Kalimantan, we conducted a linear regression analysis (Roy
et al., 2019; Vetrita et al,, 2021) comparing annual district-specific
sums of MODIS burned area and the corresponding burned area
sums, manually delineated using high-resolution imagery from
LANDSATS and Sentinel-2, for each district.

To account for district-year combinations with delineated
monthly burned areas missing and to cover different temporal
scales for the comparison, we included monthly and annual sums of
delineated burned area values and corresponding MCD64A1 sums
for the regression (Figure 6).

District-specific sums of burned areas smaller than 0.25 km?
(monthly or annual sums) were removed to account for the
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resolution limit of the MODIS data which cannot distinguish areas
smaller than 0.25 km?.

The annual MODIS MCD64A1 burned area sums were then
scaled using the slope and intercept of the linear regression function
leading to a corrected burned area assessment over time (Figure 7).
Using the regression equation, the burned area totals increased by
1.8% on average, compared to the original MDC64A1 data.

While the portion of high and very high severity burns
increased over time (Figure 5), the total area burned decreased over
time. The average corrected burned area between 2015 and 2021
was 31 and 26% lower than the previous 7-year averages from 2001
to 2007 and 2008 to 2014, respectively, (Figure 7). With respect
to the burned area totals, the results agree with the finding that
12% of the areas in our study region were burned twice over the
last two decades, with about 23% of the areas burned more than
twice (Vetrita and Cochrane, 2020), dominated by smaller fires
intentionally ignited for agricultural conversion.

The annual pattern of the amount of burned peatland area
follows the patterns of the annual numbers of fires observed per
year (Figures 3A, 6), with exception of the period from 2014 to
2015, where despite an increase of the total number of peatland
fires in 2015 compared to the previous year (Figure 3A), the
total peatland area burned as captured by the MCD14DL record,
decreased in 2015 compared to 2014 (Figure 6).

Potential explanations for the temporal patterns in burn
severity and number of fires or total area burned are combinations
of climate factors and the effect of the regulatory framework. With
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Surface rate of spread (A), flame length (B), and reaction intensity
(C) by LULC type (forest, plantation, oil palm, and grassland) under
modeled moderate fuel moisture and low wind (MMLW), low fuel
moisture and low wind (LMLW), moderate fuel moisture and high
wind (MMHW), and low fuel moisture and high wind (LMHW)
environmental scenarios. Moderate moisture assumes the following
fuel moistures: herbaceous, 60%; shrub, 90%; crown, 60%; 1-hr, 6%;
10-hr, 7%; 100-hr 8%. Low moisture assumes the following fuel
moistures: herbaceous, 30%; shrub, 60%; crown, 60%; 1-hr, 6%;
10-hr, 7%; 100-hr 8%. Low wind assumption is windspeed 1.67 ms
and high windspeed is 8.89 ms~!. All model runs assume a slope of
0%.

1

the 7-year periods smoothing out the effects of single years, the
7-year patterns indicate that the climate factors, mostly driven
by long-term and large-scale atmospheric circulations, led to
increased burn severities. On the other hand, the burned area
integrated over the 7-year sections was reduced due to restrictions
on the clearing of peatland through burning as imposed by the
legislature through changes in environmental laws over time,
driven particularly by the 2015 fire season in Kalimantan with
the highest number of peatland fires on record (Figure 2). In
addition, the very low area of burned peatland during the year
2020 might also be caused at least in part by the COVID-19
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pandemic that temporally limited agricultural activities in the
region (Gregorioa and Ancog, 2020) in combination with the
climatic effect of a triple La Nifna series in Southeast Asia from
2020-2022 which caused persisting wet conditions that likely
contributed to the decline in wildfires in 2021-2022, a phenomenon
that had previously occurred from 1973-1975 and 1998-2001,
respectively, (e.g., Tangang et al., 2017). The comparisons of the
long-term patterns of peatland fire counts, SOI, and meteorological
parameters that determine the fire regime confirm the strong effect
of large-scale atmospheric circulations and regional meteorological
conditions on peatland fire occurrences in Kalimantan over the last
two decades.

3.4 Modeled fire intensity

The model results show that flame lengths were low under
moderate moisture and low wind conditions but increased
substantially in high wind and low fuel moisture scenarios
(Figure 8A). Flame lengths were highest in dense early successional
grasslands, reaching up to 21.5 m under high wind, low fuel
moisture scenarios. Modeled surface flame lengths were higher in
oil palm than in the forests that they replace, where low-hanging
fronds and stringy bark readily ignite and contribute to the active
flaming front (Figure 9), resulting in flame lengths ranging from
2.6 to 8.4 m. Lower flame lengths in forests and plantations were
reflective of the lower statured shrubby vegetation that carried the
surface fire. As plantations had very little vegetation under the tree
canopy, there was sparse fuel to carry surface fire for any moisture
or wind scenario.

Oil palm (8.9 m min~! at low wind and up to 89.8 m
min~! in high wind, low fuel moisture scenarios) and grasslands
(38.3 m min~! at low wind and 406.9 m min~! in high wind,
low moisture) had greatly increased rates of spread (Figure 8B),

I at low wind and

relative to the primary forests (4.3 m min~
43.6 m min~! in high wind, low moisture) that they replaced.
In contrast, timber plantations, consisting primarily of Eucalyptus
and Acacia species, had very low rates of modeled surface
fire spread (1.1—6.1 m min~1!), as there is little fuel under
the tree canopies to carry surface fire. Fuel moisture was an
important driver of rates of fire spread in all LULC categories
except plantations, with modeled fires at low moisture scenarios
16—84% faster than fires at moderate moisture scenarios, with
most pronounced differences in the highly flammable grassland
LULC type.

Reaction intensity, a measure of the heat per unit area of the
flaming front of a surface fire, is dependent on the density of
flammable vegetation in each fuel type. Reaction intensities were
highest in grassland LULC types, where dense litter accumulates
under the live herbaceous vegetation (Figure 9). Dense forest
vegetation, with a complex, layered vegetation structure, large,
downed wood, and deep peat layers, also had high reaction
intensities (Figure 8C). As plantations are a greatly simplified fuel
arrangement, containing primarily merchantable timber species
without a lot of natural understory vegetation, there was little
surface fuel and greatly reduced reaction intensity. Oil palm fields
were structurally simplified relative to forests, with less burnable
material on the soil surface, and were intermediate in modeled
reaction intensities.
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FIGURE 9

Photos of field sites (A) forest, (B) plantation, (C) oil palm, and (D) early successional grassland from which fuel models were developed and fire

behavior interpreted in Kalimantan, Indonesia.

Overall, the model results confirm the superimposed influence
of meteorological conditions and indicate the significant effects
of LULC on fire behavior by showing that simulated conversions
greatly affect surface fire intensity metrics (rate of spread, flame
length, and reaction intensity).

3.5 Timeline of the regulatory framework
for peatland fires

The results show that climate conditions had a strong effect
on the number of peatland fires in Kalimantan during the last
two decades. Due to the strong correlations between driving
climatological and meteorological conditions, superimposed
effects of regulatory restrictions that restrict the burning
of natural peatland for agricultural purposes are inherently
difficult to quantify.

Due to intense fire seasons and associated effects on the
environment and public health (e.g., Kiely et al, 2021; Hein
et al, 2022), the laws pertaining to the protection of natural
peatlands including burn restrictions in Kalimantan changed
over time. Following the wildfire season of 1997—1998 when
1,10,000 km? of peatland were burned in Indonesia, and in
recognition of the increased risk of wildfire in a warming climate,
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the Government of Indonesia established the Directorate of Forest
Fire Control (renamed in 2016 to Directorate of Land and Forest
Fire Management) under the Ministry of Forestry in 2000.

Current policies on forest and fire management consist of
three main activities, fire prevention, suppression, and post-fire
recovery. Under these regulations, people are forbidden by law to
intentionally burn large areas of land for clearing or agriculture,
though there are at times exceptions and inconsistencies between
central and provincial regulations.

In 2006, the Indonesian government allowed burning under
certain conditions for farmers in Central Kalimantan, but larger
scale ignitions of peatland for land clearing remained prohibited
for large oil palm plantations in this region. The reduction of burns
after 2006 as well as the tempering of the restrictions in 2008, can
clearly be tracked in the burn frequency numbers derived from
MODIS hotspot observations across Kalimantan (Figure 3A).

After the extreme fire season of 2015, the government
reinstated a complete restriction of prescribed peatland fires for the
gain of agricultural land. There has been slow progress in reducing
anthropogenic forest and land fire occurrence in Indonesia in
the last two decades (Purnomo et al, 2017). Currently, the
Government of Indonesia focuses on fire prevention rather than
suppression, using integrated fire prevention patrol, land clearing
without burning practices, improving community livelihood, or
canal blocking and forest restoration in degraded peatlands,
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and improving fire early warning system such as SPARTAN
(Sistem Peringatan Kebakaran Hutan dan Lahan). The Indonesian
government also established the Peatland Restoration Agency
(Badan Restorasi Gambut, BRG) in January 2016 and stipulated a
permanent peatland and primary forest conversion moratorium for
business permits in August 2019 to address land and fire issues and
strengthen Indonesia’s commitment to slowing deforestation on
peatlands. Later in 2020, BRG was transformed into the Mangrove
and Peatland Restoration Agency (Badan Restorasi Gambut dan
Mangrove-BRGM) with the purpose of restoring 1.2 million ha of
peatlands and 600 thousand ha of mangrove across 13 provinces.

Furthermore, Law No 32/2009, concerning Environmental
Protection and Management particularly in Article 69, prohibits
clearing of land by burning for every entity. However, as an
exception, small, prescribed fires (maximum 2 ha) are allowed in
peatland vegetation and categorized as local wisdom practices, as
local understanding uses controlled burning to reduce the risk of
large wildfires fires fire weather with strong or gusty winds and dry
fuel conditions.

4 Conclusion

We examined long-term patterns of frequencies, and severities
of peatland fires in Kalimantan using medium-resolution and high-
resolution satellite imagery over a period of 21 years. Moreover, fire
intensity parameters were modeled with regard to conversion from
forest to agricultural land uses as has been done for decades in the
study region of Kalimantan, Indonesia.

Variations in the number of fires and burn severity are
visible over time and are caused by a combination of large-
scale meteorological patterns and changing regulations. Our results
confirm a strong spatiotemporal correlation between climatological
drivers and corresponding peatland fire frequency and burned area,
based on noticeable concurrences with spatially and temporally
well-defined El Nifio-related meteorological extremes. Steep
increases of the number of peatland fires were found to be
tightly connected to increased air temperature values and reduced
precipitation in our study region over the 21-year study period
from the beginning of 2001 through the end of 2021.

The results further show a steady, regionally comprehensive
increase of burn severity of peatland fires in Kalimantan by 12.8%
on average for the latest period from 2015 through 2021 compared
to earlier periods of the same length, whereas the total peatland
area burned decreased between 2015 and 2021 by 28.7% on average
compared to the previous 7-year periods. Our fire model results
show an increased fire intensity (elevated flame lengths and rates of
spread) for grassland and oil-palm plantations compared to forest
stands prior to the LULC conversion. Thus, beyond the release of
large amounts of carbon stored above ground and below ground in
peatland and the loss of unique tropical ecosystems when peatland
is converted to arable land, the decreased fire resilience of degraded
peatland and increased proneness to fire of converted areas
exacerbates the impacts of a changing climate in this region with
increasingly extreme conditions during recurring El Nifio periods
with higher temperatures and low amounts of precipitation.

As the national Indonesian government holds the highest role
as regulator but has little oversight for enforcement, it will be
critical for local government to support and uphold policy.
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Hence, recommendations for better peatland fire management
are (1) more focus on fire prevention activities, (2) alignment
and harmonization of government regulations at the national
and regional levels, (3) improve availability and accessibility of
sufficient funding for pre-fire mitigation, suppression, and post-
fire recovery efforts on regional and local scales. Our results
show that LULC, regulatory frameworks, and meteorological
conditions often driven by larger scale climate patterns all
affect the frequency and severity of peatland fires across scales.
The ongoing alteration of burn frequencies and severities
shown in this study needs to be reassessed frequently while
considering ongoing LULC, evolving adaptations of regulations,
and a changing climate. Therefore, future studies need to
use comprehensive approaches that incorporate the physical
aspects of overarching climate conditions as well as political
and regulatory frameworks to assess negative effects of burning
tropical peatlands. Ultimately, research results can support decision
making that leads to a further reduction of tropical peatland
burning in Kalimantan.
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